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Robust DOA Estimation of Complex Correlated 

Signals in Non-Gaussian CES Distributed Models 

Habti Abeida1 

Abstract: The sample covariance matrix (SCM) is commonly used in direction-

of-arrival (DOA) estimation methods when the noise or observations are circular 

complex Gaussian (C CG) distributed. However, with a very heavy-tailed non-

Gaussian noise model, the SCM-based DOA estimation methods fail to provide 

an accurate estimate of DOA. This paper presents a numerical analysis of the 

resolving capability of subspace-based circular (C) and non-circular (NC) multiple 

signal classification (MUSIC) DOA estimation methods of arbitrarily narrowband 

correlated signal sources corrupted by circular complex elliptical symmetric (C 

CES) distributed noise. It evaluates the robustness of these methods for correlated 

C and NC sources by employing the robust complex M  estimators instead of 

SCM. It study also the effects of correlation on robust MUSIC-based DOA 

estimation algorithms accuracy as a function of the magnitude and phase of the 

correlation coefficients. Simulations results show that the NC MUSIC algorithm 

which requires fewer sensor elements yields robust estimates of DOA for 

correlated sources than the C MUSIC algorithm using the M  estimators. 

Keywords: DOA estimation, Correlated signal sources, Heavy-tailed non-Gaussian 

noise and observations, Complex elliptical symmetric distributions, Robust  

M  estimators. 

1 Introduction 

The most commonly subspace-based methods for estimating the DOA of 

closely-spaced C and NC sources are respectively the C MUSIC [1] and NC 

MUSIC [2] methods due to their simplicity and high-precision capability [3, 4]. 

It is well-known that these methods can resolve two uncorrelated sources. 

However, these methods encounter significant difficulties in accurately 

estimating the DOAs when the signals are highly correlated [5, 6], which can 

occur in the case of multipath propagation or smart jammer scenarios. Up till 

now, several subspace-based approaches (spatial smoothing, spatial filtering) 

have been developed to decorrelate strongly correlated C signals (e.g., [7  11]). 
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The decorrelation subspace-based approaches are inspired by the first works 

proposed in [12  15]. 

In array signal processing applications, C and NC MUSIC-based methods 

and the maximum likelihood (ML) method require an estimate of the covariance 

matrix (CM). The most commonly used estimator of CM under a multivariate 

Gaussian assumption is the SCM which is an ML estimate. However, the use of 

SCM in non-Gaussian outliers or impulsive noise scenarios can be modeled by C 

CES distributions [17] leads to degraded estimation performance of the DOA. 

Moreover, a robust alternative estimate to the SCM is the M  estimators 

introduced in [16] for real-valued data, and then extended for C and NC CES 

distributed data in [17] and [18], respectively.  These robust M  estimators have 

been widely used and studied in various statistical signal processing applications 

[17, 23  26]. 

This paper studies the accuracy of the C and NC MUSIC-based DOA 

estimation methods as a function of correlation magnitude and phase between 

signal sources. It quantifies then the robustness of these methods for estimating 

DOAs of correlated closely-spaced sources in the non-Gaussian C CES noise 

environment, by employing the M  estimators instead of SCM. 

The paper is structured as follows. A brief reminder of NC CES distributions 

is presented in Section 2. Section 3 presents robust C and NC CES distributed 

models and M  estimators. Section 4 presents the C and NC signal models and 

briefly reminds the C and NC MUSIC algorithms designed for DOA estimation 

of correlated signal sources. Simulation results are presented in Section 5 to 

assess the dependence of MUSIC-based DOA estimation methods on the 

correlation magnitude and phase of sources and also evaluate the robustness of 

the M  estimators. Finally, the conclusion is presented in Section 6. 

2 NC CES Distributions 

A generalization of C CES distributions [17, 21] called NC CES distributions 

has been introduced in [20] so that the NC CG distribution [22] belongs to this 

family of distributions. A random variable (r.v.) 
Mtz  follows an NC CES 

distribution E ( , , , )t M tC gz Σ Ω  if its probability density function (p.d.f.) has 

the form  

  1/2

,( ) = | | ( )M gf c g t tz Γ z , (1) 

where ( ) tz  is the quadratic form, 
def

11
( ) = ( ) ( )

2

H   t t t t tz z μ Γ z μ  and where 

def

= ( ) ,H T H

t t tz z z
def

= ( )H T H

t ttμ μ μ and 
def

* *
=
 
 
 

Σ Ω
Γ

Ω Σ
, M MΣ and M MΩ are 
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respectively Hermitian positive definite scatter matrix with rank( ) = MΣ  and 

complex symmetric pseudo-scatter matrix. The coefficient 
def

1

, ,= 2( )M g M M gc s   is 

a normalizing constant ensuring that (1) integrates to one and where 

1

,
0

= ( )d <M

M g u g u u


   and 
def

= 2 ( )M

Ms M   is the surface area of the unit 

complex m-sphere  : || || 1M MS   t tz z . The non-negative density 

generator function (.)g  is assumed here to satisfy 1, , =M g M g M   [17] to ensure 

that 
def

= E( )H

z t tΣ R z z , 
def

= E( )T

z t t
Ω R z z  and 

def

= E( )H

z t tΓ R z z . It follows 

from [27, Corollary 4.6.12(b)], that the matrices Σ  and Ω  can be factorized as 

= H
Σ AA  and = ,T

Ω AΔA where M MA  is a non-singular matrix and 

1= Diag( , , )M Δ  is a diagonal matrix with nonnegative real elements. Let 
Mtv  be an r.v. obtained using a simple transformation of r.v. 

M

t u  

uniformly distributed on 
MS  (i.e., ( )M

t U Su ) as follows [19]:  

 
*

1 2=t t tv Δu Δ u , (2) 

with 1
2

 

Δ Δ

Δ  and 2
2

 

Δ Δ

Δ , where = Δ I Δ  and = Δ I Δ .  

Clearly, 
1

E( ) = E( ) =H H

t t t t
M

v v u u I  and 
1

E( ) =T

t t
M

v v Δ . Therefore, an r.v. 

E ( , , , )t M tC gz Σ Ω  with rank( ) = MΣ  if its stochastic representation (SR) 

has the form 

 =t d t t tz Av R , (3) 

with 
tR  is the modular variate defined as 

def

=t tR Q which is independent 

of the complex r.v. tv . The p.d.f. of 
tQ  is given by  

1 1

,( ) = ( ).M

t M g t tf g Q Q Q  

The density generator function of an NC CG distribution is ( ) = e tg t 
. In the 

particular case 0Ω  the NC CG distribution reduces to the C CG distribution. 

Zero-mean complex Student’s t distribution [17]: An r.v. 
tz  follows a complex 

Student’s t  distribution (denoted as , ( , )Mt  0 Σ ) with   (0 < < )   degrees 

of freedom if the corresponding SR admits 2 ,=t d MM F Q , where 2 ,MF  denotes 

the F  distribution with (2M,  ) degrees of freedom. The complex t distribution 

has tails heavier than CG ( ) . The case = 1  leads to the complex Cauchy 
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distribution, and the case =1/ 2  yields the multivariate Laplace distribution 

which is heavy-tailed distribution. Thus, the complex Student’s t distribution 

was chosen here in preference to other possible robust distributions to evaluate 

the robustness of C and NC MUSIC-based DOA estimation methods for C and 

NC correlated signal sources.  

3 Robust C and NC CES Distributed Models and M-Estimators  

Unlike model (6) which assumes that the noise is C CES, this section presents 

an alternative model where the observations 
tz  in (6) are assumed to be 

independent with zero-mean either C or NC CES with respective scattering 

matrix 
zR  or 

zR . This model is also used to quantify the effects of correlation 

on C and NC MUSIC-based DOA estimation methods using the M  estimators. 

Usually, the C and NC noise subspaces from which the C and NC MUSIC 

algorithms are built are estimated, respectively, using the SCM 
def

, =1

1
=

T H

z T t ttT
R z z  and the extended SCM 

def

, =1

1
=

T H

z T t ttT
R z z . They are ML 

estimators of Σ  and Γ  for C CG and NC CG distributed data, respectively. 

However, the performance of SCM-based MUSIC methods significantly 

degrades in heavy-tailed CES distributed data. An alternative robust ML M  

estimator to the SCM and extended SCM are defined respectively as the solution 

of the M  estimating equations [17, 18]  

  1

, ,

=1

1
=

T
H H

z T t z T t t t

tT

R z R z z z  (4) 

 1

, ,

=1

1 1
=

2

T
H H

z T t z T t t t

tT

 
 
 

R z R z z z ,  (5) 

where 
def 1 d ( )

( ) =
( ) d

g t
t

g t t
  . 

In the particular case of CG distribution for which ( ) = e tg t 
 yields ( ) = 1,t

(4) and (5) reduce respectively to SCM and extended SCM. The unique solution 

of (4) and (5) can be obtained by an iterative fixed-point algorithm. When (.)g  

is unknown, M  estimators can be used to provide reliable estimates of zR  and 

zR  which are also solutions of the implicit (4) and (5), obtain zR ed by replacing 

(.)  by any non-negative real-valued weight function (.)u  follows Maronna’s 

conditions [16] and is not tied to any particular CES distribution. 

In [18], both the existence and uniqueness of solutions of (5) were proved in 

[18] extending those proved in [17] for the C CES data. For example, Tyler’s and 
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Huber’s estimators are members of the class of M  estimators (see e.g., [17, 

sec.V.C]). Tyler’s M  estimator is obtained from (5) by taking ( ) =u t M t  while 

the weight function for Huber’s M  estimators is given in [17, Example 1]. Note 

also that the weight function (.)  for Student’s ML-estimator (denoted as MLT

( ) ) in (4) and (5) is given by 
2

( ) =
2

M
t

t

 


 
. Finally, the normalized sign SCM 

(SSCM) estimator proposed in [28] is extended for NC CES observations and has 

the form 
def

, =1

1
= ( ) ( )

T H

z T t tt
S S

T
R z z  with 

def

( ) =t t tS z z z  if 0t z  and 
def

(0) = 0S , 

which is not an M  estimate of zR , is considered in this study. 

4 Signal Model for DOA Estimation 

This section presents the CES signal model and briefly summarizes the C 

and NC MUSIC methods (e.g., [3]) for estimating DOAs of arbitrary distributed 

correlated sources in an impulsive noise environment with heavy-tailed 

distributions.  

4.1 Signal model 

Assume that two narrowband uncorrelated or correlated signal sources 

impinge on an array of M sensor elements. The output of the sensor array at the 

instant t, denoted as 
M

t z , can be written as [3, 26]  

 = ( ) , =1, ,t t t t Tz A s n , (6) 

where 
tz are assumed to be independent and identically distributed r.v.’s and 

1 2( ) =[ ( ), ( )] A a a , 
def

= ( )k ka a is the steering vector corresponding to .k 

The vectors 
2

,1 ,2= ( , )t t ts s s  and 
M

t n  represent respectively the 

transmitted signal sources and additive measurement noise, which are assumed 

to have zero-mean and are independent. The noise =t d n t tn uQ  is assumed to 

be C CES distributed constrained such that E( ) =t MQ  to ensure that 
2E( ) =H

t t nn n I , whereas the signal sources 
ts  are C or NC arbitrary distributed, 

with first covariance = E( )H

s t tC s s  and second covariance = E( )T

s t tP x x . 

Therefore, CMs of  the r.v. 
tz  are given by: 

 
2= H

z s nR AC A I   and  = T

z s
R AP A , (7) 

where  

 
2

1
=

1
s s 

 
  

 
C  with 

def

,1 ,2= E( ) ei

t ts s     , <1 . (8) 
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For the particular case of strictly rectilinear signals ,1ts  and ,2ts , we have: 

 , ,= e
i

k
t k t ks x


, ,t kx   with 

def

1 2= [0, ]     , (9) 

where the phases 
k  are assumed fixed during the array observation. 

Consequently, this leads to the CMs:  

2= ( ) ( )H

z s nR A C A I     and   = ( ) ( )T

z sR' A P A  . 

To exploit the prior knowledge of rectilinear sources, the augmented CM of 

the r.v. = ( )T H T

t t tz z z  defined in Section 2, can be written as [3]: 

 2

* * * * **
=

H

zz

z x n

z

 

 

    
              

AΔ AΔRR
R C I

R A Δ A ΔR
 (10) 

with 
def

1 2= Diag( , )  Δ , where if  

 
def

2
1

= E( ) =
1

T

x t t x

 
   

C x x , ( 1, 1)    , (11) 

sC  in (8) has the following form:  

 2 1 e
=

e 1

i

s x i



 

 
  

 
C   (12) 

It follows, therefore, from (8) and (12) that the non-circularity phase 

separation   associated with the sign of real-valued factor   corresponds to 

the correlation phase   of signal sources. 

4.2 C and NC MUSIC-based DOA estimation algorithms 

The NC MUSIC algorithm [2, 3]  estimates the two DOAs as the location of 

the two  smallest minima of the following spatial spectrum defined by:  

 
2 2

1, 2,( ) = ( ( ) ( )) | ( ) ( ) |H T

T T Tf      a Π a a Π a , 

where 1,TΠ  is a Hermitian matrix and 2,TΠ  is a complex symmetric matrix 

obtained both from the partitioned null-space projection matrix,  

1, 2,

* *

2, 1,

T T

T

T T

 
  
 
 

Π Π
Π

Π Π
, 

associated with the noise subspace of the estimated matrix ,z TR . 

Similarly, the C MUSIC algorithm [1] estimates the two DOAs as the 

location of the two smallest minima of the following spatial spectrum defined by: 

( ) = ( ) ( )H

T Tg   a Π a , where 
TΠ  is the projector matrix associated with the 

noise subspace of , .z TR  
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5 Simulation Results and Discussion 

This section presents several numerical simulations to illustrate the 

dependence of the performance of C and NC MUSIC-based DOA estimation 

methods on the non-Gaussian heavy-tailed noise or data and the correlation phase 

and magnitude of correlated signal sources. 

Assume that there are two correlated narrowband rectilinear signal sources 

with the same power 2

x  impinging on a uniform linear array with = 6M  (except 

in Fig. 4) omnidirectional sensors spaced half-wavelength for which 
( 1)

= (1,e , ,e )
j j M Tk k

k

  
a  with = sin( )k k  , where 

k  is DOA relative to the 

normal of array broadside. The two sources are generated as in model (6) which 

consists of two multi-paths issued from two independent BPSK-modulated 

sources ,1te  and ,2te  such as ,1 ,1=t tx e  and '2

,2 ,1 ,2= 1t t tx e e    with 

( 1, 1)    . Thus, the signal sources ,1ts  and ,2ts  are correlated with correlation 

= ie   , where 
2 1=   . The number of snapshots is set to 500.  

Figure 1 shows the C and NC MUSIC spatial spectrums based on the 

following estimators presented in Section 3: SCM, ML-estimator based on 

Student’s t distribution MLT(1) with 
2

( ) =
2

M
t

t

 


 
, Tyler’s M estimator, 

Huber’s M estimator with = 0.9q  and SSCM. The two sources are assumed 

highly correlated with = = 0.95  , and the non-Gaussian heavy-tailed noise 

tn , is assumed to follow ,Mt  with = 1  (i.e., the complex Cauchy distribution). 

Since the complex Cauchy distribution has infinite variance, then 2

n  refers here 

its dispersion parameter, and the generalized SNR is defined as  
2 2

10
10 ( / ) = 20dBlog s n  .  

It can be observed from Fig. 1 that the C and NC MUSIC algorithms based 

on classical SCM estimator fail to resolve two far or close sources in non-

Gaussian heavy-tailed noise. In addition, the SSCM-based C MUSIC algorithm 

does not separate the two sources, unlike the SSCM-based NC MUSIC algorithm 

which performs well in this case. On the one hand, the NC MUSIC algorithm 

provides reliable estimates of the DOA’s for both far or close correlated sources 

using the robust estimators MLT(1), Tyler’s and Huber’s estimators, while the 

performance of the C MUSIC algorithm is enhanced with the use of these robust 

estimators which make it produces reliable estimates of DOA’s of two correlated 

sources for large DOA separation .  
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Fig. 1a – C and NC MUSIC spatial spectrum of two correlated signal sources with 

0.95=|=|   and /2==   built using SCM (and extended SCM) (first row), 

MLT(1) (second row), Tyler’s M  estimator (third row), for five simulated data. The 

curves are plotted for two values of DOA separation: 2 1=| |= 0.2rad    (first 

column) and = 0.4rad  (second column).  

DOA(rad) 

DOA(rad) 

DOA(rad) DOA(rad) 

DOA(rad) 

DOA(rad) 
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Fig. 1b – C and NC MUSIC spatial spectrum of two correlated signal sources with 

0.95=|=|   and /2==   built using Huber’s M  estimator with 0.9=q  (first 

row) and SSCM (second row) for five simulated data.  

The curves are plotted for two values of DOA separation: 2 1=| |= 0.2rad    (first 

column) and = 0.4rad  (second column).  

 

Figs. 2  4 show the influence of the magnitude and phase correlation (i.e., 

| |=    and =  ) on C and NC MUSIC algorithms. The noise vector 
tn is 

generated according to the ,Mt  with = 3 . The estimated projector 
TΠ  [resp. 

TΠ ] are obtained using MLT (3)  given by (4) [resp. (5)] with 
2

( ) =
2

M
t

t

 


 
. 

In Fig. 2, the C and NC MUSIC pseudo-spectrums for the case of 

uncorrelated sources ( | |= = 0  ) are also included.  

DOA(rad) DOA(rad) 

DOA(rad) DOA(rad) 
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It can be observed from this figure that the C MUSIC algorithm is unable to 

resolve the two closely highly correlated sources with = 0  and = / 2   

which is not the case with the NC MUSIC algorithm. While the C MUSIC 

algorithm, as well as the NC MUSIC algorithm, are capable of resolving two 

uncorrelated sources, it is important to note that the C MUSIC pseudo-spectrum 

shows two weak peaks for =   implying that the coherent sources can be 

resolved even though | |= 1  where 
sC  is singular. 

 
C MUSIC 

(a) 

 
NC MUSIC 

(b) 

Fig. 2 – C and NC MUSIC spatial spectrum based on MLT(3) for different values of the 

correlation phase  :(a) and non-circularity phase  ; (b) of two uncorrelated and 

highly correlated signal sources with 0.99=|=|  , 1 = 1.5708rad  and 2 1=     

with = 0.3rad  when the noise term follows a 
,Mt 

with = 3  and SNR=20 dB. 

DOA(rad) 

DOA(rad) 
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Fig. 3 shows that for two strongly correlated sources, C MUSIC is unable to 

resolve both sources for a small DOA separation compared to the NC MUSIC 

algorithm which continues to resolve these sources even for a small DOA 

separation, e.g. = 0.05rad .  

 

C MUSIC 

(a) 

 

NC MUSIC 

(b) 

Fig. 3 – C and NC MUSIC spatial spectrum based on MLT(3) for various values of 

DOA separation   when the noise term follows a 
,Mt 

 with = 3 . Two sources are 

highly correlated with = = / 2   , | |= = 0.95   and SNR=20dB. 

 

Figure 4 shows the impact of the number of sensor arrays M on the resolution 

of C MUSIC and NC MUSIC algorithms in an environment of strongly correlated 

sources. It is seen that the resolution ability of these two algorithms strongly 

DOA(rad) 

DOA(rad) 
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depends on M and will be the highest with C MUSIC when =12M  and with NC 

MUSIC when = 8M . 

 
C MUSIC 

(a) 

 
NC MUSIC 

(b) 

Fig. 4 – C and NC MUSIC spatial spectrum based on MLT(3) for various values of the 

number of the sensor array M when the noise term follows a 
,Mt 

 with = 3 . 

Two sources are highly correlated with: 

= = 0  , | |= = 0.99  , = 0.15rad  and SNR=20dB. 
 

In Fig. 5, the observations tz  are assumed to follow either a C or a NC ,Mt

with 2.1= , with associated structured CM zR  given by (7), or extended CM 

z~R  given by (10), respectively. The estimated projector TΠ  [resp. TΠ
~

] are 

obtained using the ML M estimate MLT (2.1)  in (4) [resp. (5)]. One can observe 

DOA(rad) 
 

DOA(rad) 
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that the C MUSIC algorithm based on Student’s ML-estimator is incapable of 

estimating closed-spaced DOAs (i.e., for small  ) for uncorrelated and strongly 

correlated sources, unlike the NC MUSIC algorithm. 

 
C MUSIC with = 0.1rad                                          NC MUSIC with = 0.1rad  

 

C MUSIC with = 0.3rad                                          NC MUSIC with = 0.3rad  

Fig. 5 – C and [resp., NC] MUSIC spatial spectrum for C 
,Mt 

 [resp., NC 
,Mt 

] 

distributed observations with = 2.1 , using the ML M-estimate MLT (2.1)  for two 

values of the correlation magnitude with: 

= = / 2   , 1 = 1.5708rad  and 2 1=    . 

6 Conclusion 

Numerical studies on the dependence of the performance of the C and NC 

MUSIC-based DOA estimation methods on the correlation magnitude and phase 

of correlated signal sources are presented. It then quantifies the robustness of 

these methods in the C CES noise environment, by employing the M  estimators 

instead of SCM. It is observed that the DOA estimation accuracy degrades 

DOA(rad) 
 

DOA(rad) 
 

DOA(rad) 
 DOA(rad) 
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significantly with the C MUSIC algorithm compared with that of the NC MUSIC 

algorithm when the correlation magnitude increases. It is also noted that the 

correlation phase affects strongly the DOA accuracy, especially for fewer sensor 

array elements, and that this effect remains strong with the C MUISC algorithm 

that needs a higher number of sensors array elements to estimate the DOA of 

closely-spaced strongly correlated sources. It is also observed that the NC 

MUSIC algorithm provides reliable estimates of the DOA’s for both far or close 

correlated sources using the robust ML-estimators, Tyler’s and Huber’s 

estimators, and SSCM estimator, which is not the case of the C MUSIC algorithm 

which fails to produce reliable estimates of DOAs of two strongly correlated 

closely-spaced sources even with the use of M  estimators. 
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