Effect of Adaptive Line Enhancement Filters on Noise Cancellation in ECG Signals
Main Article Content
Abstract
Power line interference is the main noise source that contaminates Electrocardiogram (ECG) signals and measurements. In recent years, adaptive filters with different approaches have been investigated to eliminate power line interference in ECG waveforms. Adaptive line enhancement filter is a special type of adaptive filter that, unlike other adaptive filters, does not require a reference signal and has potential application in ECG signal filtering. In this paper, a selflearning filter based on an adaptive line enhancement (ALE) filter is proposed to remove power line interference in ECG signals. We simulate the adaptive filter in MATLAB with a noisy ECG signal and analyze the performance of algorithms in terms of signal-to-noise ratio (SNR) improvement. The proposed algorithm is validated with Physikalisch-Technische Bundesanstalt (PTB) ECG signals database. Additive white gaussian noise is added to the raw ECG signal. Influential parameters on the ALE filter performance such as filter delay, the convergence factor, and the filter length are analyzed and discussed.