Applications of Predictive Maintenance Techniques in Industrial Systems

Main Article Content

Aleksandra Marjanović
Goran Kvaščev
Predrag Tadić
Željko Đurović

Abstract

Prognostic methods represent a new methodology for system maintenance which offers significant time and cost savings. The paper offers a short overview of the available prognosis techniques and proposes the implementation of one model-based and one data-driven method. As a representative of the model-based methods the autoregressive moving average (ARMA) modeling approach is chosen. The estimated model parameters are further used for implementing the early change detector which is realized as a Neyman-Pearson hypothesis test. On the other hand, hidden Markov model (HMM) based prognosis illustrates the use of data-driven techniques. Using the cross-correlation input-output functions, HMM prognosis algorithm is proposed, as a suitable way of timely detection. Both techniques were implemented to detect performance changes of the water level sensor in a steam separator system in thermal power plants.

Article Details

Section
Articles