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Feasibility Test of Activity Index Summary  

Metric in Human Hand Activity Recognition* 

Jelena Medarević1, Marija Novičić1, Marko Marković2 

Abstract: Activity monitoring is a technique for assessing the physical activity 

that a person undertakes over some time. Activity Index (AI) is a metric that 

summarizes the raw measurements from tri-axial accelerometers, often used for 

measuring physical activity. Our research compared the Activity Index for 

different activity groups and hand usage [1]. We also tested this metric as a 

classification feature, and how different data acquisition and segmentation 

parameter configurations influence classification accuracy. Data acquisition was 

done with a previously developed system that includes a smartwatch on each wrist 

and a smartphone placed in the subject’s pocket; raw data from smartwatch 

accelerometers was used for the analysis. We calculated the Activity Index for 

labeled data segments and used ANOVA1 statistical test with Bonferroni 

correction. Significant differences were found between cases of hand usage (left, 

right, none, both). In the next analysis phase, the Activity Index was used as the 

classification feature with three supervised machine learning algorithms – Support 

Vector Machine, k-Nearest Neighbors, and Random Forest. The best accuracy 

(measured by F1 score) of classifying hand usage was achieved by using the 

Random Forest algorithm, 50 Hz sampling frequency, and a window of 10 s 

without overlap for AI calculation, and it was 97%. On the other hand, the 

classification of activity groups had a low accuracy, which indicated that a specific 

activity group can’t be identified by using only one simple feature. 

Keywords: Activity index, Accelerometry, Smartwatches, ANOVA1, Classifi-

cation, Machine learning, Random Forest. 

1 Introduction 

Activity monitoring is a technique used for the objective and quantitative 

assessment of the physical activity that the person undertakes over some time. 

Devices used for activity monitoring are often based on accelerometers which 

measure the acceleration of the body part to which they are attached. 
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Accelerometers are used to infer features about metabolic energy expenditure, 

movement (such as gait velocity, posture angle, etc.) as well as fall detection in 

smart systems. For stated purposes, accelerometers sensitive to changes in 

acceleration due to gravity or body movements are used [2]. 

Possible health applications of activity monitoring include various types of 

rehabilitation, fall detection [3], medicine intake tracking [4], providing help to 

dementia patients [5], as well as tracking the degree to which the upper-limb 

myoelectric prostheses users use their artificial limb [6]. All these applications 

require an integrated system to acquire, store, process, and classify the relevant 

data. 

Platforms used for activity monitoring are often structured so that they have 

two main components: sensors for movement quantification, and mobile or 

immovable stations that collect and distribute data to the final destination using 

different communication protocols (Bluetooth, WiFi, ZigBee…) [7]. 

Smart devices nowadays are convenient to use as a platform for activity 

tracking since they have great computational abilities, high-speed connectivity, 

adequate storage, and a variety of sensors for data logging (i.e., accelerometers, 

gyroscopes, magnetometers). 

Smartwatches are comfortable to wear and make continuous data acquisition 

during a longer period feasible since the inbuilt battery can be periodically 

recharged [8]. Besides the convenience, smartwatches fulfill the requirement that 

the activity tracking devices need to be lightweight, unobtrusive, and have a 

reasonable price [9]. Since smartwatches lack the computational resources for 

simultaneous data acquisition and processing, a smartphone is needed in every 

configuration, preferably for data sensing and processing, not only storage [10  

11]. Various research in activity recognition has been done using a smartphone, 

which is usually carried in the pocket, and it has been shown that using a 

smartphone alone is not feasible in cases when the subject’s movement includes 

hand usage only (opening a bottle, drinking water…) [8]. 

Raw sensor data is the output of the smart platform, based on which the 

summary metrics that describe activities are calculated over user-defined 

(overlapping) epochs. These metrics are obtained using custom software made 

for providing input for specific activity classifiers [12]. 

Feature extraction is used to describe subjects’ daily activities using activity 

discrimination measures such as acceleration, or spectral entropy. Features are 

usually extracted from raw data by calculating summary metrics. There is a 

growing need for an explicit, open-source, and reproducible summary metric based 

on raw accelerometry data. Most of the existing metrics do not have a publicly 

accessible formula and have no straightforward interpretation. Often used metrics 

are Activity Count (AC) [12], or umbrella term used to describe different 

proprietary metrics – Activity Intensity [13], Euclidian Norm, and many more. 
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Activity Index (AI) is a metric proposed in [13], based on accelerometry, and 

it has proved to be easy to interpret and implement. It is estimated using standard 

deviation of the raw signal relative to the resting standard deviation. In [12], it 

was shown that AI has superior performance over other features, which is why it 

is considered in this paper, specifically because it was observed that often there 

is no improvement in classification accuracy when a great number of features are 

used [14]. Even if feature number doesn’t necessarily influence classification 

accuracy, different research has shown that except for number & sensor place-

ment, as well as acquisition parameters (like sampling frequency) [10] and seg-

mentation parameters (window size and overlap percent) [22] also influence it. 

One of the use-case scenarios important for this paper is tracking arm usage 

in patients with upper limb myoelectric prostheses. Those users can often find 

prostheses difficult or unintuitive to control; this can lead to passive use of the 

device or rejection, which can then have adverse effects on the contralateral limb 

due to overuse. Despite the research conducted to improve myoelectric 

prostheses, no aspect can be singled out for improvement [15],  which is why 

there is a need to know how often and in which way myoelectric prostheses users 

use the artificial limb in activities of daily living, to streamline their development 

and tailor them to the actual needs of prosthetic users. Activity Index has the 

potential to broaden our knowledge on prostheses usage.  

Our first hypothesis is that there is a significant difference in the AI values 

for active and passive/ no hand usage, as well as between different activity 

groups. This served as a classification feature testing step. The second hypothesis 

is that it is possible to build a classifier to include with the smart system, in order 

to make it more natural and comfortable to use, while aiming at higher 

classification accuracy with fewer features. This could possibly enable some new 

important conclusions on prostheses usage to be drawn. 

This paper is organized as follows: Section 2 covers the hardware and 

software used for data acquisition, as well as the classification process, Section 3 

contains the results, and Section 4 discusses the obtained results and provides a 

conclusion. 

2 Materials and methods 

2.1 Sensors and measurements 

In order to obtain the data needed to calculate the selected summary metric 

(AI), a smart system proposed and validated in [16] was used. This system 

consists of two smartwatches (TicWatch, Mobvoi), and a smartphone (Samsung 

Galaxy A20e). Both smartwatches and smartphone are equipped with a three-axis 

accelerometer, three-axis gyroscope, and pedometer, while only smartphone is 

equipped with a magnetometer. Sensor Logger application was used for data 

logging, storing, and transfer, since it has three modules: one for PC, smartphone, 
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and smartwatch. Data from smartwatches is stored in the smartphone, from which 

it can be transferred to a PC via USB or wirelessly.  

2.2 System placement, tracked postures, and hand movements 

Nine healthy right-handed participants, five male, and four female (mean ± 

SD, age: 24.78 ± 2.57, height: 175.89 ± 8.36, body mass: 73.56 ± 11.76) 

participated in the experiment. Each participant signed a written informed 

consent prior to the experiment.  

Two smartwatches were placed on the participant, one on each wrist. The 

smartphone was placed in the participant’s right pocket of the trousers. 

Participants were given instructions to perform a set of 32 different activities, 

without specific constraints, except those defined by the protocol, such as the 

order of activities and their duration (each activity was performed over the time 

of 70 s).  

To obtain a good variety of upper limb activities or lack thereof, the tasks 

had to be relatable (done in daily life) and natural. Outer task variety was present, 

meaning that the protocol covered different elementary arm movements, such as 

reaching, rotating, lifting, and wrist flexion. Inner task variability was provided 

through a variety of executions (used to express task complexity, too).  

Participants were given loose instructions on how to perform each activity, 

hence a certain degree of variance was allowed. The predefined order and 

duration of activities enabled proper labeling of the smartwatch data since there 

was no option to label it in real-time. 

2.3 Data acquisition and preparation 

Data acquisition was done in a laboratory environment, over a period of one 

hour per participant (including preparation time). The laboratory included 6 m of 

walking space and all the necessary requisites. 

To make sure all the smartwatch sensors started measuring, the data logging 

application was started 5 minutes before the experiment, and its starting and 

ending times were noted. 

Smartwatches were logging the data continuously with a sampling frequency 

of 20 Hz, which was a trade-off between battery life and activity spectrum that 

could be acquired [17]. Their data was saved to the smartphone and then 

transferred to a PC for further processing, where it was converted to a .csv format 

for easier use. After acquiring the data, it was labeled with a total of 32 activities 

for the left and right smartwatch separately, since for purpose of this paper, the 

smartphone was not considered (it mainly serves to classify posture [18]). 
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Table 1 

Activities done during the experiment. 

The Second column contains activity group, the third column notes the used hand and 

posture, and the fourth column represents the active hand for each activity. 

ID Activity group Activity Active hands(s) 

1 

Walking 

Walking Both 

2 Glass in the right hand Left 

3 Glass in the left hand Right 

4 

Sitting 

Sitting None 

5 Glass in the right hand None 

6 Glass in the left hand None 

7 

Standing 

Standing None 

8 Glass in the right hand None 

9 Glass in the left hand None 

10 

Grasping 

Right hand, standing Right 

11 Left hand, standing Left 

12 Both hands, standing Both 

13 Right hand, sitting Right 

14 Left hand, sitting Left 

15 Both hands, sitting Both 

16 

Pouring 

Right hand, standing Right 

17 Left hand, standing Left 

18 Right hand, sitting Right 

19 Left hand, sitting Left 

20 

Drinking 

Right hand, standing Right 

21 Left hand, standing Left 

22 Both hands, standing Both 

23 Right hand, sitting Right 

24 Left hand, sitting Left 

25 Both hands, sitting Both 

26 
Opening and closing 

cupboard 

Right hand, standing Right 

27 Left hand, standing Left 

28 Both hands, standing Both 

29 

Opening and closing 

bottle 

Right hand, standing Right 

30 Left hand, standing Left 

31 Right hand, sitting Right 

32 Left hand, sitting Left 
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2.4 Activity Index 

Activity Index (AI) is a summary metric proposed in [12], based on the 

variability of raw acceleration signals in short epochs, which removes gravity and 

provides a summary measure of movement intensity. The standard deviation 

captures the magnitude of signal oscillation, so it can detect the change in 

oscillation frequency. In other words, AI represents device acceleration 

variability in absence of system noise. It is expressed in 2m s and calculated 

based on (1), where for the participant 2, ( ; )imI t H  ( 1,2,3)m   represents 

accelerometer variance on axis m, over a window size H, with a beginning at time 

point t. 
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1 2 3i i i i     is used for normalization of 

variability sum depends on the device, and it can be calculated using raw 

accelerometry data over idle device time.  

Since there were 70 s of acquired data for each activity, the first and last 5 s 

were removed, and the remaining 60 s were used for AI calculation. Extracted 

segments were filtered with a highpass filter with a cutoff frequency at 0.5 Hz, to 

remove offset (DC component), often used to recognize posture. 

2.5 Data processing and analysis 

In order to analyze the sampling frequency influence on classification 

accuracy, collected data was also upsampled from 20 Hz to 50 Hz. AI was then 

calculated over a window of 1 s, 2 s, 5 s, and 10 s with 50 % overlap, and without 

overlapping [19], for both sampling frequencies. Data processing was 

implemented in Matlab R2019b (Mathworks Inc., Natick, USA).  

First analysis was done to determine if there is any statistically significant 

difference between summary AI values (a sum of left- and right-hand AIs) in 

cases when either left, right, both, or no hands were used. In this case, AIs 

calculated at 20 Hz, with a window of 1 s and without overlapping were used. 

ANOVA1 statistical test with Bonferroni correction was used since the data 

normality was determined using the Lilliefors test (a Kolmogorov-Smirnov test 

modification) [20].  

The second analysis was done based on groups of studied hand activities 

(defined in Table 1, second column). For instance, see Table 1 – activity group 

“Drinking” for the left hand contains activities 21, 22, 24, and 25, since in every 

activity in this group the left hand is used in the same way. This principle was 

used to form activity groups for both hands. The goal was to determine if there is 

a statistically significant difference between AI values of different activity 
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groups, for both left and right hand. Since not all data groups had normal distri-

bution, every two groups were compared using the Wilcoxon Rank-Sum test [21]. 

2.6 Data classification 

AI calculated in each data segmentation parameters configuration was used 

as a classification feature after the statistical analysis and normalization phase. 

The first analysis feature vector included left hand AI, right hand AI, and 

summary AI and they were used to classify unimanual activity of the left hand, 

the unimanual activity of the right hand, bimanual activity, and lack of hand 

activity (hand usage).  The second analysis feature vector was identical to the first 

one, except it was used to classify 7 activity groups: walking, grasping, pouring, 

drinking, opening and closing the bottle, opening and closing the cupboard, and 

no activity - all the activities during which the specific hand wasn’t active, 

including sitting and standing (Table 1, second column). 

Three supervised machine learning algorithms were used – Support Vector 

Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF). 

Supervised ML algorithms use labeled data for their training. 

SVM is an algorithm used for both classification and regression problems. It 

is based on finding the optimal hyperplane for dividing data into two classes. 

Support vectors are the points closest to the hyperplane and are considered to be 

the critical points. Depending on the problem’s complexity and class separability, 

hyperplanes can be of a higher dimension. Data is mapped to a higher dimension 

by kernelling until a hyperplane that separates them into classes is formed.   

The main tuning SVM parameter is the kernel, which maps the training set 

into a specific feature space, and can be linear, polynomial, radial, etc. The choice 

of the kernel and its parameters greatly influences the SVM performance. 

kNN is a simple non-parametric classification algorithm based on distance 

(e.g., Euclidian) calculated between the sample that needs to be classified and the 

training set samples, which are sorted based on the said distance to the new 

sample, and then the new sample is assigned to the class with most of the k nearest 

samples. The performance of this algorithm is directly influenced by the tuning 

parameter k, which is highly data-dependent.  

Random Forest is also used for both regression and classification problems. 

This algorithm works by constructing multiple decision trees, and the new 

samples’ class is chosen by majority decision, hence the tuning parameter is the 

number of trees, and the number of features considered in each iteration.  

Classification models were created for both left and right hand, using ‘mlr’ 

and ‘caret’ packages in R Studio. Data was divided using an 80:20 ratio for the 

training and testing set. Classifiers were trained and tuned using the training set. 

The performance of classifiers was tested on the test set while using 5-fold cross-

validation. 
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To evaluate the classifier performance, the F1-score measure was used. F1-

score is a harmonic mean of precision and recall and takes a value from 0 to 1, 

where values closer to 1 signify that the classifier has better performance. Fm is 

a mean of F1 for all the classes; it is used to score the general classifier 

performance. The presented results represent averaged left- and right-hand 

results. 

3 Results 

3.1 Statistical test results 

Fig. 1 shows a mean value of AIs, with standard deviation, for each activity, 

for both hands. There is a notable visual difference between cases when the hand 

is used and the cases when the hand is not used (e.g., activity 7 vs. activity 28, 

sitting and opening and closing the cupboard with both hands). Furthermore, four 

hand usages were compared: left, right, both, and no hand usage. Mean values with 

standard deviation for summary AI in four different cases can be seen in Fig. 2.  

There is no statistically significant difference between the summary AI for 

cases when either the left or right hand is active, which is expected since the same 

activities were done for both hands. 

 

Fig. 1 – Activity index of each of 32 activities for left and right hand. Graphs report the 

mean and the standard deviation over all three subjects. Higher mean values indicate a 

higher level of activity, while lower mean value indicates a lower level of activity. 
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Fig. 2 – Mean values with standard deviation for summary AI of four  

hand usages: left, right, none, and both (**, p < 0.01). 

 

On the other hand, there is a statistically significant difference between every 

other pair of cases, which is also expected since the summary AI almost doubles 

in case of both hands usage and is closer to zero in case of no hand usage. 

The second analysis results can be seen in Figs. 3 and 4. The resulting 

matrixes were obtained by comparing the calculated Wilcoxon rank-sum test p-

values with a threshold of statistical significance (p < 0.05). For values that were 

smaller than the threshold, 1 was noted in the matrix, and for those greater than 

the threshold, 0 was noted. This kind of representation shows which activity 

groups are different with a statistical significance.  

For the left hand, pouring and drinking were determined to be similar based 

on the statistical test, along with walking. Opening the cupboard was found to be 

similar for both left and right hand. Since all the subjects were right-handed, there 

is a possibility that doing a task with a non-dominant hand resulted in more 

activities being similar, since AI is based on movement oscillations. Greater 

sample size could possibly give more information on these cases. 

3.2 Classification results 

In the case of the hand usage classification, for each data segmentation 

parameter configuration, the F1 score was above 75%. Best classification 

performances occurred in configurations with a window size of 5 or 10 s, with or 

without overlapping, for 20 or 50 Hz. RF classifier had the greatest F1 score of 

97%, when 50 Hz, 10 s, no overlapping configuration was used. 
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Fig. 3  Similar and different activity groups matrix for the left hand. 

 

 

Fig. 4  Similar and different activity groups matrix for the right hand. 
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Fig. 5 shows that classification error occurs rarely, but when it does, it can 

be justified. In case when no activity is classified as right-hand activity, the 

subject could have scratched their hand, or adjusted their hair, sleeves, etc. When 

a bimanual activity is classified as a unimanual activity, we can assume that one 

of the hands wasn’t active enough. Regardless of the noted misclassifications, 

high classification accuracy is a clear indicator that it is possible to identify hand 

usage by using one or technically two features.  

 

Fig. 5 – Confusion matrix for hand usage – unimanual, bimanual, and no activity. 

 

As was expected, classifying activity groups using only one feature turned 

out to be a more challenging task. For each data segmentation parameters 

configuration, and for every classifier, the F1 score was below 70%. If we ignore 

the low accuracy, the best performance (F1 = 63%) was still achieved when 50 Hz, 

10 s, no overlapping configuration was used, but with the SVM classifier. A low 

F1 score in all the configurations is a clear indicator that it is not possible to 

identify a specific activity group using only one or technically two features. 

6 Conclusion 

In this paper, we have tested the feasibility of a new summary metric in 

human hand activity recognition – Activity Index, and how it can enable better 

hand usage and activity group discrimination. 
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Statistical test results suggested that AI could have great potential as a 

classifier input. We concluded that by combining the summary AI and AI of the 

left and right hand, the information on a number of hands used and their side 

could be obtained. Other than that, we found a statistically significant difference 

between at least six activity groups of the dominant hand (walking, sitting, 

standing, grasping, opening and closing the cupboard, and opening and closing 

the bottle). The results suggest that six activity groups could potentially be 

discriminated by using only one classification feature. These results agree with 

those from Bai et al. [12] in terms of AI performance and enable a better 

understanding of AI performance in the case of wrist-worn accelerometers. 

Results of the two classification procedures that were performed with AI and 

summary AI as the input features indicate that this summary metric can be used 

to classify hand usage, but it does not provide an accurate enough classification 

of the activity groups.  

Further work would include an attempt to achieve a higher activity group 

classification accuracy, by adding as few simple features as possible, besides the 

AI. These steps could enable lower computational complexity, leading to an 

online implementation of hand activity classification while lowering the battery 

consumption. 
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