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Abstract: Our main goal is to describe a potential usage of the interpretation method (i.e. 
formal representation of one first order theory into another) together with quantifier 
elimination procedures developed in the GIS. 

Keywords: Proving Methods. 

1   Introduction 
During the last few years, the Group for Intelligent Systems on the Faculty of 

Mathematics in Belgrade based its research on the quantifier elimination method. We are 
particularly interested in applications of this method in automated theorem proving. 
Some results are obtained (for example, see [2]), so we came to the natural question: 
Could we refine our method in some way, i.e. could we find the way to apply developed 
procedures to the broader class of theories. 

We believe that one way to do this is to use the {\it interpretation method}, i.e. formal 
representation of one first order theory into another. 

2  Definability 
Let L be a first order language (i.e. L  may contain some constant, function and 

relation symbols, but L  can also be an empty set) and let T  be a theory of language L  
(i.e. set of some sentences, where sentence is a first order formula which every variable is 
bounded with some quantifier). 

To be definable in theory T  means to be uniquely expressed (in T ) by a first order 
formula of language L . Now we will give a strict definition for definability of constant, 
function and relation symbols: 

- Each formula )(xϕ  of language L  such that T  proves 

)(1 xxϕ∃  

can be used for definition of new constant symbol c  in the following way: 
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)(xcx def ϕ⇔= . 

- Each formula ),,...,( 1 yxx nϕ  of language L  such that T  proves 

),,...,(... 111 yxxyxx nn ϕ∃∀∀  

can be used for definition of new n -ary function symbol F in the following way: 

),,...,(),...,( 11 yxxxxFy ndefn ϕ⇔= . 

- Each formula ),...,( 1 nxxϕ of language L  can be used for definition of new n -ary 
relation symbol R  in the following way: 

),...,(),...,( 11 ndefn xxxxR ϕ⇔ . 

Note that each symbol of language L  is definable in every theory T  of the same 
language. 

      Example 
Let }{L <=  be a language of linear orderings and let T  be a theory of all sentences 

in language L  that are true in the structure )(N,< , where ,...}3,2,1{N =  is a set of all 
natural numbers and <  is usual ordering of N . Then, every natural number is definable 
in T . To see that, let us recursively define formulas ,..., 10 ϕϕ  as follows: 

- )()(0 yxyx def ≤∀⇔ϕ  

- ))(...)(()( 01 yyxyyx ndefn ϕ∨∨ϕ⇒≤∀⇔ϕ + . 

Note that formula )(0 xϕ  asserts that x  is minimum and formula )(1 xn+ϕ  asserts that x  
has exactly n  predecessors. Thus, each natural number n is the only witness of formula 

)(1 xn−ϕ  in the structure )(N,< , so we have our claim.  

As an interesting contrast to the previous example, let *T  be a theory of all sentences 
in language L  of linear orderings which are true in the structure )(Z,<  (here Z  is a set 
of all integers and <  is usual ordering of integers). It can be shown that none of the 
integers are definable in *T . 

To gain definability, it is sufficient to add one constant symbol to the language L . 

3   Interpretation 
Let L  and *L  be first order languages, T  be a theory of language L  and *T  be a 

theory in language *L . We say that language L  is interpretable in a theory *T if the 
following conditions hold: 

- There is a definable in *T  unary predicate U  such that *T  proves 
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)(1 xxU∃ . 

- For each constant symbol c  of language L  there is definable in *T constant symbol 
*c  such that *T  proves 

)(c*U . 

- For each n -ary function symbol F of language L  there is definable in *T  function 
symbol *F  such that *T  proves 

))),...,(()(...)((... 111 n
*

nn xxFUxUxUxx ⇒∧∧∀∀ . 

- For each n -ary relation symbol R  of language L  there is definable in T  n -ary 
relation symbol *R  definable in *T . 

To obtain the well known interpretation theorem, first we are going to define a 
formula *ϕ  of language L* for a given formula ϕ  of language L  by induction on the 
complexity of formula ϕ  as follows: 

- *
21 )( tt = is the formula 21 tt = , where 1t  are terms of language L ; 

- *
1 )),...,(( nxxR  is the formula )),...,(( 1 n

* xxR , where R  is n -ary relation symbol of 
language L ; 

- *)( ϕ¬ is the formula ϕ¬ ; 

- *)( ψ∧ϕ is the formula ** ψ∧ϕ ; 

- *,...))(( xxϕ∃  is the formula ,...))()(( * xxUx ϕ∧∃ . 

We say that theory T  is interpretable in *T if there is an interpretation of language 
L  into theory *T  such that for every nonlogical axiom ϕ  in the theory T  we have that 

*T proves *ϕ . 

     Theorem 1 

Let L  and *L be a first order languages and let T and *T  be a theories in languages 
L  and *L  respectively, such that T  is interpretable in *T . Then, for each formula ϕ  of 

language L , if T  proves ϕ  then *T  proves *ϕ . 

The most persistent reader can find the proof of the staded theorem in [5].  
The interpretation theorem gives us the essence of the method that we are developing. 

So, for a given recursive theory T , suitable theory *T  should satisfy the following 
conditions: 
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- There is a recursive interpretation of axioms of T  into *T and there is a recursive 
interpretation of atomic formulas of *T into T ; 

- *T admits the quantifier elimination and we have an effective procedure for it; 

- There is a recursive procedure for validity of quantifier free formulas in theory *T . 
So, we have the following algorithm: 

input: formula ϕ  of the language L  
output: YES, if T  proves ϕ ; NO, otherwise 

Step 1: Find an interpretation *ϕ  in language L* of a given formula ϕ . 

Step 2: Find a quantifier free formula ψ  of the Language *L  which is *T -equivalent 
to formula ϕ . 

Step 3: Check the validity for ψ . If ψ  is valid in *T , then output is YES, otherwise 
is NO. 

Of course, the interpretation theorem guaranties the correctness of the algorithm 
stated above. 

     Example 
Here we are briefly going to discuss an interpretation of monadic calculus in ZFC 

theory (ZFC states for Zermelo-Frankel set theory together with the axiom of choice). 
The embedding of the monadic calculus in the set theory is quite natural: for instance, 
syllogism Bocardo 

Some M are not P 

Every M is S 

Some S are not P 

can be expressed in ZFC as 

0PS\SM0PM\ ≠⇒⊆∧≠  

(here we denoted empty set with 0). To be more precise, we will define a monadic 
formula in ZFC by induction on complexity as follows: 

- Atomic formula is monadic formula; 
- Boolean combination ϕ  of monadic formulae is monadic formula if there are no 

variables yx, and z such that yx ∈  and zy ∈  are subformulas of ϕ ; 

- If ,...)(xϕ is monadic formula and there is no variable y  such that xy ∈  is a 
subformula of ϕ , then ,...)(xxϕ∃  and ,...)(xxϕ∀ are also monadic formulas. 
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It is obvious that the set of all monadic formulas in ZFC is recursive. If we combine 
this with effective procedure of quantifier elimination for the monadic calculus 
developed in GIS (see [2]), we obtain a theorem prover for monadic formulas in ZFC.  

4  Quantifier Elimination 
Let T  be a first order theory of language L . Recall that T  admits the quantifier 

elimination if for every formula ϕ  in language L  exists quantifier free formula ψ  of the 
same language T -equivalent to ϕ .  

For the application of the method of quantifier elimination in decidability and 
automated theorem proving, see for example [2], [3] and [4]. 

Various teams of GIS researchers are developed programs for quantifier elimination 
in some first order theories (monadic calculus, algebraically closed fields etc.). We 
would like to appoint to the great importance of developing a program for quantifier 
elimination for the theory of real closed fields. 

Such programs exists since 80-ies, but recent solutions are finding application in the 
robotics, control theory etc. 

As an illustration of the fact that RCF (theory of real closed fields) admits the 
quantifier elimination, we will prove the fact that the following question is decidable: 

Is given algebraic surface in the Euclidian space 3P rotational? 

Recall that algebraic surface in 3P is given by the formula 

0),,( =zyxp , 

where ),,( zyxp  is a polynomial over field of rational numbers Q . 

Since every rational number is definable in language of fields of characteristic zero, 
we can conclude that 0),,( =zyxp  is formula in the language of RCF. Now formula ϕ  
defined as 

0))=),,(0=)-( +)-( +)-( 
)-(+)-(+)-(=)-(+)-(+)-((,, 

0=),,((,, ,,,,
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asserts that algebraic surface S  defined with 

0),,( =zyxp  

is rotational. 
Since theory RCF admits quantifier elimination, there is quantifier free formula ψ  in 

the language of RCF which is RCF-equivalent to ϕ . 
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Now it is sufficient to check validity of ψ  in the P , which is decidable question for 

quantifier free formulas. So, given algebraic surface S  in 3P  is rotational if and only if 
formula ψ holds in P . 

5 Further Research 
Recently we started to work on the project of developing software for proof 

assistant system, which will, beside standard procedures in automated reasoning (i.e. 
tableau and resolution), use quantifier elimination algorithms together with effective 
interpretations. We believe that some modules of this project will be available for 
download from the GIS web site (www.gisss.com) at the beginning of the winter 
semester. 
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