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Abstract: Data augmentation has become a standard technique for increasing deep 

learning models’ accuracy and robustness. Different pixel intensity modifications, 

image transformations, and noise additions represent the most utilized data 

augmentation methods. In this paper, a comprehensive evaluation of data 

augmentation techniques for mobile robot perception system is performed. The 

perception system based on a deep learning model for semantic segmentation is 

augmented by 17 techniques to obtain better generalization characteristics during 

the training process. The deep learning model is trained and tested on a custom 

dataset and utilized in real-time scenarios. The experimental results show the 

increment of 6.2 in mIoU (mean Intersection over Union) for the best combination 

of data augmentation strategies. 

Keywords: Mobile robot perception system, Deep learning, Data augmentation, 

Semantic segmentation. 

1 Introduction 

Advanced mobile robot systems utilize sensors (e.g., cameras or lidars) that 

provide a large amount of data about the environment. However, the way the data 

is transformed into useful information has been an active and challenging area of 

research. Convolutional Neural Networks (CNN) have tremendous potential to 

enable mobile robots to comprehend and interact with their environment more 

intelligently [1]. However, two prerequisites for using CNNs are a large amount 

of labeled data and substantial computational power. Fortunately, several novel 

single-board computers or hardware accelerators have enough computing power 

to deploy efficient CNNs and utilize them in real-time applications. The hardware 

utilized for testing the developed methods is presented in [2]. 

                                                 
1University of Belgrade, Faculty of Mechanical Engineering, Department of Production Engineering, 

Laboratory for industrial robotics and artificial intelligence (ROBOTICS&AI), Kraljice Marije 16, 11120 

Belgrade 35, The Republic of Serbia. 

 E-mails: ajokic@mas.bg.ac.rs; ldjokic@mas.bg.ac.rs; mmpetrovic@mas.bg.ac.rs; zmiljkovic@mas.bg.ac.rs 



A. Jokić, L. Đokić, M. Petrović, Z. Miljković 

292 

To train deep learning models, a large amount of data is required. Raw data 

generated by cameras can be acquired relatively fast; however, to label that data 

for semantic segmentation is challenging and time-consuming. Even the largest 

and most popular datasets for semantic segmentation have only several thousand 

densely labeled images [3]. One of the primary ways to generate more data is to 

utilize data augmentation techniques. Utilizing these techniques makes the 

dataset larger and covers a broader distribution of possible real-world scenarios. 

Therefore, in this paper, the authors propose to analyze the effect of 17 different 

data augmentation techniques on the accuracy of the deep learning model 

implemented for mobile robot perception system purposes.  

The rest of the paper is structured as follows. Section 2 is devoted to the 

state-of-the-art survey. Section 3 defines the problem and analyzes data 

augmentation methods. Section 4 describes the utilized CNN model and training 

process. The experimental results and perception system evaluation with data 

augmentation techniques are presented in Section 5, while concluding remarks 

are presented in Section 6. 

2 The State-of-the-Art 

One of the most comprehensive state-of-the-art surveys regarding the data 

augmentation for deep learning was presented in [4]. The authors divided data 

augmentation techniques into two groups (i) image manipulation techniques and 

(ii) deep learning-based data augmentation methods. Image manipulation 

techniques include three types of manipulations i.e., geometric image 

transformation, image manipulation, and color transformation. The geometric 

transformation includes horizontal flips, random crops, image translation, and 

image rotation. Image manipulation techniques are random erasing, kernel 

filtering, noise injection, and image mixing. Lastly, the color transformation 

includes color space transformation and color jittering. 

In the paper [5], the authors proposed to augment each object in the image 

individually. By using labeled data, each object in the images was firstly extracted 

and then augmented. Secondly, the augmented object was copied back to the 

original image, and the void parts (created due to the difference between original 

and augmented objects) were filled by using another CNN trained to fill missing 

pieces of the image. The authors argued that this process is more realistic for the 

image augmentation process since the individual object can usually be found in 

different places in the image. The proposed augmentation method improved the 

accuracy of all considered models compared to the original augmentation 

strategy. 

The authors of [6] presented a GAN-based (Generative Adversarial 

Network) methodology for semantic segmentation dataset augmentation. The 

central idea behind this paper was that the improvement of segmentation should 
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be oriented toward the better classification of low-represented classes. The 

authors calculate the frequency of all classes in the dataset and augment it to 

increase the overall class balance. GANs were used to generate whole new 

semantic maps and image pairs or to add the low represented classes to the 

semantic labels where they did not previously exist. The highest improvement in 

IoU (Intersection over Union) was achieved when around 50% of data was 

synthetically generated. The proposed methodology yielded an improvement of 

around 2.1% mIoU on the Cityscape dataset, which was higher than the previous 

state-of-the-art style transfer technique.  

In the paper [7], the authors proposed a smart data augmentation sampling 

and search strategy. They utilized the Bayesian optimization framework to 

determine five optimal parameters regarding magnitude, type, and probability of 

augmentation performed at each training epoch. The general proposal was to 

utilize non-augmented images at the beginning of the training process and 

increase the probability of using augmented images with the number of epochs. 

Hyperparameter importance testing was performed with fANOVA to find and 

tune the most influential hyperparameter. The proposed method for smart 

augmentation outperformed the state-of-the-art method, while the smart 

sampling method provided an efficient sampling algorithm with competitive 

performance compared to other analyzed methods.  

The authors of the paper [8] proposed a simple yet effective automatic data 

augmentation strategy entitled as TrivialAugmentation (TA). The proposed 

method applied only one augmentation type to each image, unlike other 

approaches. Their methodology included 14 standard augmentation types utilized 

for the image classification task. Another essential advantage of this approach 

was a significantly smaller search space. The extensive experimental results 

showed that TA method outperformed other state-of-the-art strategies compared 

on different datasets and deep learning models.  

In this paper, different from other approaches, the authors consider the effect 

of data augmentation for semantic segmentation training on a small-scale dataset. 

Four groups of data augmentation methods are individually tested, and their 

performance is benchmarked. 

3 Data Augmentation Methods 

In this paper, 17 data augmentation methods are utilized. The image obtained 

with the mobile robot perception system is represented with ,H W C X where 

H is image height, W is image width, and C is a number of channels (in this paper 

C = 3). The deep learning model is utilized to perform semantic segmentation and 

produce the semantic map 1 1H W N Y , where H1 and W1 are the height and width 

of the semantic map, and N is a number of possible classes. The basic proposition 
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of this paper is that it is possible to improve the accuracy of semantic 

segmentation by adding the image transformation τ to the input image or more 

formally (1): 

       , , , , , 1,...,
M M

i i i i

i i

f f i M   X θ Y X θ Y , (1) 

where f represents the deep learning model that performs semantic segmentation 

for input image Xi and model parameters θ, Yi is a semantic map, ℓ is the loss 

function, and i represents dataset input-output pair. The different methods of data 

augmentation are shown in Fig. 1. Images b), c), d), e), f) represent geometrical 

transformations; g), h), i) are noise addition methods; j), k), l), m), o) represent 

pixel intensity modification methods; and p), q), r) are other methods. 

The standard and commonly used data augmentation methods such as 

random crops, horizontal flips, fancy PCA, rotation, and translation will not be 

discussed in detail, and the reader is referred to [10] and [11]. Now, we will 

discuss in detail a few non-standard data augmentation methods. The random 

erase method includes replacing a patch in the image with random noise. Some 

modern industrial cameras in bright environments can produce wave-like noise; 

to ensure robustness, we add a wave-like noise to the image. Wave noise is added 

according to (2): 

 
      

 

1, , sin ,

1,..., , 1,..., , 0,...,6p ,

w x y x y k x r

x H y W

  

  

X X q

q
 (2) 

where r1 is the random number drawn from a uniform distribution in range (0, 

0.5) sampled for each image, k is sinus amplitude, and q is a linearly spaced vector 

between 0 and 6π with the H elements. 

Edge enhancement is performed by first converting the image to grayscale 

and extracting the edge mask with the standard Sobel filter image. Then the initial 

image is converted to HSV color space, and a mask of edge pixels is used to scale 

saturation and value by a factor of 5.  

The random HSV method is performed by scaling each color channel in HSV 

images with a factor drawn from a uniform distribution in range (0, 255). The 

output represents a diverse, colorful image that can be looked at as a type of 

domain randomization technique proposed in [12]. The parameters for each data 

augmentation type are given in Table 1. The groups are set to produce the same 

number of additional augmented images. 
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a) Original image 

 
b) Horizontal flip 

 
c) Rotate 

 
d) Crop 

 
e) Erase 

 
f) Translate 

 
g) Gauss blur 

 
h) Gauss noise 

 
i) Wave noise 

 
j) Fancy PCA 

 
k) Contrast #1 

 
l) Contrast #2 

 
m) Contrast #3 

 
n) HSV jitter 

 
o) Intensity 

 
p) Edge enhancement 

 
q) Random HSV 

 
r) Patch shuffle [9] 

Fig. 1 – Examples of data augmentation methods. 



A. Jokić, L. Đokić, M. Petrović, Z. Miljković 

296 

Table 1 

Parameters for different augmentation types. U(x, y) represents a random  

number drawn from a uniform distribution with a range from x to y. 

Group 
Augmentation 

type 

Dataset 

percentage 
Method-specific parameters 

G
eo

m
et

ri
c 

tr
an

sf
o
rm

at
io

n
 

m
et

h
o

d
s 

Horizontal 

flip 
0.7 / 

Rotate 0.5  _ 10,10rot angle U   

Crop 0.8  _ 0.7 ,window size W H   

Erase 0.5    _ 0,0.5 , 0,0.5err window W U H U       

Translate 1    [ , ] 20,20 , 40,40x yt t U U       

N
o

is
e 

ad
d

it
io

n
 

m
et

h
o

d
s 

Gauss blur 0.6  0,1  

Gauss noise 0.9  0,0.005  

Wave noise 2.0 15k   

P
ix

el
 i

n
te

n
si

ty
 m

an
ip

u
la

ti
o

n
 

m
et

h
o
d
s 

Fancy PCA 0.9  _ 0,0.3color factor   

Contrast #1 0.3 100_max luminosity   

Contrast #2 0.3 100_max luminosity   

Contrast #3 0.3 100_max luminosity   

HSV jitter 0.9      0,0.1 , 0,0.1 , 0,0.1HSV U U U     

Intensity 1.0  0.7,1.3intensity_factor U   

O
th

er
 m

et
h

o
d

s Edge 

enhancement 
1.3 5scale   

Random HSV 1.2      _ 0,1 , 0,1 , 0,1HSV factors U U U     

Patch shuffle 1 0.5p   



Data Augmentation Methods for Semantic Segmentation-based Mobile Robot … 

297 

4 Deep learning model – description and training procedure 

The details regarding utilized CNN architecture are presented in Fig. 2. The 

CNN model is based on ResNet18 architecture [13] with separated convolutional 

layers inspired by ones utilized in [14] and [15]. Different blocks of layers are 

presented with rectangles of different colors, while the parameters for those layers 

are presented within the rectangle. W represents the weight matrix dimensions, S 

is the stride value, and P represents the padding value. Blue blocks represent the 

combination of the following layers: Convolution-ReLU-Convolution-

BatchNormalization. The green rectangle is the MaxPooling layer, while the 

brown block represents Convolution and BatchNormalization. The addition layer 

with the ReLU activation is presented with orange. Input images have 800×600×3 

resolution, while the output semantic mask has the dimension of 100×75×5. The 

prediction for each pixel is calculated by utilizing the Softmax activation function 

(3), and the loss function is Cross-entropy (4), 

 

1

e

e

j

j

Y

j N Y

j

s






, (3) 

    
1

, log
N

j jj
s c c s


  , (4) 

where Y represents the output vector of the neural network, j is the current 

element of the output vector, N is the total number of classes (and also the number 

of elements in the output vector for each element), sj is the output of the Softmax 

function for each element, c represents H1×W1×N one-hot vector for the correct 

class of the current input vector, and  represents the loss function value. 

Dataset is generated in the laboratory model of the manufacturing 

environment. Four machine tools models are labeled (classes M #1 – M #4) and 

a fifth background class (class B). Therefore, the images are segmented into up 

to five classes representing entities of interest in a manufacturing environment. 

Before any data augmentation is done, the dataset is split into two subsets; 80% 

of images are utilized for training and 20% for validation. The training is carried 

out using PyTorch v1.6.0 with Stochastic gradient descent and a momentum of 

0.9. The initial learning rate is set to η=0.01 with the schedule defined in (5): 

 

0.9

new old 1
current_epoch

max_epoch

 
    

 
. (5) 

The variable current_epoch is enumerated from 0 to (max_epoch – 1). Also, 

the maximum number of epochs is 100, while the mini-batch size is 4. Lastly, the 

additional regularization technique is utilized with a weight decay of 0.0001. 

Training is performed on Nvidia RTX 1660 GPU with 6GB of RAM. The deep 

learning model is later deployed to a single-board computer Nvidia Jetson nano 

with NVIDIA 128-core Maxwell GPU. 
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Fig. 2 – ResNet18 architecture with separated convolutional layers. 
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5 Experimental Results 

The experimental plan is as follows. Data augmentation methods are grouped 

according to the type of performed transformation. Four groups include (i) 

geometric transformation methods, (ii) noise addition methods, (iii) pixel 

intensity manipulation methods, and (iv) other methods. A total number of 16 

experiments are performed, where each group can be either included in the 

experiment or not, depending on the value of numbers in vector b. The vector b 

has 4 elements that correspond to each group; if the first value in vector b is 1, 

then the first group is included in the experiment, and so on (see Table 2). The 

group to which data augmentation technique belongs to can be seen in Table 1. 

The proposed system is experimentally tested for four machine tool models (M 

#1 – M #4) and background class (B). The experimental plan and results are 

shown in Table 2.  

Table 2 

Experimental results are generated by using images from the validation set.  

In bold are shown the best results per IoU metric. 

No. b 
IoU measure 

B M #1 M #2 M #3 M #4 mIoU 

1 [ 1 1 1 1] 99.5 90.8 94.4 89.0 92.1 93.2 

2 [ 1 1 1 0] 99.5 88.4 93.6 82.6 93.4 91.5 

3 [ 1 1 0 1] 99.4 83.5 90.5 85.2 92.1 91.4 

4 [ 1 1 0 0] 99.4 83.5 90.5 85.2 92.1 90.2 

5 [ 1 0 1 1] 99.3 89.2 93.0 84.9 90.3 91.4 

6 [ 1 0 1 0] 99.4 91.0 93.8 84.1 91.6 92.0 

7 [ 1 0 0 1] 99.2 84.7 89.6 84.2 87.8 89.1 

8 [ 1 0 0 0] 99.3 86.2 86.7 85.4 87.2 89.0 

9 [ 0 1 1 1] 99.4 83.9 89.2 84.3 82.0 87.8 

10 [ 0 1 1 0] 99.4 80.4 90.9 82.9 88.1 88.4 

11 [ 0 1 0 1] 99.4 80.9 89.6 88.0 82.2 88.0 

12 [ 0 1 0 0] 99.5 88.1 91.5 88.7 86.7 90.9 

13 [ 0 0 1 1] 99.4 77.9 86.7 86.2 79.8 86.0 

14 [ 0 0 1 0] 99.3 82.8 91.2 82.2 85.8 88.3 

15 [ 0 0 0 1] 99.1 61.5 73.8 68.4 85.2 77.6 

16 [ 0 0 0 0] 99.1 81.5 88.5 77.5 88.6 87.0 
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The experimental results show that the considered data augmentation 

methods significantly improve the accuracy of the proposed mobile robot 

perception system based on deep learning. Individually, the most significant 

improvement is achieved by utilizing the second data augmentation group of 

methods, where mIoU increases by 3.9. It is also shown that when utilizing three 

out of four groups, it is best not to utilize group 4. Moreover, it can be seen that 

it is best to utilize all data augmentation groups of methods since the overall mIoU 

is increased by 6.2 compared to the standard non-augmented dataset. Even though 

the experiment with all utilized groups did not achieve the highest IoU for all the 

classes, the mIoU is the largest, and therefore, this experiment is considered to be 

the best. The output of the developed model for test images can be seen in Fig. 3. 

Test images are generated online by the stereo vision system of the mobile robot 

RAICO and utilized only for a visual representation of the accuracy of the 

considered system. It can be seen that CNN adequately semantically segments all 

the machines, with a small error regarding machines #1 (represented with blue) 

and #2 (shown in teal). The network can be run in near real-time with 24 FPS for 

a single camera system. 

  

Fig. 3 – The output of the perception system. 

6 Conclusion 

In this paper, the authors analyze the impact of different groups of data 

augmentation methods on the accuracy of the deep learning semantic 

segmentation model utilized in mobile robot perception system. Resnet18 model 

is trained on a small dataset with only 159 images; however, when all data 

augmentation methods are applied, dataset contains 2607 images. Different 

groups of data augmentation methods are geometric image manipulation 

methods, noise addition methods, pixel intensity manipulation methods, and other 

methods. The experimental results show the usefulness of the proposed groups of 

data augmentation processes; their combination improves the mIoU by 6.2 and 

achieves an overall mIoU of 93.2. Moreover, the authors also conclude that the 

most valuable individual data augmentation group is noise addition methods 

contributing to the increase of around 63% of overall mIoU for all groups 
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considered. In particular, noise addition methods themselves achieved an increase 

of around 3.9 mIoU. 

Future studies could include the analysis of the performance of different deep 

learning models trained on dataset where a combination of data augmentation 

methods is applied to each individual image in the dataset.  
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