Optimal Design of Controllers for Power Network Connected SOFC Using of Multi-objective PSO
Main Article Content
Abstract
In this paper, we study the concept and forming manner of Solid Oxide Fuel Cell (SOFC) into the electrical system and then, its effect on small signal stability is investigated. The paper illustrates the essential module, mathematical analysis and small signal modeling of the SOFC joined to single machine system. The aim of this study is to reduce power oscillations in the presence of the SOFC with optimal stabilizer. The multi-objective Particle Swarm Optimization (MOPSO) technique has been used for designing a Power System Stabilizer (PSS) in order to improve the performance of the system. Two objective functions are regarded for the design of PSS parameters in order to maximize the damping factor and the damping ratio of the system. To evaluate the efficiency of the proposed optimal stabilizers, four scenarios are considered and then, its results have been analyzed. The proposed PSS tuning technique can be applied to a multi-machine system connected to the SOFC. The efficiency of MOPSO based proposed PSS on the oscillations the system related to SOFC is illustrated by time-domain simulation and also, the comparison of the MOPSO based proposed PSS with the PSS based-single objective method has been prepared.