Optimal Source Localization Problem Based on TOA Measurements
Main Article Content
Abstract
Determining an optimal emitting source location based on the time of arrival (TOA) measurements is one of the important problems in Wireless Sensor Networks (WSNs). The nonlinear least-squares (NLS) estimation technique is employed to obtain the location of an emitting source. This optimization problem has been formulated by the minimization of the sum of squared residuals between estimated and measured data as the objective function. This paper presents a hybridization of Genetic Algorithm (GA) for the determination of the global optimum solution with the local search Newton-Raphson (NR) method. The corresponding Cramer-Rao lower bound (CRLB) on the localization errors is derived, which gives a lower bound on the variance of any unbiased estimator. Simulation results under different signal-to-noise-ratio (SNR) conditions show that the proposed hybrid Genetic Algorithm–Newton-Raphson (GA–NR) improves the accuracy and efficiency of the optimal solution compared to the regular GA.