A Method for Real-Time Memory Efficient Implementation of Blob Detection in Large Images

Main Article Content

Vladimir L. Petrović
Jelena S. Popović-Božović

Abstract

In this paper we propose a method for real-time blob detection in large images with low memory cost. The method is suitable for implementation on the specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It uses parallelism to speed-up the blob detection. The input image is divided into blocks of equal sizes to which the maximally stable extremal regions (MSER) blob detector is applied in parallel. We propose the usage of multiresolution analysis for detection of large blobs which are not detected by processing the small blocks. This method can find its place in many applications such as medical imaging, text recognition, as well as video surveillance or wide area motion imagery (WAMI). We explored the possibilities of usage of detected blobs in the feature-based image alignment as well. When large images are processed, our approach is 10 to over 20 times more memory efficient than the state of the art hardware implementation of the MSER.

Article Details

Section
Articles