
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING
Vol. 16, No. 1, February 2018, 21-44

UDC: 004.738.5:004.2 DOI: https://doi.org/10.2298/SJEE1901021P

21

Model-based Approach for Semantic-driven
Deployment of Containerized Applications to

Support Future Internet Services and Architectures

Nenad Petrović1

Abstract: Due to increasing number of connected Internet of Things (IoT)
devices, enormous amount of data needs to be transmitted to the Cloud for
processing, while the network is becoming Cloud computing’s bottleneck. On
the other side, the privacy and security issues in more sensitive application
domains could dramatically restrict the freedom of data movement, so it is not
possible to offload all the data to the Cloud for processing. Furthermore, the
manual operations related to tuning and deployment of these applications are
time-consuming and require additional effort. In this paper, a model-based
framework for automated, semantic-driven (re-)deployment of containerized
applications is presented, leveraging the synergy of Virtual Network Functions
(VNFs) and SDN, tackling the mentioned issues.

Keywords: Container-based virtualization, DevOps, Docker, Edge computing,
Future Internet, IoT, Model-driven engineering, NFV, Ontology, SDN, Semantic
technology, VNF.

1 Introduction

In recent years, the number of connected devices generating and
exchanging data has dramatically increased by introduction of Internet of
Things (IoT), pervasive and Edge Computing. The operations related to
computing infrastructures and network management have become more
challenging, due to large amount of generated data, device mobility and new
types of services [1, 2].

Despite the rapid evolution of the data-processing speed, the bandwidth of
the network that carries data to and from the Cloud has not increased
appreciably [3]. In traditional Cloud computing, the data is offloaded from Edge
devices to the Cloud for processing. Thus, with Edge devices generating more
data, the network is becoming Cloud computing’s bottleneck. In these cases, the
processing time of time-critical applications is often limited by the network

1Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia;
E-mail: nenad.petrovic@elfak.ni.ac.rs

N. Petrović

22

delay [3, 4]. Also, when we have a large number of devices sensing the
environment, uploading the data they generate, it would cause additional
network congestion, increasing the network delay, even further. Therefore, there
is a need for evolution of network infrastructure management paradigm, which
would suit better the novel use cases and services with large number of portable
and wearable devices involved, sensing, generating the data about the
environment, taking the corresponding action based on decisions brought as a
result of data processing and analysis.

The concept of enabling a computer to sense information without any
human intervention and act accordingly has been applied to variety of sectors,
from home entertainment, transportation, product manufacturing, environmental
engineering to healthcare and aerospace engineering. Due to such variety, the
second major issue appears. Keeping the privacy and dealing with security of
the information in more sensitive domains is crucial. In most cases, it is
regulated by law, legal regulations and policies (such as GDPR2) that could
dramatically restrict the freedom of data movement [3, 4]. Due to laws and
regulations, in some cases the data is not allowed to leave the boundaries of the
institution storing the data. Thus, in these cases, the data has to be processed
within the Edge, instead of being uploaded over vulnerable network to the
Cloud.

A possible solution to tackle the mentioned issues is to move the data
processing closer to the data generators and consumers [4, 5]. In order to
achieve this, it is necessary to enable the application flexibility, so the
computation task movement can be performed without affecting the functional
aspects of the original application [5].

Therefore, the deployment, monitoring and configuration of such
applications is becoming quite challenging. Due to mentioned issues, these
operations are more complex and time-consuming, especially if done manually.
According to the current trends in software development methodology, such as
DevOps, development and operations are tightly integrated in order to provide
fast, flexible development and high-quality deliveries in close alignment with
business objectives. For this reason, there is a need for a high degree of
automation when it comes to the mentioned operations [6, 7].

In this paper, we focus on issues of management, deployment and
configuration of container-based applications in order to deal with challenges of
new services and use cases. For this purpose, novel concepts and technologies
are explored: container-based virtualization, Software-Defined Networking
(SDN) and Network Function Virtualization (NFV). As an outcome of the
research, we propose a model-driven, semantic-enabled framework for flexible,

2 https://eugdpr.org/

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

23

automated deployment of container-based applications leveraging the synergy
of SDN and NFV in order to improve their performance. Principles of model-
driven software engineering are used in order to determine the structure and
rules for definition of deployment diagrams in design-time, while the semantic
reasoning is utilized to draw conclusions that could lead to refined deployment
with purpose of performance improvement based on knowledge obtained during
both the design- and run-time. In design-time, the topology of deployment
diagrams is analyzed, while network monitoring and performance measurement
knowledge is utilized in run-time. We decide to use containerized Virtual
Network Functions (VNFs) due to fact that they are lighter compared to fully-
fledged virtual machines and are more suitable for novel use cases and services
where increased mobility and flexibility are required in order to support
scenarios such as service hand over or migration.

2 Related Work

 Among the published results, several related works utilizing model-driven
engineering and automated code generation have been identified. Moreover, the
relevance of this approach has been approved by the fact that there have been
several recent Horizon 2020 projects (DICE3 [8] and DITAS4 [4, 9], for
example) based on it.

A significant work in area of Cloud application modeling languages is
CloudML, presented in [10]. The deployment model serves as a starting point
for the generation of the infrastructure management code, so the application can
be deployed using the corresponding deployment engine. Similar approach was
used in this paper. However, our goal was to make a modeling language that is
even more intuitive than the one presented in [10] by using the familiar UML
deployment diagram-alike annotation and introduce the additional modeling
concepts to support the scenarios of Edge computing.

The design of execution environment for computation task movement
presented in [5] served as a basis for this research. However, it does not support
container data persistence and offers quite limited modeling capabilities, as its
modeling tool is based on Node-RED data flow editor.

Solutions presented in [11, 12] offer automated, model-driven deployment
of container-based applications. The later also includes scenarios of
computation task movement between devices of different computing
architectures in IoT systems (x86 and ARM), supporting the scenarios of Edge
computing. While both of them utilize automated code generation, they only
offer static deployment of a given topology and do not involve the re-

3 http://diceh2020.eu/
4 https://www.ditas-project.eu/#

N. Petrović

24

deployment mechanisms for performance improvement based on run-time
information, neither support SDN or VNF. Furthermore, they do not offer
automatic check whether the provided deployment model complies with data
movement regulations or no. The framework presented in [12] does not support
container data movement.

In [8], a framework for automated, model-driven deployment of data-
intensive Cloud applications with iterative enhancements based on run-time
metrics using traditional hypervisor-based virtual machines has been presented.
The modeling language used for creation of deployment diagrams in this case is
quite similar to one presented in [10]. However, this solution does not leverage
SDN and provides quite limited support when it comes to VNF (only simple
firewall rule generation). It mainly targets the traditional x86-based servers and
does not support deployment to low-power and IoT smart devices.

On the other side, [4, 9] deals with mechanisms for automated deployment
of data-intensive applications that have to comply with given data movement
policies and constraints with support for both Cloud and Edge computing.
While it supports both the computation task and data movement, this solution
does not provide full materialization of deployment diagrams and does not
benefit from SDN for performance tuning, but is rather focused on data utility
assessment, data movement issues and how data movement affects the QoS and
application performance.

In all of the mentioned cases, the combination of model-driven approach
and automated code generation has shown significant speed-up of deployment
procedure compared to manual operations, for both hypervisor- and container-
based applications. However, these solutions do not leverage the synergy of
VNF and SDN.

However, the solutions proposed in [13, 14] make use of Virtual Network
Functions combined with SDN with objective to provide more flexible live
video streaming platform which would make the management operations for
Telco operators. The VNFs are deployed according to pre-defined QoS
parameters by each client and traffic control rules applied to shape the service
chain. Similarly, the framework presented in this paper leverages the synergy of
VNF and SDN, making the applications more flexible and adaptable to the
changes in execution environment and QoS parameters.

3 Background

In this section, the underlying concepts used for development of our
framework are presented. For each of them, an overview and role they have
within the context of our research are given.

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

25

3.1 SDN and VNF

As results of research efforts in networking last few years, two new
concepts have emerged: Software Defined Networking (SDN) and Network
Functions Virtualization (NFV).

The main idea of SDN is to simplify network hardware and make the
network configuration easier, while improving the network control flexibility by
separating the system that decides where traffic is sent (control plane) from the
system that pushes data packets to specific destinations (data plane) and
provides central programmatic access which enables more efficient resource
utilization [2, 15]. By centralizing the network intelligence, decision-making
within the network is performed on a global view of the network, opposed to
traditional approach, where each node has its own view and is unaware of the
overall network state. This kind of programmability enables network
configuration to be highly automated. Using the SDN controller APIs, it is
possible to implement practically any algorithm which may perform the exact
traffic routing that suits the concrete scenario. OpenFlow [15] is a communication
protocol which gives access to forwarding plane of a network switch or router.
It was the first standard supporting the concepts of SDN architecture. In this
paper, a Java-based Open Flow controller Floodlight5 was used.

Virtualization of computing resources has changed the concept of
infrastructure management and has led to many benefits, such as reduction of
the operational costs and making the deployment procedures more convenient.
In last few years, a similar approach has emerged when it comes to network
resources. Network Functions Virtualization (NFV) enables replacing the
traditional physical network devices with software running on conventional
commodity servers [2]. This software implements the network functions (called
“Virtual Network Functions”) that were originally provided by the dedicated
hardware. This concept provides a way to reduce cost and accelerate the service
deployment procedure by decoupling network functions from the dedicated
hardware and moving them to virtual servers. It gives ability to Internet Service
Providers for incremental service deployment in order to satisfy customers’
demands in short time. One of the most popular platforms for deployment and
orchestration of VNFs running inside cloud virtual machines is Cloudify6 in
combination with OpenStack7. However, in this research we target the
deployment of container-based VNFs within the Edge of the network, which is
a use case not covered by Cloudify out of the box. Currently, the supported
VNFs within our framework are: switch, router, load balancer, parental control
device and firewall.

5 http://www.projectfloodlight.org/floodlight
6 https://cloudify.co/
7 https://www.openstack.org/

N. Petrović

26

NFV is not SDN-dependent. It is possible to implement a virtual network
function without any usage of SDN-related concepts. However, leveraging the
SDN concepts to implement and manage infrastructure based on virtual network
functions can be highly beneficial, as it provides fine-grained traffic control and
increases the overall flexibility. Therefore, we can say that these two concepts
(SDN and NFV) are complementary [1, 2]. In context of this research,
containerized virtual network functions are used as a specific type of deployable
tasks, while SDN is used to shape the traffic flow between the devices and the
deployed virtual network functions in order to support specific scenarios
recognized using semantic analysis within the deployment diagram.

3.2 Container-based virtualization

In recent years, in domain of computing resource virtualization another
approach appears – container-based virtualization. Containerization is a
lightweight mechanism for isolation of running processes, so their interaction is
limited only to their designated resources. This way, a virtual execution
environment is created at a software level inside the host machine. Containers
have been around in Linux for some period already, but they have recently
become popular due to open-source technology named Docker8.

The whole system becomes more resource-efficient as there is no additional
layer of hypervisor, and thus no full operating system which can occupy a lot of
storage space and memory for each virtual machine [16]. Therefore, container-
based virtualization is much more IoT device-friendly. There is a complete
Docker ARM port compatible with Raspberry Pi (that was used as a
representative example of ARM IoT devices). Thus, we decided to use Docker
containers as computation task abstraction [5], which enables to easily move
tasks between Cloud and Edge and between devices with different computing
architectures by using computation task Docker image counterparts for each of
the considered architectures.

When it comes to data management, Docker containers were originally
designed to be stateless. It means that changes made during the container
execution are not persistent as in case of traditional virtual machines. For this
purpose, the concept of volumes was introduced. Volumes9 are preferred
mechanism for persisting data by Docker containers. They represent host
directories mounted to containers. Therefore, inter-host volume management
requires additional mechanisms to be implemented and integrated in order
enable the persistence in container-based applications.

8 https://www.docker.com/
9 https://docs.docker.com/storage/volumes/

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

27

Container management, scheduling and orchestration technologies (such as
Docker Swarm10 and Kubernetes11) are usually used for deployment and
management of large-scale container-based applications and services, as they
provide container clustering and replication, which in combination with load
balancing mechanisms enables the scalability and fault tolerance features. The
underlying container management system used for the implementation in this
research is Docker Swarm. There are two types of devices within the container
cluster: master node and worker nodes. The Swarm is created at master node
which is responsible for container management and service creation. The
service creation consists of allocation of the desired container to the right device
which had joined the Swarm previously and exposing the selected ports. As a
container repository, we use public Docker Hub12 repositories which should
contain two versions of each task – ARM and x86, with same name but
different suffix. This way, we ensure that, in case of computation task
movement, each device can find the right container (ARM or x86). When it
comes to data persistence, a separate private SVN repository was used to keep
the volume data for each of the containers. Before the service creation, the
corresponding data volume is downloaded to the target device and then
mounted to the task container. Each time before the task migration is performed,
the container data volume directory is committed to SVN, so it can be later
mounted by the other host device that will execute the task. During the
execution, all the HTTP requests directed to the considered container-based
application are first sent to the Docker Swarm master. After that, the master
resolves the Swarm worker device where the service is actually deployed,
according to the port used to expose the service.

3.3 Metamodeling

Metamodeling is analysis, construction and development of rules,
constraints, models and theories applicable and useful for modeling a
predefined class of problems [17]. A metamodel is a model of a modeling
language which defines the structure and constraints for a family of models. In
context of our framework, a metamodel is used to define the structure of the
modeling language that is used for creation of deployment diagrams. The user is
able to draw a deployment diagram using the modeling tool, which is a part of
the proposed framework. The deployment diagram is materialized once the
deployment code is generated and submitted to the deployment platform. The
rules and constraints related to modeling in our framework are defined by the
metamodel given in Fig. 1.

10 https://docs.docker.com/engine/swarm/
11 https://kubernetes.io/
12 https://hub.docker.com/

N. Petrović

28

Fig. 1 – UML diagram of the container-based application deployment metamodel.

There are two main concepts in our deployment model: device and task.
Each deployment diagram created by our modelling tool consists of devices,
while some of the devices also contain the allocated tasks.

Devices are split into two categories: consumer devices and servers.
Consumer devices are different types of devices (such as traditional desktop
PCs, laptops, smartphones, IoT devices) that belong to customers, used for
various purposes (from social networking and home entertainment to healthcare
applications and enterprise use cases). Servers are devices that belong to the
provider that are able to host various applications and services. They can be
either traditional x86 or ARM devices.

For each of the consumer devices, we can optionally insert information
about IP address, MAC address, number of cores, memory and storage capacity,
processor architecture which can be utilized in order to optimize the network
deployment, generate additional networking rules or make use of SDN by
generating the traffic control rules based on the topology. This kind of
information can be especially useful in cases where it is necessary to support
Edge computing scenarios. On the other side, the previously mentioned
parameters are obligatory for server devices, together with some additional
server-specific information, such as username and password (used for SSH),
Docker Swarm token (that is used to join the container cluster belonging to a
particular Swarm master) and location (Cloud or Edge). Location is of utmost
importance as it is used by the mechanisms that provide compliance with given
privacy and security policies.

Tasks are abstractions of applications and services offered to customers by
service providers. Within the scope of our framework, each of them represents a
Docker container which is deployable only to service provider machines. A
Docker container is identified by its repository and name within the Docker
Hub, which is used as a repository and service discovery. Virtual Network

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

29

Functions (VNFs) are specific task type that can be hosted by provider’s server
device. However, the task can also be any other service (such as video
streaming, augmented reality or speech recognition application); it is not
necessarily a VNF. As each task corresponds to a Docker container, there are
two more parameters: the external port for the service access and internal port
used within the Docker host machine. Volume directory is a parameter that
specifies the directory within the server that is mounted to the container in order
to provide the data persistence utilizing the working principle of Docker
volumes. As VNFs are run within the Docker containers, the configuration file
path inside the mounted volume can be set for cases when some additional
networking rules can be automatically generated which would require the
configuration file modification, such as routing table, firewall rules etc.
Knowing the right configuration file path gives us also possibility to
automatically generate even these rules, store them into a file which will be
mounted to the container. Among the VNFs, we have many typical well-known
network functions, such as router, load balancer, intrusion detection, parental
control, firewall and many others.

Relationship between server and other devices is annotated as
<<ProvidesServiceTo>>. This way, we define which consumer devices are
under the influence of the deployed VNFs. The devices affected by the virtual
network functions could be both consumer devices and other service provider
servers. <<TaskDependency>> is a directed association, describing the fact that
tasks can be dependent on each other, so the output of one task can be used as
the input of another one, which makes an execution flow.

Execution location represents the environment where the considered task
could be executed due to data movement constraints, legal regulations, security
and privacy policies. According to this, some of the tasks are allowed to be
executed only within the Edge of the network, without leaving the physical
boundaries of the organization. On the other side, there are tasks whose
execution location is not constrained, so they can be executed also in Cloud.
Each device can physically reside in Cloud or Edge. Therefore, the metamodel
constraint rules could take care of matching execution environment for each of
the tasks that have to be deployed. Alternatively, if execution location and
server IP address for some task are not specified in the deployment diagram,
they will be determined automatically according to the pre-defined policy or a
set of constraints.

For the development of our modelling tool, ADOxx metamodeling
platform13 was used. It provides ability to create a full modeling software with
graphical user interface based on UML-alike metamodel definition written in
ADOxx Definition Language. Additionally, it is also possible to define

13 https://www.adoxx.org/live/home

N. Petrović

30

modeling rules and constraints. We decided to use ADOxx platform, as it
provides an easy and convenient way to automatically construct a complete
standalone model editor with visual elements, just by definition of the
metamodel which represents the domain of interest.

3.4 Semantic technology

Semantic analysis of a program code is a process of understanding the
meaning of the program code based on its context, in a similar way as humans
do. However, in order to perform the semantic analysis, it is required both to
parse the code and store the knowledge extracted from code in a way that is
suitable for reasoning mechanisms, as the knowledge representation formalism
used in semantic Web technologies allows logical reasoning that gives ability to
infer new information or knowledge from the existing facts.

For this purpose, we use ontologies. Ontology is a formal representation
and definition of categories, their properties and relations between concepts,
data and entities that substantiate one, many or all domains. RDF14 is used to
formally describe ontologies. It is a data model that provides a way to express
simple statements about resources, using named properties and values [18, 19].
In context of RDF, classes are used to define types of things and categories. In
addition to defining the classes of things within the ontology, it is also possible
to define specific properties that characterize those classes of things. Relations
and facts about the classes, their properties and relations are stored as triplets
within the RDF triple store for both the ontology definition and its instances.
SPARQL15 is a semantic query language, which is able to retrieve and
manipulate the data stored within the RDF triple store [18, 19]. We use the
results of SPARQL queries for semantic reasoning, according to the given
domain-specific rules, in order to identify specific deployment cases, network
states, system conditions and scenarios.

In context of this paper, ontologies are used to represent the knowledge
about various design- and run- time aspects. Deployment Model Ontology
consists of semantic annotations of the user-created deployment diagrams
designed using the modeling tool. While the previously presented metamodel
defines the modeling language and static structure of deployment diagram,
completely defined at design-time, the Monitoring Data Ontology is used for
semantic analysis which includes reasoning mechanisms involving also the
knowledge obtained during the run-time beside the design-time aspects. Within
our framework, we embed the mechanisms of automatic re-deployment at run-
time, according to the system state and changes of condition in execution
environment. For this purpose, various aspects are considered: number of

14 https://www.w3.org/RDF/
15 https://www.w3.org/TR/rdf-sparql-query/

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

31

devices using the service, connection speed, signal strength, various QoS
metrics, such as latency and jitter. They are used to express various aspects and
consequences related to device mobility and varying network conditions. In Fig.
2, an excerpt from the ontology that captures the run-time knowledge is given.

mdo:Consumer Device

mdo:Service

domain

range

mdo:Server

domain

range

mdo:Device

subClassOf subClassOf

mdo:Routing Device

subClassOf

range

range

mdo:Connectionmdo:connectedVia

domain

range

mdo:connectedTo

mdo:deployedOn

Signal StrengthConnection Speed

mdo:usesService

mdo:hasQoS

domain

range

mdo:hasConnectionSpeed mdo:hasSignalStrength

domain

range
range

mdo:QoS Metric

mdo:Jitter

subClassOf

mdo:Latency

subClassOf

mdo:hasValue

domain

Value

range

domain

domain

domain

Fig. 2 – An excerpt from the ontology capturing the run-time knowledge
about the deployed services – Monitoring Data Ontology.

Furthermore, the Policy/Constraint Ontology is used to represent the facts
about legal regulations that could constraint the data movement and user-
defined policies which are used in order to select the appropriate device for the
task deployment, as shown in Fig. 3. It is possible to specify whether the task
has to be executed in Cloud, Edge or both and the algorithm which is used to
select the device where the task is going to be deployed. Several algorithms that
perform the server selection according to some criteria related to their features
were implemented, such as fastest CPU, largest memory available, minimal
network delay and most consumers connected. While the task execution
environment is determined by legal regulations which could constraint the
freedom of data movement, the selection of the criteria used to allocate a certain
task to the specific device is only up to user.

pco:Task

pco:Edge

pco:Cloud

pco:Execution
Environment

domain

range

subClassOf

subClassOf
range

domain

pco:Algorithm

pco:isExecutedIn pco:allocatedAccordingTo

Fig. 3 – Policy/constraint ontology.

N. Petrović

32

Device Capabilities Ontology holds the knowledge about the service
provider’s available devices and their features, important for task allocation
mechanisms. An excerpt from this ontology is shown in Fig. 4. For each of the
devices, it is necessary to know its computing architecture type, total and
remaining memory available, total and remaining storage available, number of
CPUs, available network interfaces and location where it resides (Cloud or
Edge). Furthermore, the devices can be SDN-enabled, so there is a distinct
subclass. Additionally, the devices can contain attached sensors that are taken
into account for deployment of specific applications where they are necessary.
This knowledge about the available provider’s devices is of utmost importance
in cases when the exact device that will execute a given task is not known in
advance, so the task allocation should be done using automatic mechanisms that
also involve device capability matching. Therefore, Policy/Constraints
Ontology is used to represent the knowledge that is used to determine the
execution location for a task according to the pre-defined constraints and which
algorithm should be used for selection policy. On the other side, the Device
Capabilities Ontology is responsible for the selection of the exact device that
satisfies the given criteria, when it comes to memory available, types of
available network interfaces and location where it resides.

dco:Device

dco:ARM

dco:x86

dco:Architecture

domain

range

subClassOf

subClassOf
range

domain

dco:Location

dco:hasArchitecture dco:residesIn

dco:hasNetworkInterface

range

dco:NetworkInterface

domain

dco:Cloud

dco:Edge

subClassOf

subClassOf

dco:Wifi

subClassOf

dco:LAN

subClassOf

domain

dco:hasTotalMemorydco:hasRemainingMemory

domain

Remaining Memory Total Memory

range range

dco:hasSensor

domain

dco:Sensor
range

subClassOf

dco:SDN-Enabled
Device

Fig. 4 – Device Capabilities Ontology.

In order to perform the semantic analysis, we define domain-specific rules
and assertions that are translated to SPARQL queries executed against the RDF
triple store which contains the knowledge obtained at both design- and run-
time. Based on these results, the reasoning is performed, conclusions are drawn
and as an outcome, the code for both the infrastructure and network
management is generated according to the actions that have to be taken. The
domain-specific rules are defined using the Deployment Rule Ontology, as
shown in Fig. 5. Each deployment rule consists of conditions that are going to
be tested and actions that have to be taken if the conditions are fulfilled. The

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

33

conditions can be detected using either design-time (user-drawn deployment
diagram) or run-time (monitoring data) knowledge. A SPARQL query is
assigned to each of the conditions. According to the given ontology,
deployment rules are defined as:

rulei : if (d1 ˄… dm) ˄ (r1 ˄… rn) then action1 ˄… actionk

dro:Rule

dro:Design-time
condition

dro:Run-time
condition

dro:Condition

domain

range

subClassOf

subClassOf
range

domain

dro:Action

dro:hasCondition dro:actionToBeTaken

dro:hasQuery range

dro:Queryrange

dro:Service
migration

dro:SDN rule
generation

subClassOf

subClassOf

dro:Firewall rule
generation

subClassOf

Fig. 5 – Deployment Rule Ontology.

4 Implementation overview

In this section, the components of the framework for automated model-
based, semantic-driven deployment of containerized applications and the
underlying mechanisms are presented (illustrated in Fig 6.).

First, the user draws a deployment diagram using the drag-and-drop
graphical interface of the modeling tool environment using the available
elements and connecting them. Additionally, the user needs to configure the
necessary parameters specific to the concrete type of elements (such as IP or
MAC address etc.). Once the modeling is done, the deployment model is
exported as XML file written in a domain-specific language.

MODELING TOOL

CODE GENERATORDEPLOYMENT
MODEL

INFRASTRUCTURE
MANAGEMENT

COMMANDS

TRAFFIC CONTROL RULES

PROVIDER’S
COMPUTING

INFRASTRUCTURE
DEPLOYMENT

PLATFORM

DESIGN-TIME SEMANTIC
ANALYSIS

USER

REGULATIONS, POLICIES
AND CONSTRAINTS SDN-ENABLED NETWORK

FUNCTIONS AND DEVICES

Fig. 6 – Overview of the framework for automated model-driven
deployment of container-based applications.

After that, the semantic analysis of the code given in model’s domain-
specific language is performed. The code written in domain-specific language is
parsed and necessary information from the code is inserted as a set of triples
into the RDF triple store. The model of the triples that are inserted is defined by
the corresponding ontologies. Then, according to domain-specific rules, the

N. Petrović

34

reasoning is performed, by executing SPARQL queries against the triple store.
These domain-specific rules embed the expert knowledge to treat different use
cases where the information from the user-defined deployment diagram could
be leveraged in order to optimize the network topology relying on flexibility of
SDN. On the other side, the deployment diagram is also checked whether it
complies with the pre-defined constraints imposed by legal regulations and
policies related to data movement. The reasoning results are consolidated and
further processed, so the conclusions can be used by the code generator.

Furthermore, the code generation is performed taking into account both the
original deployment model definition and results obtained within the step of
semantic analysis. Two types of codes are generated: infrastructure management
code (Docker/Docker Swarm or Kubernetes CLI commands) and SDN traffic
control OpenFlow rules. Infrastructure management code is responsible for
deployment of the desired applications and services in form of containers (both
the virtual network functions and others) to the server machines that belong to
the service provider. On the other side, SDN rules are used to shape the traffic
forwarding within the service provider network. These rules are utilized by
SDN-enabled switches and routers, which exist either as virtual instances or real
networking hardware. The code generation mechanism is based on the
algorithm presented in [12] with extensions related to semantic analysis, SDN
rule generation and persistent data management. The results of semantic
analysis are used for decision whether it is necessary to generate some specific
part of code or no. As one of results, SDN rules are generated in particular
scenarios. Moreover, in order to provide container data persistence, the
additional commands related to downloading the corresponding image from
SVN and volume mounting are also generated.

Finally, both the infrastructure management commands and traffic control
rules are submitted to the deployment platform. The deployment platform reads
the generated script and executes the corresponding commands in order to
allocate the desired containers to provider’s computing infrastructure using the
targeted underlying container orchestration and management system, while the
SDN controller shapes the network traffic through the provider’s SDN-enabled
network functions and devices, according to the generated traffic control SDN
rules.

Furthermore, the deployment platform also includes the network status and
performance monitoring component, which records the information of the
current network state and quality of service (such as number of users connected,
utilization of resources, connection/signal strength, speed, delay, number of
connected users). This data is filtered, processed and analyzed in order to
extract the run-time knowledge. The knowledge obtained as result of data
analysis is stored within the RDF triple store. Therefore, it is possible to execute

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

35

SPARQL queries and perform reasoning about the run-time conditions. This
way, the run-time knowledge is used to perform fine-tuning and re-deployment
of the deployed services according to the changes of network state and run-time
execution environment. The run-time semantic analysis by the deployment and
monitoring platform can be performed periodically or activated by triggers, in
order to detect network condition or topology changes which can lead to new
code generation, re-deployment or configuration modifications with goal to
increase the performance and quality of service of the running applications. Fig.
7 shows the detailed structure of the deployment platform with embedded
monitoring, data mining and run-time semantic analysis components.

REASONING CODE
GENERATION

PERFORMANCE
MONITORING DATABASE FILTERING AND

PREPARATION
DATA ANALYSIS SEMANTIC

KNOWLEDGE BASE

RE-
DEPLOYMENT

QUERIES

RESULTS

Fig. 7 – Working principle overview of the deployment platform
with embedded mechanisms for run-time semantic analysis.

4 Scenarios

In this section, three usage scenarios are presented illustrating how both
service consumers and providers can benefit from the proposed approach. The
first scenario presents an example of design-time semantic analysis. The second
scenario is about the deployment under the execution environment constraints
due to legal regulations and policies. Finally, the third scenario illustrates the
possible benefits of re-deployment based on run-time semantic analysis.

5.1 Design-time semantic analysis: Parental control service

Let us assume that a family that consists of parents and small children uses
internet connection provided by ISP at home. However, the parents want to
restrict the access, so that the children would not be able to watch the content
that is not suitable for their age (such as movies and video games which contain
violence). On the other side, the access to the content from other devices should
not be affected. Moreover, the assumption is that the internet is accessed using
the virtual router hosted on provider’s server.

In this case, it would be convenient for the service provider to offer a
service of parental control for additional monthly fee and deploy it just by
running the parental control application container on their server. This way, the
installation, setup and networking hardware cost would be significantly
reduced.

First, the deployment diagram is created by our modeling tool. The parental
control element is added to the server and all the devices that belong to the
children are connected to the server via <<ProvidesServiceTo>> relationship.

N. Petrović

36

For the provider’s server, it is necessary to provide IP address, while for
children’s devices (phone and tablet) MAC address should be provided.

Once the deployment model is completed, the automatic code generation
process can be launched. The infrastructure management code for the
deployment of the parental control service is generated and the corresponding
container should be deployed on the target provider’s server. Furthermore, the
content filtering rules are generated only for consumer devices whose MAC
addresses belong to the given set, submitted to the SDN controller and applied,
while all other devices remain unaffected. Furthermore, the semantic analysis of
the deployment model code is performed to retrieve the devices which should
be under the influence of parental control by executing a SPARQL query.

Finally, for each of the retrieved devices connected to the server where
parental control service is deployed, a content filtering rule is generated and
applied to the SDN controller in order to take an effect.

5.2 Deployment under execution environment constraints: Infraction test

In this scenario, we are considering the deployment of infraction test
application that is used within the medical information system. The application
consists of several tasks, packed as Docker containers, each of them running a
PHP or database server (MySQL or MongoDB) and performing some data-
related operations: data storage/retrieval or processing. There are three types of
data processing tasks involved: ECG image analysis, troponin result analysis
and infraction test. ECG image analysis takes an ECG image as input in order to
determine whether it contains anomalies or no. Troponin result analysis
determines whether the patient’s troponin presence in blood is above the given
threshold. Finally, the infraction test gives the answer whether the patient had
infraction or no. If both the ECG image contains anomalies and troponin is
above the given threshold, then the answer is “yes”. Otherwise, the answer is
“no”. Fig. 8 shows the structure of the infraction test application.

Table 1 shows an overview and description of tasks that were used to
construct the infraction test application. Each of the tasks actually corresponds
to a separate Docker image. The first column presents a name of the task. The
second column contains the name of the technology used by the task. The third
column (environment) tells if the task has to be executed in Cloud or within the
Edge of our network during the experiment. The last column indicates the
computing architecture of the device executing the considered task.

The deployment model was created using our modeling tool, while the
execution environment constraints were inserted into knowledge base,
according to the Policy/constraint ontology. For each of the tasks present in the
deployment model, the execution location was determined using the design-time
semantic analysis.

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

37

Fig. 8 – Infraction test medical application overview.

Furthermore, it is needed to perform the device capability matching
according to the location where they reside. The SPARQL query executed in
this case returns the possible task-device mapping by matching the task
execution environment with device location. After that, the Docker
infrastructure code is generated and submitted to the master for service creation.

Table 1
Infraction test application task overview.

Task Name Tech. Environment Architecture

ECG read data MongoDB Edge ARM

ECG processing PHP Edge ARM

ECG write data MongoDB Cloud X86

Troponin read data MongoDB Edge ARM

Troponin processing PHP Edge X86

Troponin write data MongoDB Cloud X86

ECG read result MongoDB Edge ARM

Troponin read result MongoDB Edge ARM

Infraction check PHP Cloud X86

Result storage MySQL Cloud X86

5.3 Run-time service re-deployment: Augmented reality application

Let us assume that museum offers a mobile application which enhances the
user experience during the visit by providing real-time augmented reality

CLOUD

CLOUD

ECG DEVICE

TROPONIN DEVICE

ECG IMAGES

TROPONIN VALUES

ECG RESULTS

TROPONIN RESULTS

INFRACTION TEST RESULTS

ECG
ANALYSIS

TROPONIN
ANALYSIS

INFRACTION
TESTX86_1

X86_2

X86_3

X86_4

X86_5

ARM_1

ARM_2

ARM_3

N. Petrović

38

elements. For example, the user scans a QR beside the artifact, and the rotation-
enabled animated 3D model appears near QR code and the spoken story about
the observed museum artifact begins. However, in this case the latency could be
critical as mobile device would have to download the 3D models, voice files,
display the model in the right position and handle the rotation commands given
by user. In this case, the museum offers an Edge server which would provide
faster download of the content and processing necessary for the 3D model
rendering and animation, while the mobile device itself would just record with
the camera and send the stream to the Edge server and display the animation
results, eliminating this way the overhead introduced by 3D rendering and
image processing. Furthermore, there could be many candidate servers, located
in different parts of the museum where the application can be deployed. In our
case, there were six users and four candidate servers. This scenario illustrates
the flexibility of the applied approach to application deployment and ability to
adapt to environment changes in case when the server for deployment is
selected according to the “most consumers connected” algorithm.

In the beginning, the augmented reality container is deployed to the server,
near the entrance of the museum. However, during the museum tour, the visitors
move from one place to another (as illustrated in Fig. 9). At one point the
connection to the augmented reality server becomes weak, causing the network
drops and reduction of the quality of service. In this case, the results of run-time
semantic analysis of the network monitoring data will indicate that the quality
of service has dramatically dropped. A SPARQL query that returns the number
of connected devices to each server is used in this case. The augmented reality
service running on server near entrance will be migrated to server with the
largest number of visitors nearby, based on connection signal strength. Also, the
SDN rules will be modified in order to support the migration of the service.

Fig. 9 – Run-time re-deployment scenario.

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

39

5 Evaluation

In this section, the performance evaluation of proposed framework is
presented. The time needed to deploy a given application using our platform
and tools for automated deployment was compared against the time needed for
the deployment of the same application, if done manually.

The applications from the previously mentioned scenarios where used
during the experiments. For evaluation purposes, a laptop equipped with Intel i7
7700HQ CPU and 16GB of DDR4 RAM was used as a Docker Swarm master
running the deployment platform and SDN controller in Ubuntu Linux. The
same machine was also used for the execution of SPARQL queries, semantic
analysis and code generation. The backend of the deployment platform was
written in Java.

Table 2
Evaluation results.

Scenario
Design

[s]

Semantic
annotation

[s]

Reason.

[s]

Code
gen.

[s]

Deploy.

[s]

Overall
auto

deploy.

[s]

Manual

deploy.

[s]

Speed-
up

[times]

Parental
control

34 4.57 3.12 7.51 19.44 68.64 220 3.21

Infraction
test

58 5.21 4.23 8.59 14.87 90.9 560 6.16

AR app. 21 2.17 2.52 2.76 18.13 46.58 170 3.64

In Table 2, the evaluation results are presented. The first column presents
the scenario name. The second column shows the time needed for user to draw a
deployment diagram of the corresponding application using our modeling tool.
The third column is the time needed to parse and semantically annotate the
deployment diagram or other data (such as network/performance monitoring
stats). The fourth column is the time that is spent for the execution of the
corresponding SPARQL queries necessary for the semantic reasoning
mechanisms. The fifth column holds the values of time needed for the code
generation. The sixth column represents the time that needed for the deployment
of the generated infrastructure code and SDN rules. The seventh column shows
the sum of previous column values (from second to sixth) and represents the
overall time that needed for the automatic deployment procedure – from user-
drawn model to fully functional application. The eighth column shows the
average time needed for the manual procedure of application deployment
without using our platform. The last column shows the speed-up of deployment
time as a quotient of manual deployment time (seventh column) and the overall

N. Petrović

40

automatic deployment time (sixth column). In all cases, we were considering
the “warm deployment time”, which means that all the necessary Docker
images had already been downloaded. Each value in table is an average of 10
measurements.

6 Discussion

Considering the evaluation results, it is noticeable that the presented
approach definitely speeds-up the deployment procedure in considered
scenarios using the automatic mechanisms, despite the overhead introduced by
semantic code annotation, semantic reasoning and code generation. However, it
varies from scenario to scenario. The speed-up is most significant in the second
case, as SDN rules were not generated and applied, which reduces the
deployment time. Despite the fact that generating SDN rules and applying them
to SDN controller slows down the overall deployment procedure, it can lead to
performance benefits. It is also observable that the semantic annotation in
second scenario lasts more than the others, as the considered deployment
diagram was larger than the rest, involving more devices and tasks that need to
be traversed during the code generation. Moreover, the time needed for
semantic reasoning is also longer, as the deployment

Comparing the code generation and overall deployment time with solutions
presented in [11] and [12], it is concluded that this solution is slightly slower,
due to fact that previously presented tools only provide static deployment of
container-based applications and do not leverage the benefits of Software
Defined Networking neither involve any kind of any semantic analysis, which
introduces additional overhead. Similar infraction test application case study
was presented in [12], where it achieved faster deployment and code generation
time. This can be explained by the fact that the solution from [12] does not
involve container volume management mechanisms, as less time is needed for
deployment without mounting the corresponding volumes. To sum up, the
previous solutions do provide greater speed-up than this one, but they lack
certain features, such as SDN-enabled networking and container volume
management.

On the other side, comparing with another existing solution [8] which is
oriented on automated, model-driven deployment of virtual machine-based
Cloud applications, we can notice that the relative speed-up obtained in [8] was
greater, while the deployment time of our solution is much faster, as expected.
This can be explained by the fact that the manual virtual machine setup and
configuration generally takes more effort compared to container-based
approach. When it comes to absolute deployment duration, it is much quicker in
container-based approach, as there is no need to spawn a full operating system
(using hypervisor) each time we deploy a task, which is an advantage in favor

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

41

of container-based systems, especially when we take into account that low-
power Raspberry Pi devices are involved. That solution does not provide
support for Edge devices with ARM architecture and has quite limited support
for virtual network functions and software-defined networking (only the
deployment of virtual firewalls and firewall rules).

7 Conclusion and Future Work

The outcome of research presented in this paper is a framework that
enables highly automated deployment of VNF/SDN-enabled container-based
applications to support future services and architectures that introduces a
significant speed-up of the operations, which is of utmost importance in
trending DevOps software development methodology. Application deployment
time (and so the speed-up) using the proposed framework depends on the
concrete scenario - the number of devices involved and services that have to be
deployed and also the semantic overhead introduced in specific cases, based on
domain-specific rules utilized for semantic analysis. Furthermore, this approach
enables the flexibility of applications by providing the capability of computation
task movement between the devices with different computing architecture
(ARM/x86) and location (Edge/Cloud) in order to comply with pre-defined
legal constraints and policies.

The combination of VNFs, SDN and container-based virtualization has
great potential for cost reduction as it is not always necessary to rent a full
virtual machine for each of the network functions and cuts additional expenses
for buying the vendor-specific networking hardware while providing ability of
responsive, dynamic quality of service control and fine-tuning at the same time,
that could be highly beneficial in Edge Computing use cases.

However, containers are quite new in universe of network function
virtualization and there is still a lot of development in progress, as there are
many open issues, especially when it comes to security [20]. In container-based
virtualization approach, the host’s operating system is exposed to all containers,
which introduces potential security issues related to multi-tenancy. Therefore,
traditional virtual machines are still ahead from this point of view. Also, the list
of available containerized virtual network functions is still quite limited, but the
support is about to be extended in future. Despite the existence of security
issues, utilizing containers for deployment of virtual network functions seems
promising approach, considering the much smaller overhead compared to full-
fledged virtual machines which leads to smaller delay, better performance as
shown in [21] and also faster deployment time which is crucial in cases of
service re-deployment according to the network condition changes with purpose
of increasing the quality of service.

N. Petrović

42

For future work, the detailed performance evaluation for the applications
using the generated SDN rules is planned (especially when it comes to scenarios
that leverage the synergy of VNF and SDN) and extension of the reasoning
mechanisms to support novel use cases of future 5G networks, where they are
recognized as enabler technologies [22]. Additionally, the application of more
sophisticated data analysis techniques to extract the hidden knowledge about the
network state and performance from the monitoring data is considered.
Furthermore, leveraging the Docker Swarm replication features and
implementation of data management mechanisms that will enable persistence of
container data for all the running replicas of a task could be highly beneficial,
when it comes to scalability and features related to fault tolerance while making
the container-based applications more robust.

8 Acknowledgements

This work has received funding from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under the Grant
Agreement No 645220, project RAWFIE (Road-, Air- and Water- based Future
Internet Experimentation). Moreover, this paper is an extended version of the
work published under the name “Model-driven Approach for Deployment of
Container-based Applications in Fog Computing” at the 5th international annual
conference IcETRAN (Palics, Serbia, June 11–14, 2018), and which was
awarded as The Best Young Researcher’s Paper at the Computing and
Information Engineering section.

9 References

[1] A. C. Baktir, A. Ozgovde, C. Ersoy: How Can Edge Computing Benefit from Software-
Defined Networking: A Survey, Use Cases, and Future Directions, IEEE Communications
Surveys & Tutorials, Vol. 19, No. 4, June 2017, pp. 2359  2391.

[2] S. K. N. Rao: SDN and Its Use-Cases - NV and NFV – A State-of-the-Art Survey, NEC
Technologies India Limited., White Paper, 2014, pp. 3  25.

[3] Z. Mahmood, M. Ramachandran: Fog Computing: Concepts, Principles and Related
Paradigms, Fog Computing Concepts, Frameworks and Technologies, Springer, Cham,
Switzerland, 2018, pp. 3  21.

[4] P. Plebani, D. Garcia-Perez, M. Anderson, D. Bermbach et al.: Information Logistics and
Fog Computing: The DITAS* Approach, Proceedings of the CAiSE 2017 Forum Papers,
Essen, Germany, 2017, pp. 129  136.

[5] N. Petrovic: Enabling Flexibility of Data-Intensive Applications on Container-Based
Systems with Node-RED in Fog Environments, Master Thesis, Politecnico di Milano,
Milan, Italy, 2017, Ch. 3, pp. 18  62.

[6] C. Ebert, G. Gallardo, J. Hernantes, N. Serrano: DevOps, IEEE Software, Vol. 33, No. 3,
May-June 2016, pp. 94 – 100.

Model-based Approach for Semantic-driven Deployment of Containerized Applications…

43

[7] R. Sturm, C. Pollard, J. Craig: DevOps and Continuous Delivery, Application Performance
Management (APM) in the Digital Enterprise: Managing Applications for Cloud, Mobile,
IoT and eBusiness, 1st Edition, Morgan Kaufmann Publishers Inc., San Francisco, USA,
2017, Ch. 10, pp. 121 – 135

[8] Developing Data-Intensive Cloud Applications with Iterative Quality Enhancements,
Deployment Abstractions - Final Version, Editors: D. A. Tamburri, E. Di Nitto, 2017,
Available at:

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/07/D2.4_Deployment-
abstractions-Final-version.pdf

[9] P. Plebani, D. Garcia- Perez, M. Anderson, D. Bermbach et al.: DITAS: Unleashing the
Potential of Fog Computing to Improve Data-Intensive Applications, Advances in Service-
Oriented and Cloud Computing, Editors: Z. A. Mann, V. Stolz, European Conference on
Service-Oriented and Cloud Computing (ESOCC 2017), Springer, Cham, Switzerland,
Vol. 824, 2018, pp. 154  158.

[10] N. Ferry, H. Song, A. Rossini, F. Chauvel, A. Solberg: CloudMF: Applying MDE to Tame
the Complexity of Managing Multi-Cloud Applications, Proceedings of the IEEE/ACM 7th
International Conference on Utility and Cloud Computing, London, UK, December 2014,
pp. 269  277.

[11] F. Paraiso, S. Challita, Y. Al-Dhuraibi, P. Merle: Model-Driven Management of Docker
Containers, Proceedings of the 9th International Conference on Cloud Computing (CLOUD),
San Francisco, USA , June-July 2016, pp. 718  725.

[12] N. Petrovic: Model-Driven Approach for Deployment of Container-Based Applications in
Fog Computing, Proceedings of the 5th International Conference on Electrical, Electronic
and Computing Engineering (IcETRAN 2018), Palics, Serbia, June 2018, pp. 1084  1089.

[13] G. Baldoni, M. Melita, S. Micalizzi, C. Rametta, G. Schembra, A. Vassallo: Video
Broadcasting Services Over SDN-NFV Enabled Networks: A Prototype, Procedia Computer
Science, Vol. 98, 2016, pp. 560  565.

[14] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, B. Mukherjee: On
Service-Chaining Strategies Using Virtual Network Functions in Operator Networks,
Computer Networks, Vol. 133, March 2018, pp. 1  16.

[15] W. Braun, M. Menth: Software-Defined Networking Using OpenFlow: Protocols,
Applications and Architectural Design Choices, Future Internet, Vol. 6, No. 2, 2014,
pp. 302  336.

[16] W. Felter, A. Ferreira, R. Rajamony, J. Rubio: An Updated Performance Comparison of
Virtual Machines and Linux Containers, International Symposium on Performance Analysis
of Systems and Software (ISPASS), Philadelphia, USA, March 2015, pp. 171  172.

[17] M. Brambilla, J. Cabot, M. Wimmer: Model-Driven Software Engineering in Practice, 1st
Edition, Morgan & Claypool Publishers, San Rafael, USA, 2012 , pp. 13  16.

[18] P. Hitzler, M. Krotzsch, S. Rudolph: Foundations of Semantic Web Technologies, 1st
Edition, Chapman and Hall/CRC, Boca Raton, London, New York, 2009.

[19] J. Davies, R. Studer, P. Warren: Semantic Web Technologies: Trends and Research in
Ontology-Based Systems, 1st Edition, John Wiley & Sons, Ltd., Chichester, England, 2006.

[20] A. Mouat: Docker Security: Using Containers Securely in Production, 2015, Available at:

https://www.oreilly.com/ideas/docker-security

N. Petrović

44

[21] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, A. Apon: Performance Considerations
of Network Functions Virtualization Using Containers, Proceedings of the International
Conference on Computing, Networking and Communications (ICNC 2016), Kauai, USA,
February 2016, pp. 1  7.

[22] M. G. Pérez, G. Martinez Perez, P. G. Giardina et al.: Self-Organizing Capabilities in 5G
Networks: NFV & SDN Coordination in a Complex Use Case, Proceedings of the 3rd
Network Management Workshop for 5G Networks (EuCNC18), Ljubljana, Slovenia, June
2018, pp. 1  5.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [467.717 666.142]
>> setpagedevice

