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Abstract: Deep Packet Inspection (DPI) of the network traffic is used on a regular 

basis within the traditional and virtualized environments. But changes in the 

network architecture with the introduction of containers, microservices, 

application functions, network functions, and the penetration of 5G access 

technology are adding more traffic complexity, especially in the so-called east-

west flow direction. Network Functions Virtualization (NFV) has become an 

unavoidable step for further IP network development. In this context, DPI is 

becoming a challenge. Furthermore, the penetration of 5G allows access of various 

kinds of devices to the network with cloudification logic which drives them. This 

paper provides a performance analysis of a selected set of supervised machine 

learning (ML) algorithms for classification of network traffic within an NFV 

environment. The goal is to find a suitable algorithm that will classify the traffic 

from a point of both precision and speed, especially because in the 5G networks 

any packet delay may compromise the quality of service requirements. The 

research shows that out of the 6 algorithms tested, Decision Tree algorithm has the 

best overall performance, from both classification precision and time consumption 

point of view. It has proved as a reliable classifier that is performing evenly across 

different classes. Due to the specifics of the virtualized environments and 

encryption methods, payload data, source, destination, and port information of the 

network traffic packets are excluded from any statistical operation used for 

classification by the ML algorithms. 

Keywords: Classification, Machine Learning, Network Functions Virtualization, 

Network traffic 

1 Introduction 

The classification of the network traffic has been a necessity since the 

beginning of the computer networks. Nevertheless, the network architectures are 
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changing continuously, especially now when Virtual Machines (VM), Software 

Defined Networking (SDN), private, public, and mixed clouds are common in the 

IT world. The trend is now moving towards microservices, containers, 

application functions, network functions in Network Functions Virtualization 

(NFV) environments [1], which is adding more complexity to the network flows. 

In such scenario, majority of the network traffic is moving in the cloud, usually 

within the same datacenter, in the east-west direction. This traffic never leaves 

the virtual plane and is often managed by the SDN elements in the NFV 

environment, which obstructs the capture or any other operation over the traffic. 

This is important both for the cloud operators and for entities using the services 

provided by the public clouds. Operations which are common practice and are 

considered trivial, such as implementing Quality of Service (QoS), network 

security, optimization, application management and monitoring are becoming a 

challenge. 

In this paper, we are performing an experimental test to reveal the network 

traffic classification efficiency of several supervised machine learning (ML) 

algorithms. We have created a unique test environment that reassembles real life 

processes and simulates the east-west traffic in the virtual plane among virtual 

hosts where NFV is established. The efficiency of the ML algorithms is explored 

from a point of classification precision, but also from a point of calculation speed. 

This is very important when we take into consideration the penetration of 5G, 

because it is tightly integrated with the mentioned cloudification and the new 

technologies used in it. For example, 5G specification calls for user plane latency 

of just 1ms for ultra-reliable low-latency communications (URLLC) [2]. This is 

why the speed of the ML algorithm is crucial and must be performed in a manner 

that will minimize the expected latency added by the classification. 

The study we have conducted provides a novel scenario that is comparable 

to the emerging architectures where NFV and 5G are implemented. It involves 6 

different supervised ML algorithms: Bayes Net, NaiveBayes, J48, K-Nearest 

Neighbors (K-NN), Decision Tree, and AdaBoost because they are widely used 

in the traditional computer networks, are proven to be reliable while providing a 

valid classification, and are not expensive to be implemented in practice. We have 

used Weka [3] as a tool for classification. 

The classification is made based on 6 classes, which are chosen by 

experience in traditional networks, and in alignment with the expected network 

traffic within the 5G radio, as well as the 5G core network. We have chosen 6 

classes: VoIP, encrypted VoIP, DNS, Management, SSH, HTTP, and HTTPS 

traffic. NFV architecture is becoming the real 5G enabler, providing the ability 

to place initial workloads in the network, and allowing it to grow into the edge, 

thus providing the needed basis for the IoT expansion expected with the 5G 

penetration. The main goal and idea of our work is to present a method for 
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creating datasets based on statistical characteristics of the network traffic, and 

then testing machine learning algorithms based on the resulting datasets, within 

a scenario based on an NFV architecture. Here we want to emphasize the VoIP 

and encrypted VoIP classifications which are crucial for QoS capabilities in 5G 

networks, allowing smart connectivity, with the ability to steer, secure and break 

out network traffic. 

There is a variety of works that are using ML algorithms to perform packet 

inspection [4  7]. What distinguishes them is the novel experimental testbed, as 

well as the approach to classify the network data based only on statistical 

parameters of the packets and the packet flows, without the use of source and 

destination addresses (both MAC and IP addresses), without any examination of 

the payload, and without the communication ports. 

The encrypted network traffic is in a rapid rise. Significant number of 

services and applications are using encryption as a primary method of securing 

information. But this has made traffic classification a challenge. The solution for 

traffic classification that we propose is applicable in practice without 

compromising privacy and data integrity, it provides an insight into the 

performance of supervised ML algorithms, and determines which one is the most 

suitable for NFV based environment. 

There are also many examples of ML algorithms used for Deep Packet 

Inspection (DPI) in traditional networks [3, 8, 9]. Compared to these works, we 

focus on virtualization and the NFV environment. In such a scenario, the network 

packets are mostly moving in the east-west direction and are often encrypted, so 

classical DPI is impossible to be conducted. In our approach, it is not important 

whether the payload is encrypted or not. Also, the legal aspect of performing DPI 

in a cloud environment (especially public one) is satisfied, as the data carried 

within the payload is not compromised. We are using only statistical features of 

the network packets and the network flows to create datasets that are later used 

for training and testing of the ML algorithms. During the testing phase, we are 

evaluating the efficiency of the algorithm from a point of precision, but also from 

a point of speed. Network traffic is sniffed inside an open vSwitch directly. We 

are not introducing additional probe or SDN element to capture the traffic. We 

consider all network traffic, between the virtual elements inside the environment, 

but also the traffic that is used for management of the environment (including the 

one form the controllers), as well as the traffic that is going in and out to the 

internet. This is a realistic scenario with most cloud solutions in practice.  

Besides the precision, the ML algorithm speed in many cases is even more 

important. If the time consumed to classify the data is adding significant latency 

in the network traffic and is consuming resources (CPU cycles, memory) of the 

cloud, the classification precision loses its relevance. 
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In the reminder of the paper we will go through the related work on the 

subject, briefly explained in the next section. The experimental setup and the 

dataset creation are explained in Section 3, while the results are analyzed in 

Section 4. Section 5 is reserved for the conclusion and our plans for future work. 

2 Related Work 

Many researches are focused on the DPI aspects in scenarios involving SDN 

elements [10  12]. Others are researching the security aspects when performing 

DPI [13, 14] by using SDN probes for network traffic sniffing and data 

processing. Our work distinguishes in terms of the NFV-based setup, while 

targeting a complete isolation of the packet payload. Some authors consider the 

classification of network traffic in traditional networks [15, 16] without tackling 

the specifics of the trendy virtualization, which on the other hand is an important 

aspect of our work. 

Mohammad Reza Parsaei et al. [17] are using SDN to categorize traffic by 

application, by applying different variants of Neural Network estimator. They are 

using data mining techniques based on different ML algorithms and are proposing 

a controller that could dynamically allocate bandwidth on network flows and 

optimize resource allocation. They achieve classification accuracy of over 97%. 

Distinct to our work, they are using source and destination IPs, as well as the 

transport layer port for classification. 

In [18], QoS in an SDN based network is being researched with an accent on 

overcoming the limitations of traditional networking architectures. Different flow 

routing mechanisms are categorized. In our research, we are exploring 

classification as a basic concept from which QoS can benefit significantly. 

Reference [4] is a study where NFV environment is prepared to classify 

different types of TCP traffic using three supervised ML algorithms: NaiveBayes, 

Bayes Net, and J48. Network packets are analyzed individually resulting in three 

different datasets: traditional, virtual, and combined in order to compare the 

classification performance. In our case, we use TCP and UDP based traffic and 

we analyze the statistical parameters of the packet flows within an NFV 

environment that closely reassembles to cloud platforms. 

Luong-Vy Le et al. [19] applied big data, ML algorithms, SDN, and NFV to 

build a practical and powerful framework for clustering, forecasting, and 

managing traffic behaviors for a huge number of base stations with different 

statistical traffic characteristics of different types of cells (GSM, 3G, 4G). The 

framework is intended to be used for developing future 5G Self-Organizing 

Network (SON) applications. Several applications based on traffic forecasting 

were also introduced. Five ML algorithms are used to classify the traffic 

generated by the mobile applications, with QoS implemented to enable 

bandwidth guarantees. The conclusion is that from the selected algorithms, 
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Decision Tree has the best overall performance. Our experiment is bound on the 

transport network layer with an aim to classify the traffic that is mostly east-west 

based using ML algorithms, but also to evaluate the time needed for classification 

which is crucial for the future 5G environments. 

Alshammari et al. [5] is focused on VoIP traffic within traditional networks. 

Data is extracted from an existing network environment with a complex topology. 

The authors evaluate classification of both encrypted and unencrypted VoIP using 

three ML algorithms: C5.0, ADA Boost, and GP Classifier, and using a subset 

sampling technique. In the experiments, C5.0 had the best performance and the 

highest precision rate. In our case, cloud-based environment with NFV 

implemented is used to benchmark the ML algorithms with various types of 

network traffic. 

 In [20], Machine Learning classification of multi-service internet traffic is 

used to evaluate resources consumption (CPU time and usage of system 

memory). We are complementing this research, as we are evaluating the ML 

algorithms time needed to perform the classification. 

Shu et al. [21] propose network traffic classification based on deep learning 

network structure. The experimental dataset is created from ten types of data, 

each one abstracted from a complete TCP bidirectional stream containing 249 

network flow attributes. Google's TensorFlow deep learning framework is used 

in the experimental environment. NaiveBayes and Decision Tree ML algorithms 

are used to compare the classification efficiency in respect to the deep learning 

network. Compared to this work, we are targeting six different supervised ML 

algorithms classification, having in mind that not only classification precision, 

but also the time needed to perform the classification is important, as any delay 

added to the network packet speed can produce a functional problem in the 

environment. 

The effect of NFV elements placement on the network traffic, especially on 

the increase or decrease of the volume of the processed traffic, is researched in 

[22]. The authors develop an algorithm that determines the flow path and then 

propose a Least-First-Greatest-Last routing. 

Bonfiglio et al. [23] are researching the traffic specifics of Skype as an 

application that is based on encrypted VoIP for voice calls. The traffic is explored 

in real time, with two different approaches by using the statistical parameters of 

the traffic generated by Skype. The approaches are then assessed using flow 

correlation. 

To summarize, our testing setup is similar to that introduced in [4], with 

additional elements added to the environment, such as virtual machines 

connected to internet and virtual network elements with bridged IP addresses. 

Both TCP and UDP traffic is generated, with and without encryption. The 

classification groups and labels are chosen in a manner that various traffic is 
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classified. Viber and Skype are used to generate VoIP traffic, whereas scripts are 

used to open ssh management sessions to different hosts. Furthermore, a novel 

testbed is proposed in context of 5G and usage of NFV elements within the 

virtualized environment which is expected in a real-life setup. The network 

packets are analyzed directly within the virtual switch, without the use of a probe 

or an SDN element. Statistical characteristics are extracted from TCP and UDP 

packet flows and used to perform further analysis. 

The next section shows the details of the experimental environment and the 

creation of the datasets used to train and to test the six supervised ML algorithms. 

3 Experimental Setup and Dataset Creation 

To simulate the east-west traffic within a virtualized NFV based network, the 

experimental environment is based on Oracle VirtualBox [24], which is installed 

on a single physical host with Ubuntu 18.04 Server. All elements are connected 

with Open vSwitch (OVS) [25, 26] that provides the network connectivity. The 

switch is connected to the internet through the host in a bridge mode. All network 

packets flow through the OVS switch, the packets inside the environment, and 

the packets to and from internet. We are capturing the traffic directly on the OVS 

using Wireshark and tshark [27]. 

Mininet [28] is used as a network simulator. There are two different 

installations on two separate virtual machines, each with different network 

topology having 100 hosts, 20 switches and links among them and to the OVS. 

The hosts within the simulated networks are having private IP addresses and are 

able to communicate with each other. GRE tunneling is used to link the two 

simulated Mininet networks. Some of the hosts within Minines have NAT-ed IP 

addresses and are able to communicate to internet. 

Ryu Controller [29] is used to control the simulated Mininet networks. It is 

installed and configured in a separate virtual machine. 

There are four other virtual machines connected to the OVS that are also used 

for traffic generation. Skype and Viber are installed onto them to simulate the 

VoIP traffic. When initiated, VoIP needs access to internet, but after that peer-to-

peer communication can be observed within the OVS in a completely east-west 

direction. Script that starts ssh sessions is enabled on the VMs. Python script that 

starts ssh sessions to the Mininet hosts was developed, as well. The SSH sessions 

were started in intervals that followed Poisson distribution. 

Distributed Internet Traffic Generator (D-ITG) [30] generates various TCP 

and UDP traffic among the hosts within Mininet. Different scripts are used to 

generate traffic at packet level, replicating appropriate stochastic processes for 

both IDT (Inter Departure Time) and PS (Packet Size) random variables. 
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Fig. 1 is an overview of the experimental setup, showing the components 

symbolically. 

We have made 50 different experiments to generate various traffic (using  

D-ITG, Skype, Viber, custom scripts) and to analyze it. The experiments were 

conducted in time intervals from 4 to 20 minutes in which VoIP calls lasted from 

10 seconds to 10 minutes, following Poisson distribution. One dataset per 

experiment was generated. Different D-ITG scripts for different traffic simulation 

were used in every experiment. The scripts used different Mininet hosts and 

different paths in every try. The average number of captured packets was 

1.262.375 and the average number of flows was 4090. 

We have made specific classification of the traffic, using classes that are 

commonly used, based on experience from the traditional networks. As it will be 

shown in the results, the classification precision was calculated as an overall, but 

also for every class independently, in order to calculate the macro-average 

precision in which every class contribution to the precision is treated equally (as 

the number of packets and flows varies for every class). 

 

Fig. 1 – Experimental Environment. 

 

We used the following labels for the classes: DNS – for all the traffic used 

for name resolution, NETMGMT – all traffic used for hosts and network 

management, SSH – for the ssh sessions in the environment, WEB – for HTTP 

and HTTPS traffic, VOIP – for VoIP traffic, SVOIP – for encrypted VoIP. 

From the generated Wireshark pcap files, UDP and TCP packet flows, and 

the classes used for ML training and latter for test precision and confirmation are 
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identified using Argus [31]. Similar to [5], we define a flow as a bi-directional 

connection between two hosts. TCP flows are terminated either by flow time-out 

or by connection tear-down, whereas UDP flows are ended by flow time-out. 

When we observe the flows within the OVS, it can be seen that most of the traffic 

is east-west based, inside the virtual layout and between the hosts, but also the 

flows from the management generated by the hypervisor and the Ryu controller 

are detected. Because our focus is an NFV based environment, some of the flow 

features are not taken into consideration, such as the source and destination IP 

and MAC address, as well as the communication port that can vary inside the 

virtual environment. 

To train and to test the supervised ML algorithms, we have used Weka [3, 

32]. 2/3 of every dataset was used for training, while 1/3 was used for testing each 

of the algorithms. As not all the attributes have the same contribution to the 

classification, the AttributeSelectedClassifier with Ranker as an attribute ranking 

algorithm was used. InfoGainAttributeEval was used as an evaluator that 

determines the gain of information that the attributes carry. With this approach 

we are ranking the attributes that are used for the algorithms after which the 

information gain of every attribute is evaluated. This approach prevents a possible 

data leakage. 

Table 1 

Flow Attributes. 

No. Abbrevation Feature 

1 proto transaction protocol 

2 rate packets per second 

3 srate source packets per second 

4 drate destination packets per second 

5 sintpkt source interpacket arrival time 

6 dintpkt destination interpacket arrival time 

7 sjit source jitter 

8 djit destination jitter 

9 mdoffset 
mean of the data offset values of the 

packets in the flow. 

10 smeansz 
mean of the flow packet size transmitted 

by the source 

11 dmeansz 
mean of the flow packet size transmitted 

by the destination 

12 smaxsz max packet size for source 

13 dmaxsz max packet size for destination 

14 sminsz min packet size for source 

15 dminsz min packet size for destination 
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Based on experience from traditional networks and with careful observation 

of the gained datasets, we have selected the attributes given in Table 1, as features 

that characterize the flows. The payload is not used for reason of privacy within 

cloud environments and usage of different encryption methods that will make the 

payload irrelevant for the classification. The labels in transport layer header (e.g., 

the port numbers) are also not used as they can be easily changed. Short 

explanation of each of the selected attributes is provided inside the table. 

The following section provides the results from the testing of the supervised 

ML algorithms and the analysis. 

4 Results and Analysis 

To create 50 datasets, we have performed as many experiments and all 6 

supervised ML algorithms were tested. The performance of each algorithm is a 

combination of its precision and the time needed to make the classification. 

Because the time consumption is correlated to the performance of the machine 

where the analysis is performed, all classification tasks were performed on the 

same machine with a careful observation of all the processes on the machine that 

can influence the performance. A mean value of the 50 results was derived for all 

target metrics. 

True Positive (TP), False Positive (FP), True Negative (TN) and False 

Negative (TN) rates are defined as: 

– TP is number of instances that are truly identified of a class. 

– FP is number of instances that are falsely identified of a class. 

– TN is number of instances that are truly identified that are not of a class. 

– FN is number of instances that are falsely identified that are not of a class. 

The overall precision of the algorithms is calculated as the proportion 

between TP instances and all instances in the dataset [32]: 

 ( )Precision= TP TP+ FP . (1) 

Table 2 

Algorithm Precision. 

No. ML Algorithm Precision 

1 AdaBoost 0.744±0.0292 

2 BayesNet 0.9672±0.0189 

3 J48 0.9906±0.0027 

4 KNN 0.9172±0.0438 

5 NaiveBayes 0.8634±0.0170 

6 Decision Tree 0.9914±0.0033 
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Table 2 shows the average precision of the algorithms in all 50 experiments 

with the statistical standard deviation across the experiments, as a weighted 

average value.  

It can be seen that overall Decision Tree algorithm has the best precision. It 

is followed by J48 and BayesNet. On the other hand, AdaBoost algorithm has the 

worst overall performance with the lowest precision of 74.4%. 

To further explore the precision, we have calculated the micro average 

precision, which aggregates the contribution of all classes and calculates the 

average metric, as given by (2): 

 
1+ 2+ +

=
1 1 2 2

TP TP TPN
Precision_MIC

TP + FP +TP + FP + +TPN + FPN
. (2) 

The results are presented in Table 3. 

Table 3 

Algorithm Micro Average Precision. 

No. ML Algorithm Micro Average Precision 

1 AdaBoost 0.8450±0.0176 

2 BayesNet 0.9954±0.0027 

3 J48 0.9984±0.0006 

4 KNN 0.9856±0.0073 

5 NaiveBayes 0.9752±0.0027 

6 Decision Tree 0.9984±0.0010 
 

Not all classes have the same or similar number of packets and flows and the 

data distribution is skewed. To avoid data balancing problem and to come to valid 

conclusions we are calculating the macro average precision, the recall and the  

F-1 score. 

Macro average precision is an average of precisions of each class. This 

means that every class will weigh the same in the macro average precision. The 

following equation is used to calculate the macro average precision 

(Precision_MAC), where Pr1, Pr2 etc., denote the precision of the algorithm 

regarding the individual classes. These results are shown in Table 4. In this table 

the statistical standard deviation is calculated for the precision between classes: 

 
1 2

_
( )

Pr Pr PrN
Precision MAC =

Count Pr

  
. (3) 

If we evaluate Table 4, it becomes clear that the algorithms are not 

performing the same on all the classes. Decision Tree algorithm is the most 

constant with the highest macro average precision and the lowest standard 
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deviation between classes, showing that it classifies all classes similarly. J48 is 

very close to Decision Tree, with over 98% precision. Opposite to them, 

AdaBoost algorithm shows very low macro average precision with high standard 

deviation, which means that it performs poorly on different classes. K-Nearest 

Neighbor algorithm is also underperforming, with just over 82% macro average 

precision. When we compare these results with the standard weighted precision 

in Table 2, we can see that the algorithms have the same order, but the macro 

precision of the lower end algorithms is worse, drawing the conclusion that 

AdaBoost and KNN have different precision for different classes. 

Table 4 

Algorithm Macro Average Precision. 

No. ML Algorithm Macro Average Precision 

1 AdaBoost 0.20335±0.3064 

2 BayesNet 0.8899±0.1489 

3 J48 0.9824±0.0148 

4 KNN 0.82735±0.2202 

5 NaiveBayes 0.78915±0.2048 

6 Decision Tree 0.9848±0.0107 

 

To evaluate the impact of the false negative classified instances, Recall is 

used as a model metric. It is the proportion of true positive instances and total 

actual instances: 

 
TP

Recall =
TP FN

. (4) 

We’ve used Recall to calculate the F1-score of the supervised ML algorithms 

in our experiments. It is a metric that balances between the precision and the 

recall, so that false negative instances are taken into consideration. F1-score is 

calculated as a harmonic mean of the precision and the recall: 

 1 2
Precision Recall

F Score =
Precision Recall





. (5) 

Table 5 shows the F1-score values calculated for our experiments. 

Decision Tree ML algorithm has the best F1-score, followed by J48, 

BayesNet, KNN, NaiveBayes and AdaBoost. The last one has F1-score of only 

23.2% with very high standard deviation. 

The tables are visually represented in Figs. 2 – 5. 
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Table 5 

F-1 Score. 

No. ML Algorithm F1-score 

1 AdaBoost 0.231575±0.3356 

2 BayesNet 0.913425±0.1055 

3 J48 0.975425±0.0212 

4 KNN 0.797425±0.2295 

5 NaiveBayes 0.782125±0.1510 

6 Decision Tree 0.980475±0.0152 

 

Fig. 2 – Algorithm Precision. 

 

Fig. 3  Micro Average Precision. 
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Fig. 4  Macro Average Precision. 

 

Fig. 5 – F-1 Score. 
 

The algorithm precision is only the first feature to determine the usability of 

the algorithm. The second important aspect is the time needed to perform the 

classification. If the time needed for classification is too high, the process will 

add latency to the network communication, thus making the benefit of the 

classification too costly. This is important especially in the protocols where 

latency can degrade the service, such as VoIP. Furthermore, this is also crucial in 

the 5G scenarios, where latency is one of the major concerns. Another point is 

that if the time spent by the algorithm is high, more resources the process will 

consume. The two metrics (precision and time consumption) combined will show 

the overall performance of the algorithms. 
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The time that we have measured is relative to our testbed environment. All 

experiments are performed on a same environment, where special care has been 

taken to isolate all unnecessary processes. The average value of the time 

consumption was calculated from 50 experiments. 

The algorithm precision is only the first feature to determine the usability of 

the algorithm. The second important aspect is the time needed to perform the 

classification. If the time needed for classification is too high, the process will 

add latency to the network communication, thus making the benefit of the 

classification too costly. This is important especially in the protocols where 

latency can degrade the service, such as VoIP. Furthermore, this is also crucial in 

the 5G scenarios, where latency is one of the major concerns. Another point is 

that if the time spent by the algorithm is high, more resources the process will 

consume. The two metrics (precision and time consumption) combined will show 

the overall performance of the algorithms. 

The time that we have measured is relative to our testbed environment. All 

experiments are performed on a same environment, where special care has been 

taken to isolate all unnecessary processes. The average value of the time 

consumption was calculated from 50 experiments. 

Table 6 shows the average time needed for the six supervised algorithms to 

perform the classification within the chosen 8 classes. 

Table 6 

Average time needed for classification (in seconds). 

No. ML Algorithm Average time in seconds 

1 AdaBoost 0.012 

2 BayesNet 0.016 

3 J48 0.022 

4 KNN 0.272 

5 NaiveBayes 0.104 

6 Decision Tree 0.016 

 

The results for the average time needed for classification show that AdaBoost 

algorithm performs the best, with a highest speed. Decision Tree and BayesNet 

share the second and third place being 25% slower than AdaBoost. J48 has also 

a satisfactory speed. NaiveBayes is almost 9 times slower than AdaBoost and 

more than 6 times slower than Decision Tree KNN algorithm is the slowest. 

Decision Tree and AdaBoost spend only 5.9% of the time needed by KNN to 

perform the classification. 
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Fig. 6 graphically represents the average time consumed by the algorithms. 

 

Fig. 6  Time needed for classification (in seconds). 

 

To summarize, when we take a look at both precision and time needed for 

classification, Decision Tree supervised ML algorithm has the best overall 

performance. Although AdaBoost is the fastest algorithm, the classification 

precision is poor and unsteady across different classes, which makes this 

algorithm unreliable for our scenario. J48 has also high precision that is evenly 

distributed among classes, but it is slower than Decision Tree and BayesNet. 

Nevertheless, its speed is in the scale of Decision Tree and BayesNet, and it is 

also a valid choice. BayesNet has a high precision, but the macro average 

precision and the F1-score show that precision distribution among classes is not 

as good as Decision Tree and J48. 

NaiveBayes is in the middle from both precision and time perspective, while 

KNN algorithm has about 83% macro average precision and 80% F1-score, but 

it is by far the slowest algorithm which makes it useful only in cases where time 

needed for classification has low importance. 

5 Conclusion and Future Work 

The main goal and idea of our paper is to present a method for creating 

datasets based only on the statistical characteristics of the network traffic flows, 

and then to test machine learning algorithms performance based on the created 

datasets. All this is done in an experimental testbed where NFV architecture is 

used. 

The efficiency of the algorithms is explored from a point of precision of the 

algorithm but also form a point of time consumption needed to perform the 

classification. This is important from a virtualization point of view, where mixed 
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cloud scenarios are a common practice, but also for the incoming penetration of 

5G, where the network latency is of high importance. 

Our experimental testbed is used to perform multiple experiments and to 

collect network traffic data from which IP flows are extracted. The statistical 

features of the flows are used as attributes for classification. Because attributes 

such as source and destination IP and MAC addressed and communication ports 

can vary inside a virtualized environment, they are not taken into consideration. 

Due to encryption and data privacy concerns, the payload of the data packets is 

also excluded from the datasets and it is not used for classification. 

The environment that we use is not introducing any kind of network probes 

or SDN elements to perform the data collection, so that east-west traffic is 

completely unchanged. The traffic is completely intercepted within the virtual 

layer where it naturally resides. This has also an impact on the resource 

consumption, minimizing the additional latency that can be added to the network 

packets by redirecting or port replication used in traditional DPI. 

The results have shown that Decision Tree algorithm has the best overall 

performance, from both classification precision and time consumption point of 

view. It has proved as a reliable classifier that is performing evenly across 

different classes. J48 and BayesNet are also performing well, with J48 having 

slightly better precision and BayesNet being faster. K-Nearest Neighbour and 

NaiveBayes have an average classification precision in a range of about 80%, but 

they are slow, especially KNN which is almost 20 times slower than Decision 

Tree and BayesNet. AdaBoost shows the worst performance with precision that 

varies a lot among different classes, which can be seen from the macro average 

precision and the F1-score.  

The analysis in our paper can be used in practice within multiple systems that 

are built on top of cloud environments. NFV elements are now unavoidable part 

of such infrastructures. 5G infrastructure is relying onto these types of systems, 

but also connectivity to such systems is most likely to be done through 5G access 

technology. In those examples performing QoS, network and application security, 

data management, system and process monitoring and control is depending on 

valid network traffic classification that has to be precise and fast without taking 

considerable amount of system resources. 

For future work we are planning to evaluate the impact of the number of 

classes on the classification results and the time consumption of the supervised 

ML algorithms by introducing a large number of classes and reducing the classes. 

Another stream is to expand the experimental testbed to multiple hosts and 

distributed switches and to evaluate the network that is moving across multiple 

hosts. 
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