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A Family of IIR Two-Band Orthonormal  
QMF Filter Banks 

Sanja Damjanovic1, Ljiljana Milic2 

Abstract: The design and characteristics of orthonormal two-band QMF filter banks, 
with perfect reconstruction and linear phase properties, are considered in this paper. The 
analysis and synthesis filter banks are implemented using allpass filters. Filters in the 
synthesis bank are anticausal and unstable filters and the block processing technique and 
an appropriate causal filter are applied for their real time application. The generated filter 
banks characteristics and the finite block length influence of the block processing tech-
nique applied for anticausal filtering are illustrated for a rectangular input signal case. The 
corresponding wavelet and scaling functions, generated after five iterations of the analysis 
bank in a lowpass branch, are shown. 
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1 Introduction 
In this paper, two-band paraunitary filter banks, which, when iterated, generate or-

thonormal wavelet bases are considered. Orthonormal filter banks can be realized using 
finite impulse response (FIR) or infinite impulse response (IIR) filters. The case of FIR 
filters has been examined in detail, while IIR filter banks have been less studied [1, 2]. It 
is known that IIR filters composed of two real allpass filters can be implemented with 
low complexity structures that are robust to finite precision error [3]. The main advan-
tage of IIR filter banks is good frequency selectivity. Linear phase and orthonormality 
are not mutually exclusive properties for IIR filter banks, as they are in FIR case. To 
accomplish the orthonormality property, the impulse responses of the synthesis bank 
filters must be the time-reversed versions of the analysis filters. In the case of an FIR 
filter bank, that is achieved simply by filter coefficients time-inversion.  If the IIR analy-
sis filter bank uses causal filters, then the synthesis has anticausal filters. 

In this paper, we use the algorithm proposed in [4, 5] and develop a design method 
for IIR complementary half-band filter pairs. The z-plane poles of designed half-band 
filters are placed on the imaginary axis. We use the block processing technique [6, 7] for 
the anticausal implementation of the synthesis part of the analysis bank. The results of 

                                                           
1 Mihailo Pupin Institute, Volgina 15, 11000 Belgrade,  

Serbia&Montenegro, E-mail: sanja@kondor.imp.bg.ac.yu 
2 School of Electrical Engineering, Kralja Aleksandra 73, 11000 Belgrade, 

Serbia&Montenegro, E-mail: milic@kondor.imp.bg.ac.yu 
 



S. Damjanovi}, Lj. Mili} 

 46 

the analysis of the implemented QMF bank are given in the paper. Finally, the appropri-
ate scaling and wavelet functions are generated.  

2  Filter Design 
Let )(0 zH  and )(1 zH denote the transfer functions of the lowpass and  highpass fil-

ter of the analysis part of the two-channel quadrature-mirror filter (QMF) bank, and let 
)(0 zG  and )(1 zG  denote the transfer functions of the lowpass and  highpass filter of the 

synthesis part. By choosing transfer functions to satisfy conditions [4]: 
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the filter bank has the perfect reconstruction and orthonormal properties. If )(0 zH  and 
)(1 zH  are based on the parallel connection of two real allpass filters, )(0 zA  and )(1 zA , 

their transfer functions are 
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It can be seen that the magnitude responses of )(0 zH  and )(1 zH  satisfy the follow-
ing power-complementary relation, 
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which means that the design of only one filter, )(0 zH , needs to be considered. 

The bases vectors of orthonormal wavelet transformation are obtained from the it-
eration of this filter bank on its lowpass branch, with the additional �flatness� constraint 
that the lowpass filter should have K  zeros at half the sampling frequency [1]. Iteration 
of filter bank generates equivalent band-pass filters of the form 
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Letting ∞→i  gives the �mother wavelet�  )(tψ : 
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where i
nψ  is the impulse response of )(ziψ .  
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The filter bank is never iterated to infinity in practice, so a desirable property is the 
ability of the waveform of i

nψ  to vary smoothly in time n . This can be imposed  by 
requiring that the limit function )(tψ  exists and is  regular i.e. continious, possibly with 
several continuous derivatives. Regularity is usually qualified by measuring the �regu-
larity order�, which can be defined as the number of times  )(tψ  is continuously 
differentiable. The simplest regularity condition for filter design is flatness constraint on 
the magnitude response )(0 zH  at the Nyquist frequency ( π=ω ). The K  th-order flat-
ness is obtained if )(0 zH  contains K  zeroes located at 1−=z , 
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For a given filter order, regularity and frequency selectivity contradict each other, so 
the design of )(0 zH  that has the best possible frequency selectivity for a given flatness 
condition is important. 

3  Algorithm Description 
The design of IIR filter )(0 zH  using a parallel sum of two real allpass filters is 

based on an eigenvalue problem by using the Remez exchange algorithm [5]. From 
equation (4), it yields 
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where )(zU , a Nth-order real allpass filter, is defined as 
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where the filter coefficients na  are real, and 10 =a . The phase response )(ωϑ  of 

)( 21 zUz−  is 
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where ω=ωθ )
2
12()( -N-nn . The amplitude response of )(0 zH  is given by 
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To meet the flatness condition in equation (9), the following relation must be satis-
fied 
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where 12 += MK  is odd, and M  is integer and NM ≤≤0 .  When NM = , )(0 zH  
becomes a maximally flat filter, and the solution can be obtained by solving only the 
linear equation (14) for  10 =a . When NM <≤0 , the aim is to achieve an equiripple 
magnitude response by using remain degree of freedom. It can be concluded from equa-
tions (1) and (6) that only stopband response needs to be approximated. First, 1+M-N  
extreme frequencies iω  in the stopband ],[ s πω are selected as follows, 

 π<ω<<ω<ω=ω − )(10s ... MN . (15) 

By using the Remez exchange algorithm and the equation (13), the following can be 
written 
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where )0(>δm  is amplitude error, 21/ mm δ−δ=δ , and the denominator polynomial 
must be different from zero. 

Equations (14) and (17) can be rewritten in a matrix form as 
 AQPA δ= , (18) 

where T
10 ],...,,[A Naaa= , and the matrices P  and Q are 
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The set of filter coefficients can be get by solving the generalized eigenvalue 
problem (18), computing the absolute minimum eigenvalue δ . The optimal solution is 
obtained after several iterations. Once the optimal filter coefficients are obtained, the 
poles of )(zU  inside the unit circle are assigned to )(1 zA  as its poles and the poles 
outside the unit circle are assigned to )(0 zA  as its zeros to get causal and stable )(0 zH . 

4  Real-Time Implementation of Orthonormal Filter Bank 
A computationally efficient polyphase realization of two-channel IIR bank is 

depicted in Figure 1 [3]. In the synthesis bank filters polyphase components are 
anticausal and unstable filters. The causal implementation of the anticausal filter is based 
on the corresponding causal filter and the block processing technique [6,7]. The block 
processing technique is a direct procedure for the design with the smallest length of the 
time-reversed sequence and with a small processing delay and can be used for the 
processing of the infinite length sequences or very long finite input sequences. Figure 2 
ilustrates this procedure for the polyphase filter )( 1

0
−zA  of the analysis bank. The 

infinite length input sequence is divided into L -length sequences, and each sequence is 
filtered separately as follows: 

The input L -length sequence is stored in a last-in first-out (LIFO) register: 
1) The time-reversed sequence is filtered using filter )(0 zA , yielding 2L -length 

output sequence; 
2) The sum of the last L  output samples and the first L  output samples of the 

previous sequence (delayed L2  samples) is the new sequence [ ]f n ; and 

3) The L -length sequence of ][nf  is time reversed using the LIFO register. 
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Fig. 1 � Computationally efficient polyphase realization of two-channel  

magnitude-preserving IIR QMF bank. 
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Fig. 2 � Implementation block diagram of noncausal transfer function )( 1

0
−zA . 

5  Analysis of the Results 
The design of an IIR QMF filter bank using two real allpass filters with 4N = , 

π=ω 4.0p  and π=ω 6.0s  is considered. The order of )(0 zH  is 912 =+N , and the 

order of the allpass filters )(0 zA  and )(1 zA  is 2. Parameter K  takes values 
9,7,5,3,1=K  and, as 12 += MK , parameter M  takes values 4,3,2,1,0=M . Value  

K  is the number of zeros of the filter located at 1−=z  and the order of the filter 
regularity. 

The obtained magnitude responses of IIR half-band lowpass filters are shown in 
Figure 3. For 4=M  the design result is the Butterworth halfband filter and for 0=M  
the result is the elliptic halfband filter. The Butterworth filter has a maximally flat 
magnitude response as it has 9 zeros at 1−=z  and the highest possible regularity order, 
but it has the worst frequency selectivity.  The lowest regularity order and the best 
selectivity the elliptic filter has. The halfband filters� poles are on the imaginary axis of 
the complex z  plane and are complex-conjugated. All filter zeros are on the unit circle. 
The pole-zero plot of the IIR filter for 0=M  is shown in Figure 4.  As 1=K  this filter 
has one zero at 1−=z . Among the designed filters, the largest magnitude poles of the 
Butterworth filter are farthest from the unit circle, while the elliptic filter has poles 
nearest the unit circle. 
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Fig. 3 – Gain responses of IIR half-band lowpass filters. 

 
Fig. 4 � Pole-zero plot of IIR half-band lowpass filter. 

The amplitude distortion functions and phase characteristics of filter banks for 
2=M  and different block lengths are depicted in figures 5, 6 and 7.  The amplitude 

distortion functions are close to dB0  with a peak value, for 20=L  of dB2.2 , for 

40=L  of dB1.0  and for 60L =  of dB105 3−⋅ . The phase responses are linear. 

 
Fig. 5 � Magnitude and phase response of IIR two-channel QMF bank for 20=L . 
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Fig. 6 - Magnitude and phase response of IIR two-channel QMF bank for 40=L . 

 
Fig. 7 - Magnitude and phase response of IIR two-channel QMF bank for 60=L . 

Figure 8 shows the responses of designed filter banks when the input signal is a 
rectangular wave form and the length of the processing block amounts to 20=L . Figure 
9 represents the magnified parts of the upper left corner of the rectangular wave form 
responses of the previous figure. It can be seen that the Butterworth filter response 
succeeds the shape of input signal very accurately, while the elliptic filter performs 
truncation of the rectangular corner.  Figure 10 depicts the magnified upper edge or 
stationary part of the rectangular wave form responses, which are shown in Figure 8. The 
part of the Butterworth filter response best follows the input signal and has the smallest 
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deviations. As the M  decreases, the block effect is more noticable. The elliptic filter has 
the greatest amplitude of distortion caused by the block processing. This is expected 
according to the position of  poles which are nearest the unit circle. 

 

Fig. 8 � Rectangular response of two-channel QMF bank. 

  

Fig. 9 � Magnified response of the rectangular raising step, detail of Fig.6. 
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Fig. 10 – Magnified stationary part of the rectangular response, detail of Fig.6. 

Figure 11 depicts the influence of diferent block lengths on the distortion of the 
stationary part of the rectangular wave form responses. The block lengths of  20, 40 and 
60 samples of the applied block processing technique are inspected. The block effect can 
be noticed as a periodical pattern sequence of L2  samples. The amplitude of distortion 
caused by the block processing is rapidly decreasing when the block length is increasing.   

  
Fig. 11 – Comparison of rectangular response stationary parts for different block lengths. 

 Figure 12 shows the scaling and the wavelet functions generated according to [2] 
after five iterations of the analysis filter banks on the lowpass branch. 
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 Fig. 12 – Scaling and wavelet functions. 

6  Conclusion 
In this paper, the implementation of two-band orthonormal IIR QMF filter banks 

using a parallel connection of two real allpass filters is examined. The criteria and the 
design algorithm of these IIR two-chanel filter banks are explained. The magnitude and 
phase characteristics of designed QMF banks are discussed according to filter poles 
position in the z -plane and the length of sequence used in block processing technique 
realization of anticausal filters. The generation of orthonormal wavelet bases by iterated 
designed orthonormal filter banks is presented.  
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