
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING

Vol. 16, No. 2, June 2019, 267-287

UDC: 621.39:004.42 DOI: https://doi.org/10.2298/SJEE1902267K

004.451.9ANDROID

267

An Effective Approach to TV Applications

Development – Application Framework

Nemanja Kovačev
1
, Veljko Ilkić1

, Dejan Nađ1
, Nikola Vranić1

Abstract: Android as an operating system is becoming more and more

widespread across digital devices. One of the fields in which Android has gained

popularity is TV application development. During our years-long work on this

platform, we noticed certain issues with current approaches. The most important

issues include a lot of boilerplate code and difficult customization which together

increase the overall time necessary for the development and contribute to poor

code readability thus making the maintenance more difficult. With that in mind,

we decided to take our own approach which includes a framework and a library

and which enables us to build high-quality and cost-effective TV applications in

terms of fast development and easy maintenance. The approach which will be

presented in this paper is more effective than other approaches we took for the

development of previous TV applications.

Keywords: Java, Android, MVP, Framework, Library, SDK, Handler, TV appli-

cation, Backend, Information Bus.

1 Introduction

During the years of development of TV applications, we noticed that

existing approaches do not meet our needs in terms of development speed and

effectiveness since it is critical to develop an application as quickly as possible

without losing quality. Because of the fact that the majority of TV applications

have basically the same or very similar code structure and a lot of common

features we decided to make a framework library which would facilitate the

development process [1].

Framework usage suggests dividing the project into separate modules as the

best practice. This way each project has a similar code structure in a way that it

contains:

1. App module which is in charge of UI (User Interface) of a complete

application including application internal logic and UI look and feel.

1RT-RK Institute for Computer Based Systems, Narodnog fronta 23a, Novi Sad, Serbia;

E-mails: nemanja.kovacev@rt-rk.com; veljko.ilkic@rt-rk.com; dejan.nadj@rt-rk.com; nikola.vranic@rt-rk.com

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

268

2. SDK (Software Development Kit) module which is in charge of

enabling communication with backend server as well as communication

with TV middleware software. In general, the SDK module is feeding

data to the App module which is in charge of presenting all of that to the

end user.

3. Core module which represents the starting point for TV application. It

can be regarded as the center of the application which connects the UI

on one side with the backend and database APIs (Application

Programming Interfaces) on the other side. Fig. 1 shows the connection

and data flow between the Core and other components. The Core

contains a set of abstractions for all basic and advanced features as well

as a set of APIs which are used as a guideline for application

development. It is a highly optimized library which introduces a very

small memory footprint.

Fig. 1 also shows the main abstractions merged in the Core module [1]. A

particular abstraction can be used for different projects and different clients (e.g.

BackendHandler provides a set of APIs used by the application module and can

be embedded in various backend implementations). This way once developed

UI application can be considered as backend agnostic because a different

BackendHandler can be added as a plugin to the Core module if needed. This

enables us to use the same application and the same logic for different projects

and clients because an application always calls the same API abstraction

without actually knowing what is in the layer beneath it. The same approach can

be applied to TV middleware or player used for decoding TV stream of VoD

(Video on Demand) content.

Fig. 1 – Top level view of the framework.

An Effective Approach to TV Applications Development – Application Framework

269

We constructed the framework library in a way that the Core and SDK are

written in pure Java [2] because we wanted it to be Android agnostic so we can

reuse it in multiple projects, and also be platform agnostic which is convenient

when we have to develop an application on personal computer or emulator. This

is the starting point for the development whereas the UI part is written in

Android [3] which provides rich Android UI features (Fig. 2).

A big advantage of this approach is not only the code reusability inside one

project but also the ability to easily share feature implementation between

different projects that are built this way.

Fig. 2 – Application overview.

2 Design Pattern

The design pattern which turned out to be the best suitable for TV

application development is the MVP (Model-View-Presenter) pattern [5] where

the model is the application Core, the view is the Android application itself and

the presenter is the SDK. The model defines all data entities and data collections

and represents the interface which defines data to be displayed, the view defines

all graphical components and graphical layers and acts as a passive interface

that displays the data whereas the presenter is the “middle-man” between the

model and the view which enables the View to communicate with the model.

User events are passed from the view to the presenter which updates the

model. The model sends events to the presenter which updates the view as

shown in Fig. 3.

In this framework, the view is named the Scene and the presenter is named

the Scene Manager. The Scene sends information to the Scene Manager via a

Scene listener interface and the Scene Manager propagates that information to

the model. The model sends the updated data to the Scene Manager which then

updates the Scene via refresh() method.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

270

Fig. 3 – The Model-View-Presenter design pattern.

A big advantage of using this pattern for development is that we can easily

change one module while leaving other modules unchanged. This enables us to

quickly apply any change without altering a lot of logic and code. By using this

pattern we managed to speed up the development process especially in UI/UX

review phase when after several sessions we decide that something in the UI

part should be changed or improved.

3 Components of The Framework

The main building blocks inside the framework are Scenes and Scene

Managers which mainly communicate via WorldHandler or via Information Bus

entity [1]. When we apply this concept into the Android environment it

implicates the usage of Fragments and Activities. Inside Android application

main instance is called ProjectApplication class. It is the instance holder of the

application. It acts as a parent to all available activity objects inside the

application, it holds the reference to WorldHandler. In addition to that, the

ProjectApplication class is the central point of the entire application and

provides ApplicationContext to every scene in the application. The instance of

ProjectApplication is in memory as long as the application is active.

3.1 Activities and fragments

3.1.1 Activities

An Activity is a single, focused entity that the user can interact with [3].

The Activity class takes care of creating a window for a user in which the UI is

placed. Only one Activity can be active at a time.

An Effective Approach to TV Applications Development – Application Framework

271

Every application must have the MainActivity [6, 7] which has two

principal functions: it represents the entry point for the framework and

application itself, and also acts as the view entity of the whole system – it draws

the view elements on the screen by inflating fragments which are defined in the

scenes. The MainActivity handles events sent from the Core module based on

screen flow and custom application logic and renders those events on the

screen.

The MainActivity is also in charge of forwarding inserted keys to the active

scene [1]. Every onKeyDown and onKeyUp event received from the Android

system will be forwarded to the active scene by calling its dispatchKeyEvent()

method. The MainActivity together with the ProjectApplication class represents

the central point of every application made by using this framework.

Fig. 4 – Activity lifecycle [4].

Fig 4. shows a complete Activity lifecycle overview [4]. In this framework

we use four basic lifecycle methods in the MainActivity:

– onCreate() – initializes necessary views and handlers inside coreSDK

(e.g. VideoSurface is inflated from the main layout and passed to

PlayerHandler from coreSDK so middleware can render video in a

separate surface layer);

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

272

– onResume() – deals with application lifecycle which is important when

leaving launcher application and entering other applications (e.g.

YouTube);

– onPause() – called when a scene gets hidden;

– onDestroy() – called when a scene gets destroyed.

In onResume() and onPause() methods the application prepares its state so

it can be easily recovered.

The advantage of using only single Activity inside a complete TV

application, no matter how complex it can get, is that complexity handling the

playback of TV stream which is the most important feature of TV application is

completely reduced. A developer doesn’t have to pay attention to Android’s

lifecycles while handling playback when switching between different scenes.

Playback of content is separated from the UI layer which facilitates both

development and testing.

3.1.2 Fragments

Fig. 5 – Fragment lifecycle [4].

An Effective Approach to TV Applications Development – Application Framework

273

Fragments [3] are the passive views which are inflated by the

MainActivity. Fragments require a host activity in which they can be displayed

and their lifecycle is dependent on the host Activity’s lifecycle.

Each Scene internally binds a fragment reference which can later be

rendered on screen [1]. Unlike Activities, there can be multiple Fragments

displayed on the screen at the same time. Fragments are handled by

FragmentManager. Fig. 5 shows a complete Fragment lifecycle and its relation

to Activity lifecycle [4].

3.2 Scenes and Scene Managers

3.2.1 Scenes

A Scene represents the view [5] in the MVP model. It contains fields (id,

name, sceneListener, etc.) and methods (createView(), refresh(),

dispatchKeyEvent(), etc.) and can be placed and managed in one of the five

graphical layers which we defined in this framework - playback, UI, overlay,

notification, and global layer (Fig. 6). There is a separate graphical layer

dedicated for video and content playback, a separate layer for main scenes as

well as separate layers for advanced features like overlay dialogs, notifications

and global UI elements [1]. This enables much quicker development and easier

debugging since every graphical layer has its own instance. The layers are

completely separated in memory and communicate via a dedicated module

called WorldHandler.

Since layers have no dependency on each other we can develop several

features in parallel. Moreover, if an issue emerges in one layer a developer

doesn’t have to dive into a whole application logic but only into a dedicated part

of the code for that particular graphical layer. This is a good practice since it’s

much easier to point out which part of the code has issues and needs

optimizations and fixing.

The usage of layers basically enables us to cover all standard use cases for

different TV applications and designs.

Every project has its abstract core Scene called the ProjectScene. It’s a

generic abstraction of Scene defined in the AppCore module. All available

scenes extend ProjectScene class and introduce customized behavior which is in

accordance with the specified design and screen flow. Another distinctive

feature is the usage of generics. For creating scenes which have similar look and

feel or similar functionality we have developed generic scenes and generic

views which can be reused thus reducing development time and debugging

time.

Every Scene must follow API (Application Programming Interface) from

the ProjectScene which means it has to fill all the abstract methods regarding

Scene setup, key handling, disposing resources, etc. The ProjectScene wraps

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

274

ProjectSceneFragment view which is placed on TV screen and provides generic

key handling. The ProjectSceneFragment is a customized Android fragment

which supports custom lifecycle and custom rendering effects (blurring, color

correction, etc.) that can be applied if requested by design [1].

Fig. 6 – Graphical layers scheme.

Fig. 7 – Graphical layers example (Playback layer).

Fig. 7 shows playback in the Playback graphical layer.

Fig. 8 shows playback in the Playback graphical layer and zap banner

showing basic information in the UI layer.

Fig. 9 shows playback in the Playback graphical layer and info banner

showing more detailed information in the UI layer.

An Effective Approach to TV Applications Development – Application Framework

275

Fig. 8 – Graphical layers example (Playback and UI layer).

Fig. 9 – Graphical layers example (Playback and UI layer).

Fig. 10 shows playback in the Playback graphical layer, launcher in the UI

layer and volume control in the Global layer.

Fig. 11 shows playback in the Playback graphical layer in the background

and notification in the Notification layer.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

276

Fig. 10 – Graphical layers example (Playback, UI and Global layer).

Fig. 11 – Graphical layers example (Playback and Notification layer).

Fig. 12 shows playback in the Playback layer and TV guide in the UI layer.

Fig. 13 shows playback in the Playback layer, TV guide in the UI layer and

a Dialog scene in the Overlay layer. The UI layer is blurred in the background.

An Effective Approach to TV Applications Development – Application Framework

277

Fig. 12 – Graphical layers example (Playback and UI layer).

Fig. 13 – Graphical layers example (Playback, UI and Overlay layer).

3.2.2 Managers

Scene Managers are in charge of Scene creation and Scene control – a

Scene Manager can show a Scene, show the Scene as an overlay, hide it or

destroy it by calling Manager’s triggerAction() method [1].

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

278

ProjectSceneManager is a custom implementation of SceneManager class

defined in AppCore framework library. It defines abstract methods which have

to be implemented by all Scene Managers registered inside an application. It

implements generic logic for data sharing, back event handling, data loading,

etc.

All available Scene Managers attached to available screens extend this

class and introduce custom implementation and behavior based on specified

screen flow. Every Manager has to follow the defined pattern for event handling

and data sharing between different Scene Managers.

Data sharing between Scene Managers is implemented via

ProjectSceneData object. Every Scene Manager defines its own custom

ProjectSceneData object. This object is used as a communication token between

different Managers. It is used for passing data between the Scenes, for

initialization of the upcoming Scene, for storing the ID from the previous Scene

and automatic back handling in most use cases.

Fig. 14 – Scene abstraction and hierarchy.

All Scenes and all Managers are developed in the same code style which

makes them easy to update, maintain and debug. As mentioned earlier, since we

An Effective Approach to TV Applications Development – Application Framework

279

noticed that in most of the projects some Scenes are similar or contain some

similar parts which can be reused we introduced generic Scenes and generic

Scene Managers to serve as wrappers for similar Scenes (Fig. 14). The

generalization greatly reduces the amount of boilerplate code and makes

development and debugging process a lot easier and less time-consuming.

The way we treat Scenes and Scene Managers we also treat views. Since a

lot of views are reused in different Scenes but also possess custom features not

available in standard Android view toolkit we introduced generic views as an

internal library which is developed based on the design specification. That

enables us to reuse most of the views throughout an application.

3.3 SDK class

This is a Singleton class [5] which contains instances of all handlers.

Handler methods are asynchronous and data is retrieved through the

AsyncDataReceive callback. In order to obtain the needed data, a Scene will call

its Scene Manager via its Scene listener. The Manager will then directly ask

SDK for data via the appropriate handler and the data will be received by the

AsyncDataReceive callback. Main handlers are listed in Fig. 15 [1].

WorldHandler DatabaseHandler

AppHandler AccountHandler

BackendHandler ChannelsHandler

DisplayHandler EpgHandler

PlayerHandler NotificationHandler

VolumeHandler PrefsHandler

TvHandler ReminderHandler

VodHandler TimeHandler

DeviceHandler SearchHandler

F avoritesHandler UpdateHandler

ParentalControlHandler GuideHandler

RegionHandler ConfignrationHandler

PaymentHandler LanguageHandler

PackagesHandler ProfilesHandler

Category Handler TrialHandler

ItemlnfoHandler BluetoothHandler

Fig. 15 - List of main handler classes.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

280

The most common handler classes include:

1. WorldHandler – contains instances of registered Scene Managers and

defines all available Scenes and screens inside an application. Every

Scene Manager must be registered inside the WorldHandler in order to

be recognized by the AppCore framework. The WorldHandler provides

access to a Scene Manager that belongs to some other Scene. It contains

show(), hide() and destroy() methods which are used for handling

Scenes. It is in charge of communication between Scenes. It also

handles user interaction, propagates user events to the active Scene and

takes charge of memory consumption management – it clears memory

by destroying Scenes which are no longer needed on screen. It also

provides additional functionalities like saving Scene history so we can

easily handle Scene back stacking and navigation without adding extra

code logic.

2. AppHandler – enables the switching between different Scenes. It takes

care of which Scene is displayed (active). When a Scene Manager’s

action is triggered the Manager will delegate an event to the

corresponding Scene (depending on triggered action type). Once the

AppHandler is notified that some Scene action is triggered it will submit

an appropriate InformationBus event and ensure Scene switching.

3. BackendHandler – embeds support for login and communication with a

backend server via HTTP protocol. It can be easily customized with

plugins based on client’s requirements. BackendHandler should

implement all features stated in customer specification and support

communication with backend servers. Fig. 16 shows BackendHandler

communication diagram. Based on requirements a developer can add

different APIs that need to be implemented (e.g. Favorites,

Recommendation, Profiles, etc.).

4. DisplayHandler – manages display resolution, screen position, aspect

ratio, color setup, etc.

5. PlayerHandler – sets the playback view, manages currently selected

channel, getting channel list from backend, channel switching, etc.

6. VolumeHandler – manages volume and audio parameters.

7. TvHandler – manages active channel, previous active channel, next

channel, channel switching, etc.

8. VodHandler – manages video on demand items.

9. DeviceHandler – manages devices (e.g. Bluetooth connections, USB

connections), gets device status, lists available devices, adds, removes,

updates devices, etc.

An Effective Approach to TV Applications Development – Application Framework

281

Fig. 16 – BackendHandler communication.

Fig. 17 shows an example of PlayerHandler implementation. When a user

changes the channel, a signal is sent via UI and Core to the PlayerHandler

which starts a backend service.

When a channel is changed the UI is updated via the appropriate callbacks

(onZapCallback, onVideoPlayed, onChannelChanged).

Fig. 17 – PlayerHandler implementation example.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

282

3.4 Information Bus

Information Bus is a part of the Observer design pattern [8]. It is in charge

of sending and receiving events between different parts of the application.

Every event has an ID and a data object and can be submitted and received.

Different modules of the application can be registered as event broadcasters and

event receivers/listeners. Once the AppHandler is notified that some Scene

action is triggered it will submit an appropriate Information Bus event.

Fig. 18 - Communication between application and backend.

The Information Bus conveys the events (show, hide, destroy) from the

Core’s AppHandler to the MainActivity which is registered as the listener of

these events [1]. The MainActivity then performs the corresponding actions on

the Scene views so that the Scene switching mechanism can be implemented.

The communication flow between different modules which is performed using

Information Bus is shown in Fig. 18.

4 The Usual Scenario

4.1 Scene creation

1. Create a Scene class and a layout XML file. The Scene extends the

AppCore Scene. In the Scene itself override the createView() method

and inflate the layout.

2. Create a Scene listener interface. The listener interface contains all of

the methods needed by the Scene. It is used for sending requests to the

Scene Manager.

3. Create a Scene Manager class. The Scene Manager extends the AppCore

Scene Manager. Override the createScene() method and create the

Scene object. At the end of the createScene() method call the parent

setScene() method in order to save the Scene instance.

An Effective Approach to TV Applications Development – Application Framework

283

Fig. 19 shows an example of a simple VoD (Video on Demand) scene. The

menu is on the left side and the list of movies is on the right side. Movie posters

are retrieved via the ImageLoader class which enables the smooth loading of

multiple images (Fig. 21). When an item is clicked a VoD details scene is

shown (Fig. 20).

Fig. 19 – VoD scene.

Fig. 20 – VoD details scene.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

284

4.2 Scene destruction

1. A Scene Manager triggers the destroy action and calls the Scene’s

destroy() method.

2. The Scene notifies the AppHandler that it is destroyed.

3. The AppHandler submits the Scene’s destroy event.

4. The destroy event is received by the MainActivity which then destroys

the Scene itself.

5 Optimizations

5.1 Global System Keys

To support this feature we had to introduce a custom BroadcastReceiver

available inside Android SDK to be able to handle and detect system keys from

the remote controller. Inside GlobalKeyReceiver we have implemented custom

logic and supported custom application lifecycle in order to manipulate

application state without losing any available information.

5.2 Util classes

These classes contain additional logic that facilitates application

development. The classes include:

1. FontCache/TypeFace provider – provides optimization and additional

logic to speed up and support usage of different fonts in the application.

It is a dedicated module for loading and handling custom typefaces on

Android. It’s implemented as a custom cache for Android fonts.

Android OS is not optimized for Typeface updating in runtime because

it requires a lot of CPU power in order to load a large bitmap defined in

a font file that contains all letters and glyphs. Android OS loads a single

bitmap image of each glyph. If many views must have different font

styles in case of selected and non-selected state, it requires a lot of time

for OS to render the proper font and to update it on screen. This class

facilitates the process by reducing memory consumption and CPU

overload when changing fonts at runtime.

2. UnitConverter – enables support for multiple resolutions.

3. KeyMapper – provides emulation and mapping different keys from

keyboard and remote controller enabling us to support Emulator mode

in the development process.

4. Image loader – a customizable module that can be easily adapted to the

requirements and specifics of the project. If needed, the embedded

image cache can be replaced by custom implementation or by some

open source image loader libraries. The image loading process is shown

in Fig. 21.

An Effective Approach to TV Applications Development – Application Framework

285

Fig. 21 – Image loading.

5.3 Scene and Fragment handling

Scene entities have custom implementation optimized for the Android

platform. Scenes are implemented as separated Android fragments which are

managed via custom Android’s FragmentManager [1]. FragmentManager is in

charge of disposing fragments that are not needed in memory any more. Each

custom fragment has a built-in logic for handing its own lifecycle so when a

fragment detects action for hiding or disposing it handles its own resources

without the need for developer’s intervention. This significantly reduces the

amount of code.

FragmentManager supports adding, removing, replacing, hiding and

disposing fragments and all standard Android operations upon fragments like

custom entrance and removal animations. WorldHandler takes care of the

hierarchy tree and provides information of currently and previously used scenes

which helps developers to detect memory leaks and prevent issues in screen

flows.

6 Measurement

The TV application development is a relatively new field of software

development and not many developers are dealing with the problems described

in this paper so there is not much currently available literature. Since our team

is one of the pioneers in this field the measurement was based on our

considerable experience in constructing TV applications [1].

Three projects with the same set of features developed by our team can be

seen in Fig. 22. A different approach was used for each of these projects – using

no framework whatsoever, using our framework and using Android’s Leanback

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

286

library. The approach with no framework is the hardest and slowest because

there is no starting point and the development has to be done from scratch. The

approach with Leanback library has its advantages in terms of templates and

predefined features but it is hard to customize. The approach with our

framework is the fastest since we have a good starting point – a basic TV

application with basic features (Channel list, Channel zapper, TV guide, VoD,

etc.) which can easily be customized.

Fig. 22 – Measured project timelines.

7 Conclusion

In this paper, we have presented our approach to TV application

development. Our experience shows that the usage of this framework library

considerably reduces the amount of code in the application, makes the code

more readable and easier to maintain and also shortens the time needed for

coding thus making TV application development significantly more effective

[1]. By utilizing this framework we managed to reduce time and effort for TV

application development. The possible downside of this approach is that it can

be complicated during the first few weeks of development for programmers

who haven’t had any previous experience with TV application development but

that gets compensated in the later phases of the development. The other possible

An Effective Approach to TV Applications Development – Application Framework

287

downside is that if a programmer uses generalization uncritically it may cause

code regressions. Although this method is more efficient in comparison to other

methods of TV application development [9 – 13] there is still room for further

improvements such as the introduction of more common features and sub-

library modules for TV-centric applications. Other improvements include data

and performance optimizations as well as support for different Android versions

and screen resolutions within the framework by utilizing dynamic UI support.

8 Acknowledgment

This work was partially supported by the Ministry of Education, Science

and Technological Development of the Republic of Serbia, under grant number:

III_044009_2.

9 References

[1] N. Kovačev, V. Ilkić, D. Nađ, N. Vranić: Framework Library With Guidelines for Effective

TV Application Development, Proceedings of the 5th International Conference on Electrical,

Electronic and Computing Engineering, IcETRAN 2018, Palić, Serbia, June 2018,

pp. 1160 1163.

[2] Official Java website, https://www.oracle.com/java/

[3] Official Android website, https://www.android.com

[4] Official website for Android application developers, https://developer.android.com/

[5] K. Mew: Android Design Patterns and Best Practice, Packt Publishing Ltd, Birmingham,

UK, 2016.

[6] J. Horton: Android Programming for Beginners, Packt Publishing Ltd, Birmingham, UK,

2015.

[7] B. Phillips, C. Stewart, B. Hardy, K. Marsicano: Android Programing: The Big Nerd Ranch

Guide, 2nd Edition, Big Nerd Ranch Guides, Atlanta, USA, 2015.

[8] H. Schildt: Java: The Complete Reference, 9th Edition, McGraw-Hill Education, New York,

USA, 2014.

[9] E. G. Lima, R. de Andrade Lira Rabelo: An Architectural Model for Communication

Between the iDTV and Mobile Devices, Proceedings of the 2015 International Conference

on Computing, Networking and Communications (ICNC), Garden Grove, USA, February

2015, pp. 1102  1105.

[10] Y. Wahyu, F. Oktafiani, Y. P. Saputera: Development of Set Top Box (STB) for DVB-T2

Standard Television Based on Android, Proceedings of the 2014 8th International

Conference on Telecommunication Systems Services and Applications (TSSA), Kuta,

Indonesia, October 2014, pp. 1  4.

[11] Z. Xu, L. Yang, S. Cao: Design and Implementation of Mobile Lightweight TV Media

System Based on Android, 7th IEEE International Conference on Software Engineering and

Service Science (ICSESS), Beijing, China, August 2016, pp. 730  733.

N. Kovačev, V. Ilkić, D. Nađ, N. Vranić

288

[12] M. Milanović, B. Pavlović, I. Petrović, T. Maruna: One Implementation of UI TV

Application on Android STB, 21st Telecommunications Forum Telfor (TELFOR), Belgrade,

Serbia, November 2013, pp. 724  726.

[13] S. Pravin, R. BalaKrishnan: Set Top Box System with Android Support Using Embedded

Linux Operating System, Proceedings of the IEEE International Conference on Advances in

Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, March 2012,

pp. 474  478.

