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Abstract: This paper presents a detailed comparison between viable adaptive 
intelligent torque control strategies of induction motor, emphasizing advantages 
and disadvantages. The scope of this paper is to choose an adaptive intelligent 
controller for induction motor drive proposed for high performance applications.  
Induction motors are characterized by complex, highly non-linear, time varying 
dynamics, inaccessibility of some states and output for measurements and hence 
can be considered as a challenging engineering problem. The advent of torque 
and flux control techniques have partially solved induction motor control pro-
blems, because they are sensitive to drive parameter variations and performance 
may deteriorate if conventional controllers are used. Intelligent controllers are 
considered as potential candidates for such an application. In this paper, the 
performance of the various sensorless intelligent Direct Torque Control (DTC) 
techniques of Induction motor such as neural network, fuzzy and genetic 
algorithm based torque controllers are evaluated. Adaptive intelligent techniques 
are applied to achieve high performance decoupled flux and torque control. This 
paper contributes: 

i) Development of Neural network algorithm for state selection in DTC;  

ii)  Development of new algorithm for state selection using Genetic algorithm 
principle; and 

iii)  Development of Fuzzy based DTC. Simulations have been performed using 
the trained state selector neural network instead of conventional DTC and 
Fuzzy controller instead of conventional DTC controller.  

The results show agreement with those of the conventional DTC. 

Keywords: Direct Torque Control, Induction Motor, Intelligent Control, Fuzzy, 
Neural Networks and Genetic Algorithm. 
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1 Introduction 

Direct Torque Control (DTC) of pulse - width - modulated inverter fed 
induction motor drive is receiving wide attention in the recent years [1, 2]. Fig. 1 
shows the basic configuration for the direct torque controlled induction motor 
drive. The scheme uses stator flux vector and torque estimators on a PWM – 
inverter-fed drive. The stator flux amplitude s

* and torque Te
* are the command 

signal and which are compared with the estimated s and Te values, respectively, 
giving instantaneous flux error Ȇ  and torque error ETe as shown in Fig. 1.  
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Fig. 1 - Basic configuration of DTC scheme. 

In the conventional scheme, the flux error Ȇ  and torque error ETe signals 
are delivered to two hysteresis comparators. The corresponding digitalized 
output variables and the stator flux position sector create a digital word, which 
selects the appropriate voltage vector from the switching table. Selection of 
voltage vector is also depending upon the sector in which the stator flux 
positioned [3]. Thus, the selection table generates pulses Sa, Sb, Sc to control the 
power switches in the inverter. Fig.2 shows the pulses Sa, Sb, Sc generated when 
the position of stator flux is in sector 1 [4]. 

The expression for the developed torque of an induction motor is given by 
(1). 
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Fig. 2 – Generation of Pulses for PWM inverter when flux vector lies on sector 1. 

Under normal operating conditions, the amplitude of the working flux is 
kept constant at the maximum value. Hence the developed torque is proportional 
to the sine of the torque angle ‘’ between stator and rotor fluxes, and can be 
controlled by suitably changing the angle ‘’. Since the time constant of rotor 
current is large compared to stator, the stator flux is accelerated or decelerated 
with respect to the rotor flux to change the torque angle. Stator flux is a 
computational quantity, which is obtained using the stator-measured current ‘ Is’ 
and voltage ‘Vs’.                                                         
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In general, conventional DTC scheme has the following disadvantages [5]: 

i) Variable switching frequency 

ii)  Violence of polarity consistency rules 

iii)  Current and torque distortions caused by the sector changes 

iv) Starting and low - speed operation problems 

v) High sampling frequency needed for digital implementation of hyste-
resis comparators. 

Introducing adaptive controllers instead of conventional hysteresis control-
lers can eliminate all the above difficulties. In this paper, viable intelligent 
controllers in DTC scheme are discussed to improve the performance in low 
speed operations and to minimize the torque ripple. Intelligent controls using 
expert systems, fuzzy logic, neural networks and genetic algorithms have been 
recently recognized as important tools to enhance the performance of the power 
electronic systems [6, 8]. The combination of intelligent control with adaptive 
and robust control appears today the most promising research accomplishment in 
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the drive control area and in the meantime, as the best approach for the optimal 
exploitation of intelligent control prerogatives and practical realization of 
adaptive and robust ac motor drives. In this paper, detailed investigations on 
viable intelligent torque control schemes are carried out by simulation and the 
results are compared. 

2 Neural Network Controllers for DTC Scheme 
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Fig. 3 – Schematic of DTC using Neural-Network controller. 

A neural network is a machine like human brain with properties of learning 
capability and generalization. They require a lot of training to understand the 
model of the plant. The basic property of this network is that it enables  
approximation of complicated nonlinear functions [8, 11]. In direct torque 
control scheme, neural network is used as a sector selector. The direct torque 
neuro controller is shown in Fig. 3. In this control strategy, torque and flux 
errors are multiplied by the constant value ‘c’ and which are given as inputs 
along with the flux position information to the neural network controller. Output 
of the controller is compared with the previous switching states of inverter.  
Artificial Neural Network (ANN) offers inherent advantages over other 
conventional DTC schemes for induction motors, namely: 

i) Reduction of the complexity of the controller; 

ii)  Reduction of the effects of motor parameter variations, particularly in 
the stator-flux estimation; 
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iii)  Improvement of controller time response, i.e., the ANN controller 
uses only parallel processing of sums, products by constant gains, and 
a set of well known non-linear functions so that no time- consuming 
sequential integrations routines are required; 

iv) Improvement of drive robustness – ANN’s are fault tolerant and can 
extract useful information from noisy signals. 

3 Principles of Artificial Neural Networks 

Feed forward artificial neural networks are universal approximators of 
nonlinear functions [8, 10]. As such, the ANN’s use a dense interconnection of 
neurons that correspond to computing nodes. Each node performs the multipli-
cation of its input signals by constant weights, sums up the results, and maps the 
sum to a nonlinear function; the result is then transferred to its output. The 
structure of neuron is shown in Fig. 4 and the mathematical model of a neuron is 
given by 
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where, ( )Ni xxxx ,,, 21 K=  are inputs from the previous layer neurons, 

( )Ni ωωω=ω ,,, 21 K  are the corresponding weights and ‘b’ is the bias of the 
neuron. 

For a logarithmic sigmoidal activation function, the output is given by 
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A feed forward neural network is organized in layers: an input layer, one or 
more hidden layers, and an output layer. No computation is performed in the 
input layer and the signals are directly supplied to the first hidden layer through 
input layer. Hidden and output neurons generally have a sigmoidal activation 
function. The knowledge in an ANN is acquired through a learning algorithm, 
which performs the adaptation of weights of the network iteratively until the 
error between the target vectors and output of network falls below a certain error 
goal. The most popular learning algorithm for multi-layer networks is the back 
propagation algorithm, which consists of a forward and backward action. In the 
first, the signals are propagated through the network layer by layer. An output 
vector is thus generated and subtracted from the desired output vector. The 
resultant error vector is propagated backward in the network and serves to adjust 
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the weights in order to minimize the output error. The back propagation training 
algorithm and its variants are implemented by many general – purpose software 
packages such as the neural-network toolbox from MATLAB [13, 14] and the 
neural-network development systems described in [12]. The time required to 
train an ANN depends on the size of the training data set and training algorithm. 
An improved version of back propagation algorithm with adaptive learning rate 
is proposed and which permits a reduction of the number of iterations. Fig. 5 
shows the proposed neural network for DTC scheme in which, input, output and 
hidden layers are shown. The error signals and stator flux angle are given to 
input layer. Switching state information is taken from the output layer. 
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Fig. 4 – Structure of Neuron. 
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Fig. 5 – Structure of Neural network proposed for DTC scheme. 
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4 DTC Using Genetic Algorithm 

Genetic algorithms are stochastic global search algorithms. They mimic 
processes observed in natural evolution and use a vocabulary borrowed from the 
natural genetic [15]. A GA considers individuals in a population quite often 
called strings or chromosomes and must have the following components: 

i) A genetic representation for potential solution encoded as strings or 
chromosomes; 

ii)  A way to create an initial population of potential solutions; 

iii)  An evaluation function for rating solutions in terms of their fitness; 

iv) Genetic operator that alter the composition of children; 

v) Values for various parameters that the genetic algorithm uses 
(population size, probabilities of applying genetic operators, etc.). 

Given these five components, a genetic algorithm is constructed as follows: 

i) Initialize a population of chromosomes; 

ii)  Evaluate each chromosome in the population; 

iii)  Select chromosomes in the population as parent chromosomes to 
reproduce; 

iv) Apply the genetic operators to the parent chromosomes to produce 
children; 

v) Evaluate the new chromosomes and insert them into the population; 

vi) If the termination condition is satisfied, stop and return the best 
chromosome. If not go to step (iii). 

For executing genetic algorithm to train the neural networks, detailed 
procedures were followed. Fig. 8 shows the flowchart to execute a genetic 
algorithm. It gives an algorithm to select best chromosome from the total 
population of chromosomes. To select best chromosome, parent selection is 
prominent. Steps for parent selection are summarized as follows: 

i) Selection of parents for reproduction is stochastic; 

ii)  Selection of parents with higher fitness value; 

iii)  Roulette wheel technique for parent selection. A roulette wheel 
shown in Fig. 7 has slots, which are sized according to the fitness of 
each chromosome; 

iv) Selection process is to spin the roulette wheel.    

In Fig. 6, 54321 ,,,, fffff  are fitness of chromosomes 1, 2, 3, 4 and 5, 
respectively. Pop represents the total population size; that is, if total number of 
chromosomes is 50, population size is also 50. Therefore,  
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 == 50ff pop  Fitness of 50th chromosome. (5) 

Total fitness is given by Sum=F  of the fitness of the population, 

 ∑
=

=
pop

j

jevalF
1

. (6) 

Probability function for each chromosome is 
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Accumulative probability function for each chromosome is 
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Fig. 6 – Roulette Wheel. 

5  Neural Networks Trained by Genetic Algorithms 

In neural networks, genetic algorithms are used to determine the weights 
and threshold values. Fig. 7 shows the structure of neural networks trained using 
GA [15]. The respective error vectors between the state selector of conventional 
DTC and the neural networks outputs are 321 ,, eee . To achieve minimum value 
of performance index, the groups of threshold values and weights have to be 
determined. 

Performance index ( )WE  can be given by: 
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where: [ ]TT eeee 321= is error vector; 

Λ  is symmetric positive definite matrix; and 

 N  is  sample size. 
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Fig. 7 – Structure of neural networks trained using GA. 

Implementation of the genetic algorithm described in this paper has three 
stages: 

i) Fitness evaluation 

ii)  Selector 

iii)  Breeding 

The genetic operators used in this work are quite different from the classical 
ones used in [15]. 

The main differences between the proposed work and existing work are 
described as follows: 

i) The real valued space are dealt in this paper, where a solution is 
coded as a vector with floating point type components 

ii)  Some genetic operators are non-uniform, that is, their action depends 
on the age f the population.  

The contents of the algorithm are listed below: 



M. Vasudevan, R. Arumugam, S.Paramasivam 

102 

 

5.1 Chromosome Encoding 

Let the total number of thresholds and weights of the neural network shown 
in Fig. 7, be packed in the n-dimensional vector W, 
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Here, the weights vector W as a chromosome (individual). In other words, 
each chromosome vector is coded as a vector of floating point numbers of the 
same length as the solution vector. Each element is initially selected as to be 
within the desired domain. 

5.2 Evaluation Function 

The evaluation function for chromosomes ‘w’ is 
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where, the chromosome vector W is a real weights vector, and E(W) is defined 
by equation (9). The evaluation function is used to rating a chromosomes in 
terms of their “fitness”. The higher fitness of chromosome will perform better. 

5.3 Genetic Operators 

In this paper, both binary and floating point encoding are used as genetic 
operators to train the neural networks in DTC technique. 

The binary operators are one point crossover, two points crossover and bit 
mutation. The operators used for floating point encoding are different from 
classical ones. They work in a real valued space. However, because of intuitive 
similarities, they are divided into the standard classes of mutation and crossover. 
Mutation groups used in this paper are Uniform mutation (UM), Non-Uniform 
Mutation (NUM) and Non- Uniform Arithmetical Mutation (NUAM). Crossover 
groups are Two-Points Crossover (TPC) and Two-Points Arithmetical Crossover 
(TPAC).  
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Fig. 8 – Flowchart for execution of a Genetic Algorithm. 
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6 Fuzzy Logic Direct Torque Control of Induction Motor 

In DTC induction motor drive, there are torque and flux ripples because 
none of the inverter states is able to generate the exact voltage value required to 
make zero both the torque electromagnetic error and the stator flux error [6, 7]. 
The suggested technique is based on applying switching state to the inverter and 
the selected active state just enough time to achieve the torque and flux 
references values. A null state is selected for the remaining switching period, 
which won't almost change both the torque and the flux. Therefore, the 
switching state has to be determined based on the values of torque error, flux 
error and stator flux angle. Exact value of stator flux angle () determines where 
stator flux lies [8]. 
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Fig. 9 – Schematic of fuzzy logic DTC. 

The schematic of fuzzy logic direct torque control scheme for induction 
motor drive is shown in Fig. 9. The fuzzy output of torque, flux errors and stator 
flux angle are given as input variables to fuzzy controller and output variable 
obtained from the fuzzy controller is switching state of the inverter. Switching 
state of the inverter is a crisp value. The input variables membership functions 
are shown in Fig. 10.     
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Fig. 10 – Membership distributions for input variables 
(a) Torque error (b) Flux error and (c) Stator flux angle. 

7 Fuzzy Rules for Direct Torque Control Scheme 

To improve the performance of classical DTC scheme, Fuzzy rules have 
been developed. In the Table 1, ‘1’ represents the upper limb switches and ‘0’ 
represents the lower limb switches of the inverter. Switching states of the 
inverter varies from V0 to V7. From this table it is concluded that, V0=V7 and 
which are null states. That is, V0 and V7 are zero vectors. The fuzzy system 
comprises 12 groups of rules and each of which contains 15 rules. Each group 
represents the respective stator flux angle . For example, rules are shown in 



M. Vasudevan, R. Arumugam, S.Paramasivam 

106 

Table 2 for stator flux angle 1, 2 and 3. For every combination of inputs and 
outputs, one rule can be applied. Totally, there are twelve-stator flux angles from 
θ1 to θ12 and 180 rules are formed. With the help of them, corresponding 
switching state of the inverter is selected. 

 

Table 1 

Switching States of Voltage Vectors 
 

States u1 u2 u3 

V0 0 0 0 
V1 1 0 0 
V2 1 1 0 
V3 0 1 0 
V4 0 1 1 
V5 0 0 1 
V6 1 0 1 
V7 1 1 1 

 
Table 2 

Fuzzy Rules Developed for Direct Torque Control Technique 
 

 θθθθ1 θθθθ2 θθθθ3 
   Ȇ   
Ete 

P Z N P Z N P Z N 

PL V1 V2 V2 V2 V2 V3 V2 V3 V3 
PS V2 V2 V3 V2 V3 V3 V3 V3 V4 
ZE V0 V0 V0 V0 V0 V0 V0 V0 V0 
NL V6 V0 V4 V6 V0 V5 V1 V0 V5 
NS V6 V5 V5 V6 V6 V5 V1 V6 V6 

         

From the rules, fuzzy inference equations are given as 

 ( ) ( )( )θµµµ=α ψ iteiii CEBEA ,),(min , (10) 
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8 Simulation Procedures 

A 1kW induction motor was used for simulation. The parameters of the 
machine were determined experimentally and are given in the Appendix. For the 
simulation of the viable torque control schemes, Voltage source inverter (VSI) 
was employed. The simulations were carried out using MATLAB / SIMULINK 
technical package described in [13, 14]. 

8.1 Direct Torque Neural Network Controller 
The neural network is trained using the MATLAB neural-networks toolbox. 

This network consists of a three layer neural – network with three input nodes 
connected to five log sigmoid neurons and three pure output nodes connected to 
five log sigmoid neurons (3-5-3) shown in Fig. 5. The training strategy consists 
the parallel recursive error prediction was chosen as a learning technique for 
simulation purposes to update the weights of the neural network. The algorithm 
was chosen because of its learning speed, robustness and high learning capabi-
lity. This algorithm is so powerful when complicated and nonlinear functions are 
to be learned by the neural network [9]. The neural network structure mentioned 
previously was simulated using this algorithm and using the hyperbolic tangent 
function 

 ( )
cx

cx

e
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cxxS

−

−

+

−=�
�

�
�
�

�=
1

1

2

1
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as the nonlinearity in the transfer functions of the hidden and output layers. The 
parameter ‘c’  was fixed to one for all the cases. Small values of ‘c’  are found to 
give larger weights and vice versa. 

Simulation results were determined using an electromagnetic torque and 
stator flux commands of 2.5Nm and 0.85Wb respectively. The switching frequ-
ency of the inverter used by the simulations was 10kHz while the frequency of 
the neural network was 100Hz. The neural network frequency was chosen to 
give the plant enough time to stabilize its output. The data used to train the 
neural network have been determined by direct simulation of DTC using a 
sampling frequency of 100Hz. 

8.2 DTC Using Genetic Algorithm 
Neural network trained with genetic algorithm is implemented in such a 

way that the total number of thresholds and weights of the neural network be 
packed in n - dimensional vector ‘w’ as given in equation (14). 
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where: th is threshold vector, m is weight vector and n = 38. 
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To represent the values of weights w, binary encoding or floating point enc-
oding is used as a chromosome. Genetic operators used for binary representation 
are one point crossover, two-point crossover and bit mutation and for floating 
point representation are two point arithmetical crossover, uniform mutation, non-
uniform mutation and non- uniform arithmetical mutation. Table 3 shows the 
parameters used for simulation: 
 

Table 3 

Parameters used for Genetic Algorithm based DTC 
 

Parameters used Binary representation 
Floating point 
representation 

Number of chromosomes 30 100 

Crossover probability 0.8 0.9 

Mutation probability 0.005 0.008 

In binary encoding algorithm, Lower number of chromosomes was used 
than floating point encoding algorithm. The performance of the system is affe-
cted if number of chromosomes reduced. To improve the performance and to 
overcome this drawback, the best member of each generation must be copied 
into the succeeding generation. Crossover probability can be chosen from 0.5 to 
0.9. Convergence rate becomes slower with the higher crossover probability 
values. Convergence rate should be in high bias level. Mutation rate taken for si-
mulation as shown in Table 2 will make the convergence faster. In floating 
point-encoding algorithm, non-uniform mutation and non-uniform arithmetic 
mutation operators were introduced to prevent premature convergence. Fine 
tuning capabilities of genetic algorithm were achieved by using these operators 
and performance of the algorithm was also improved. 

8.3 Direct Torque Fuzzy Logic Controller 
Direct torque control of induction motor using fuzzy logic was also 

simulated using the MATLAB / SIMULINK package. Membership functions 
were chosen and simulations were carried out. Only for three flux angle 
positions, rules were given in Table 2. Similarly, rules could be formed for 
another nine flux angle positions and totally for twelve positions, rules were 
written and membership functions were formed. Simulations include all the 
possible rules and total number of rules found is 180.  

9 Results and Discussions 

As described earlier, 1kW induction motor was used for simulation and 
results were obtained. Switching frequency of the inverter taken for simulation 
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was 10KHz. There fore, the sampling time taken for simulation was 0.1ms. 
Torque and flux reference values taken were 2.5Nm and 0.5Wb when torque and 
flux hysteresis values are 0.5Nm and 0.02Wb respectively. Fig. 11 shows the 
actual torque developed in induction motor using conventional DTC. Referring 
to the Fig.11, torque rises from 0 to 2.5Nm in 10ms and then oscillates around 
the reference value in a narrow band. 

9.1 DTC using Neural Network 
The algorithm used to train the neural network is back propagation with 

momentum factor. The time taken to train the neural network using this algo-
rithm is 2000s. The simulations that have been performed in this paper were 
obtained using a trained state selector neural network. The desired outputs are 
taken from the outputs of the conventional DTC. Thus, the training time is basi-
cally the time used in the simulation by the conventional DTC with the induction 
motor. All training algorithms were used to train the 3-5-3 neural-network stru-
cture using sigmoids. The torque and phase currents for the first half-second of 
simulation using a state selector neural network trained by the back propagation 
algorithm are shown in Fig. 12 and Fig. 13 respectively. The temperature coeffi-
cient of all the neurons was fixed to one, which gives reasonable weight magni-
tudes. An increase in the learning rate produces a faster learning, but a certain 
point it could become unstable, in the sense that the performance index begins 
oscillating around some local minimum, which make the weights not settle to 
their final values. A small learning rate is convenient even though it requires 
more training time in order to get a safety weights convergence.The results of 
the simulations given by back propagation are almost the same given by the 
conventional DTC, which shows that the neural network has been fully trained. 

9.2 DTC using Genetic Algorithm 

9.2.1 Binary representation 
In binary representation, elitist strategy is used to fix the potential source of 

loss by copying the best member of each generation into the succeeding genera-
tion. The crossover rates of 0.5, 06, 0.7 and 0.9 in the problem are tried, the 
results show that convergence rate is slower with the high crossover rate, maxi-
mum fitness values never get as high as with the setting of 0.8. In addition, mu-
tation rates of 0.1, 0.05, 0.01, 0.001 and 0.0001 in the problem are tried. Figs. 14 
and 15 show the actual torque developed using DTC by neural network trained 
with genetic algorithm in which Fig. 14 represents binary coding. The results 
showed that the low mutation rate lead to poorer solutions but faster 
convergence. The higher mutation rate allows better solutions to be found, but it 
prohibits convergence to a high bias level. These results also showed that the 
GA procedure is not highly sensitive to parameter changes. Fig. 16 exhibits the 
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step function of the developed torque in induction motor using neural network 
trained with genetic algorithm using binary coding representation. 

9.2.2 Floating point representation 
In floating point representation, the genetic operators needs careful 

designing to preserve the constraint. There is no such problem in the binary 
representation, but the design of the operators is rather simple. In this paper, the 
property of convex space is used in designing the operators.This property 
indicates that for any two points wi + wj (E [L, U]), the linear configuration a   
wi +(1-a) wj (E [L, U]), where a = (E [0,1]). If only ordinary crossovers are used 
for the resulting offspring, the premature convergence cannot be avoided since 
the population size is finite. Using the non-uniform arithmetical crossover, new 
points of population can be obtained which are much helpful to prevent prematu-
re convergence. Both NUM (Non Uniform Mutation) and NUAM (Non Uniform 
Arithmetical Mutation) are the operators responsible for the finite tuning capabi-
lities of the genetic algorithm. These two operators initially search the space uni-
formly and then locally at later steps. It should be mentioned here that when us-
ing NUM some elements of the solution often lay on the boundary of the search 
space, this is not the case with using NUAM. Fig.15 represents the torque deve-
loped in induction motor with DTC using floating point coding representations. 

9.2.3 Comparison of binary and floating point representations 
From the detailed investigations, it is observed that the floating point repre-

sentation provides a lot of advantages compared with the binary representation. 
It is capable of representing large domains, while the binary representation must 
sacrifice precision with an increase in domain size, given fixed binary length. 
The precision of the floating point representation depends on the underlying 
machine, but generally much better than that of the binary representation. In 
addition, in the floating point representation it is much easier to design special 
tools for handling non-trivial constraints [8]. The floating point representation 
may greatly improve a performance of genetic algorithms on numerical 
problems. Fig. 16 shows the locus of the stator flux and it is noticed that flux 
follows a circular shape. The components of stator fluxes in stationary reference 
frame are sinusoidal and 90º phase displacement to each other. 

9.3 DTC using Fuzzy Logic Controller 
In DTC using fuzzy logic, calculated flux error, torque error and flux angle 

are taken as inputs and switching states to the inverter are outputs. As described 
earlier, membership functions were chosen and rules were formed. Fuzzy logic 
controllers especially used in induction motor for low speed operation. At low 
speed operation, ripple contents are more. Here, fuzzy control is applied to 
minimize the ripple at low speed region of induction motor. Fig. 18 is the torque 
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developed by fuzzy controller and which is compared with the conventional 
DTC technique. From this result, it is observed that, at fuzzy logic DTC, torque 
easily attains steady state value at the earlier stage itself when compared to the 
conventional DTC technique. Initial stator flux rise at fuzzy logic control is 
shown in Fig.19. From this figure also, it is observed that, the time taken to 
reach the steady state value of flux is less using fuzzy logic DTC than the 
conventional DTC. 

An index error has been used to quantify the error in both the stator flux and 
torque responses. This index is the integral of the square error (IE2), which is 
computed by means of the square error instead of just the error. Errors obtained 
in control schemes have been compared with each other. The error comparison is 
shown in Table 4.  

Table 4 
Errors obtained in various control strategies 

 

Index Error (EI) Classical DTC DTC_NN 

T=a*T n ωωωω=b* ωωωωn Flux Torque Flux Torque 

a = 100% b = 10% 2.53 10-3 0.189 2.2 10-3 0.165 

a = 50% b = 50% 2.57 10-3 0.068 0.53 10-3 0.025 

a = 10% b = 10% 7.46 10-3 0.0367 1.58 10-3 0.0014 

a = 100% b = 100% 2.46 10-3 0.297 2.1 10-3 0.263 

DTC_NN_GA DTC_ Fuzzy 

Flux Torque Flux Torque 

1.97 10-3 0.156  2.74 10-3 0.169 

0.68 10-3 0.023 0.88 10-3 0.033 

5.68 10-3 0.0015 0.14 10-3 0.00135 

2.33 10-3 0.31 2.55 10-3 0.251 

            T - Actual torque;Tn - Nominal torque = 5Nm;  
            ω - Actual motor speed;  ωn - Nominal motor speed = 1420r.p.m.  
 

From the Table 4, it is realized that the index errors for flux and torque have 
been calculated for the different values of torque and speed in terms of their 
respective nominal values.  
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Fig. 11 – Torque developed in conventional DTC. 

 

 
Fig. 12 – Torque developed in DTC using neural network. 

 
Fig. 13 – Stator current in DTC using neural network. 
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Fig. 14 – Torque developed in DTC using neural network trained  

with genetic algorithm (Binary coding representation). 
 

 

Fig. 15 – Torque developed in DTC using neural network trained with genetic algorithm 
(Floating-point coding representation). 

 

 
Fig. 16 – Torque step response using genetic algorithm (Binary coding representation). 
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Fig. 17 – Locus of the stator fluxes in the stationary reference frame. 
 

 

Fig. 18 – Torque developed in conventional DTC and DTC using fuzzy logic. 

 
Fig. 19 – Initial stator flux rise. 
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10 Conclusion 

Three different intelligent torque control schemes such as direct torque neu-
ro controller, direct torque neuro controller trained with genetic algorithm and 
direct torque fuzzy controller have been evaluated for induction motor control 
and which have been compared with the conventional direct torque control 
technique.  

Table 5 
Features of Adaptive controllers 

 

Sl.No. 
Control 

Strategies 
Advantages Limitations 

1. 
DTC using 

Neural Network 

1.Many training methods such 
as Back propagation algorithm, 
parallel recursive method, 
Kalman filter method and adap-
tive neuron model methods are 
available. 
2.The results obtained are very 
close to conventional DTC. 

1.Training time required is 
more. 
2.Affected by parameters of 
the machine changes. 

2. 

DTC using 
Genetic 

Algorithm 
(Binary 

Representation) 

1.It is not highly sensitive to pa-
rameter of the machine changes. 
2.Gives precise results. 

1.Accuracy is affected 
when domain size increas-
es. 
2.Difficult to design for 
handling non-trivial con-
straints. 

3. 

DTC using 
Genetic 

Algorithm 
(Floating point 
Representation) 

1. It is also used to improve the 
performance on numerical 
problems. 
2.Capable of representing quite 
large domains. 
3.In this representation, it is ea-
sier to design special tools for 
handling non-trivial constraints. 

1. In floating point represe-
ntation, the genetic opera-
tors needs careful designing 
to preserve the constraint. 

 

4. 
DTC using  

Fuzzy Logic 

1.Fuzzy logic does the resistan-
ce compensation in DTC at low 
speed region. 
2. Provides more accuracy 

1.Many rules are required 
to provide accuracy. 
2.Computational time requ-
ired is high. 

Since the conventional DTC presents some disadvantages such as difficulti-
es in torque and flux control at very low speed, high current and torque ripple, 
variable switching frequency behavior, high noise level at low speed and lack of 
direct current control, an adaptive torque controller must be proposed for high 
performance applications. In this paper, three various adaptive intelligent torque 
controllers have been proposed and results were compared. Among all these 
three adaptive controllers, genetic algorithm based direct torque neuro controller 
shows better response. By using this controller, parameters of induction motor 
are also be tuned and parameter variations are also be much reduced. When 
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compare to other adaptive controllers precise results have been obtained using 
genetic algorithm based direct torque neuro controller. The individual advanta-
ges and limitations of each scheme is presented in Table 5. 

11 Appendix 

Rating 1kW  Rr 8.38 Ω   ωnom 1420 r.p.m. 
P 4  Lm 0.7014 H  Tnom 6.7 Nm 
Rs 7.23 Ω  Ls=Lr 0.0391 H  J 0.006 kgm2 
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