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Abstract: The performance of photovoltaic (PV) module is affected by outdoor 
conditions. Outdoor testing consists installing a module, and collecting electrical 
performance data and climatic data over a certain period of time. It can also 
include the study of long-term performance under real work conditions. Tests are 
operated in URAER located in desert region of Ghardaïa (Algeria) characterized 
by high irradiation and temperature levels.  The degradation of PV module with 
temperature and time exposure to sunlight contributes significantly to the final 
output from the module, as the output reduces each year. This paper presents a 
comparative study of different methods to evaluate the degradation of PV 
module after a long term exposure of more than 12 years in desert region and 
calculates uncertainties in measuring. Firstly, this evaluation uses three methods: 
Visual inspection, data given by Solmetric PVA-600 Analyzer translated at 
Standard Test Condition (STC) and based on the investigation results of the 
translation equations as ICE 60891. Secondly, the degradation rates calculated 
for all methods. Finally, a comparison between a degradation rates given by 
Solmetric PVA-600 analyzer, calculated by simulation model and calculated by 
two methods (ICE 60891 procedures 1, 2). We achieved a detailed uncertainty 
study in order to improve the procedure and measurement instrument. 

Keywords: Photovoltaic Module, Translation, Solmetric PVA-600 Analyzer, 
Visual inspection, Degradation Rate, Uncertainty Analysis.  

1 Introduction  

The photovoltaic system (PV) has attracted much attention due to the oil 
and environment pollution in recent years [1 – 3].  Its merits are: inexhaustible; 
pollution-free; abundant; silent and with no rotating parts and size-independent 
electricity conversion efficiently. The main drawback is that: Form an 
operational point of the view, a photovoltaic array experiences large variation of 
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its output power under intermittent weather conditions. These phenomena may 
cause operational problems at a central control center in a power utility, such as 
excessive frequency deviations, spinning reserve increase...etc. Its initial 
installation cost is considerably high. Integrating the PV power plant with other 
power sources such as diesel backup [2], fuel cell backup [3], battery backup 
[1, 3] super conductive magnetic energy storage backup are ways to overcome 
variations of its output power problem. The performance of solar modules 
varies according to the environmental conditions and gradually deteriorates 
during the years [4 – 9]. An important factor in the performance of PV module 
has always been their long-term reliability. The most important issue in long-
term performance assessments is degradation which is the result of a power or 
performance loss progression dependent on a number of factors such as solar 
irradiation and ambient temperature, humidity, wind, water ingress and 
ultraviolet (UV) intensity [10 – 13]. Degradation of PV modules is essentially a 
combination of two phenomena [14]:  

 An initial, very rapid decrease in efficiency within the first few days of 
exposure, 

 A long-term reduction in efficiency over the year. 

In [15] the initial power loss for crystalline silicon PV modules is estimated 
between 2.3% – 3.9% and in [16] between 2% – 3%. Also Rabii et al. [17] 
report a 60% average loss over 12 years.  For example, a study by Tang et al. 
[18] of modules exposed for 27 years in desert region found that those modules 
who survived experienced an average degradation of 1.1% per year. Jordan et al 
[19] calculated a rate of 1.24%/year considering various technologies and 
climates.  Recently, the measurements carried out provided a mean power 
degradation rate of 1.17%/year for mono-crystalline silicon PV modules tested 
under real work conditions [20]. 

In the present paper, a comparative analysis of different methods to 
evaluate the degradation rates of PV module in desert environment of Ghardaïa 
(Algeria). Measurements in this work are taken with an I-V curve tracer 
(Solmetric PVA-600 PV Analyzer). The Solmetric tool is a commercially 
available curve tracer that is used by installers [21]. To compensate the 
temperature effects and convert the values to STC two methods were assessed 
(procedure 1.2). The uncertainty in measurement is fundamentally important for 
solar energy. Without an uncertainty declaration, the quality of a result cannot 
be quantified. Measurement results are incomplete and meaningless without a 
declaration of the estimated uncertainty with traceability to the International 
System of Units (SI) or to another internationally recognized standard [22]. The 
corresponding uncertainty of each method was calculated based on the Guide to 
the Expression of Uncertainty in Measurement [23] and present the results of 
our uncertainty analysis. 
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This paper consists of six sections, including the introduction. Section 2 
introduces the model and simulation procedure, and Section 3 illustrates the 
experimental results. Section 4 describes the evaluation and analysis of 
degradation and Section 5 contains the standard uncertainties and uncertainty 
analysis. Finally, the conclusions of the study are given in Section 6.   

2 Model and Simulation Procedure 

In order to evaluate the degradation rate of PV modules, it’s necessary to 
have information about their initial characteristics. In this study, we have 
chosen the modeling of PV modules and the extraction of the module 
parameters are obtained using an accurate method proposed by [24, 25].  

2.1 Model of Practical PV 

Photovoltaic (PV) arrays are built up with combined series/parallel 
combinations of PV solar cells [26], which are usually represented by a 
simplified equivalent circuit model such as the one given in Fig. 1 and/or by (1). 
In obscurity, the solar cell is not an active device; it works as a diode, i.e. a p-n 
junction. It produces neither a current nor a voltage. However, if it is connected 
to an external supply it generates a current Id, called diode (D) current or dark 
current. The one diode determines the I-V characteristics of the cell [25]. 
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Vt is the thermal voltage,  ,/K = qTaV ct K is the Boltzmann constant 
(1.38×10-23 J/K), q is the electron charge (1.602×10-19 °C). I is the cell output 
current (A), Iph is the photocurrent, function of the irradiation level and junction 
temperature, I0 is the reverse saturation current of diode. Rs and Rsh  are the 
series and shunt resistance respectively, Tc,STC is the reference cell operating 
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temperature (25°C), V is the cell output voltage,  is the current temperature 
coefficient, ISTC is the short circuit current at Standard Test Condition (STC), 
while GSTC and TSTC are the irradiation and temperature of the PV module at 
STC, respectively, Irs is the cell reserve saturation current at a reference 
temperature and a solar irradiance, Eg is the band-gap energy of the material, a 
is the ideal factor . 

 
Fig. 1  – Simplified equivalent circuit PV model. 

 

Equation (1) is valid for a solar cell. For the exact application of this 
equation for PV module, the term of (V+RsI)/Vt is replaced by (V+RsI)/NsVt, in 
which Ns is the number of series connected cells in a PV panel.  

The maximum power (Pmp) of photovoltaic panel is given by: 

 mp mp mpP V I , (2) 

where Vmp and Imp are the voltage and current at the maximum power output. 
Other important factors of PV modules are the fill factor [27, 28] and the 
efficiency [29 – 31] which are used for the evaluation of the PV panel 
performance, the expressions are given respectively by: 

 mp

oc sc

P
FF

V I
 , (3) 

 mpP

GA
  , (4) 

where A is the area of the module [m2]. 

Typically Ns cells are connected in series to get the requisite voltage of PV 
module. All the cells are forced to carry the same current called panel current in 
series panel. Typically, panel consists of many solar cells, and for each n cells 
are equipped with one bypass diode, so bypass diode is connected with a string 
(one string corresponds to n cells in series). Fig. 2 shows the internal 
construction of the PV panel. It can be seen that there are 36 cells serially 
connected and is protected by one bypass diode. 



Degradation and Performance Evaluation of PV Module in Desert Climate Conditions… 

281 

 

Fig. 2 – Connection schematic of bypass diodes in the PV module. 
 

The electrical characteristics specifications under STC form manufacturer 
are listed in Table 1. 

Table 1 
Template Data of Experimental PV Module. 

Silicon type 
Pmp 

[W] 
Isc 

[A] 
Imp 

[A] 
Voc 

[V] 
Vmp 

[V] 
FF 

η 
[%] 

Jumao 
photonics 50 

50 3.2 2.9 21.6 17.3 0.72 13.94 

To determine the five parameters exist in (1), which are: Iph, Rs, Rsh, I0 and 
a, you can see [32]. The diagram of the closed loop system for MATLAB® and 
Simulink is shown in Fig. 3, which includes the electrical circuit of the PV 
module mono-crystalline. The photovoltaic module is modeled using the 
electrical characteristics to provide the current and voltage of the photovoltaic 
module output. 
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Fig. 3 – Simulink simulation to illustrate the I-V and P-V module output characteristics.  
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Fig. 4 – I-V and P-V module under STC (Initial Characteristic). 
 

3 Experiments and Verification 

The outdoor measurements were performed in the site of Applied Research 
Unit in Renewable Energy (URAER), Ghardaïa, Algeria (latitude 32.49°N, 
longitude 3.67°E), and Sunlight duration in number of days by year. 
Experiments were conducted using mono-crystalline PV module (see e.g. 
Fig.6). Additionally the following meteorological parameters are measured as 
two minutes averages: 

 Solar irradiance measured by a pyranometer (kipp  ZonenTM CMP21) 
with is also installed on a metal plate, coplanar with the PV field. 

 Back of panel is recorded via PT100 resistive thermal sensors. 

Fig. 5 shows the evolution of module temperature, ambient temperature and 
irradiation as function of time. 
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Fig. 5 – Evolution of Irradiation (Left), module temperature and  
ambient temperature (Right) as function of time. 

(Colors can be seen in electronic version) 

 

3.1. PV outdoor measurements 

One of the objectives of this work is the experimental study of PV modules 
in real conditions of work. Experimental measurements were taken using the 
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panel connected to the Solmetric I-V Curve Tracer with SolSensor (see Fig.6). 
It measures the current-voltage (I-V) curves of PV panels and immediately 
compares the results to the predictions of the built-in PV models.  

 Measure the essential parameters for the I-V curve measurements 
(irradiance, temperature cell and ambient temperature by SolSensor). 

 Save the V-I curve data, extract points of interest and store the I-V 
curves for later analysis. The acquired data are then treated and 
translated at standard test condition in order to comport with the data 
sheet of the photovoltaic modules values at standard test condition.   

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 6 – Experimental setup of measurements (03/05/2016). 
 

Table 2 summarizes the electrical specification of the Solmetric PVA-600 
Analyzer. 

Table 2 
Electrical Specifications of “PVA-600 Analyzer”. 

Parameters Range Accuracy Resolution 
Current (Idc) 0 – 20A ±0.5%±0.04 A 2mA 
Voltage (Vdc) 0 – 600V ±0.5%±0.25 V 25mV 
Irradiance (G) 0 – 1500W/m2 ±2% 1W/m2 

Temperature (T) 0 – 100°C 
Typically less than 

2°C 
0.1°C 

Tilt 
0–90° 

(horizontal) 
±1deg (0-45° tilt) – 

 

The characteristic are visualized with the use of software, Fig. 7 shows the 
software interface.  

 

PV Module 

Irradiance & Temperature
SolSensor 

PC

I-V Data

G, T 

Solmetric PV 
Analyzer 

Pyranometer



A. Fezzani et al. 

284 

     

Fig. 7 – Software interface with an I-V characteristic. 
 

To evaluation the effectiveness and accuracy of the model, several 
experiments were conducted. Fig. 8 shows the experimental I-V and P-V curves 
of the module at difference irradiance values and temperature.  
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Fig. 8 – Measured I-V and P-V characteristics under different operating conditions. 
(Colors can be seen in electronic version) 

 

Fig. 9 shows the simulated and experimental results for the module before 
and after 12 years of continuous exposure on URAER, Ghardaïa site as desert 
climate. In these study case, the solid lines show simulation curves (before and 
after exposure) and dashed (stars) lines show measurement curves. These figure 
show good agreement between measurement curves and simulation curves. 

The data of simulation and experimental of the PV module is given in 
Table 3. The term γ (%) in this table is the relative error between simulated and 
experimental values which is given by [33]: 

100%simulation Measured

Measured

X X

X


   . 
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Fig. 9 – I-V characteristics before and after ageing at STC and operating conditions. 
(Colors can be seen in electronic version) 

 

The index ‘‘Measured” refers to the experimental and the index 
‘‘Simulation” refers to the simulation. 

Table 3 
Data of simulation and experimental of the PV module. 

Parameters 
Imp 
[A] 

Vmp 
[V] 

Voc 
[V] 

Isc 
[A] 

Pmp 
[W] 

FF 
η 

[%] 
Under Outdoor test 

G = 973[W/m2 ] 
T = 47.46[°C] 

2.47 13.87 19.80 3.08 34.20 0.56 9.54 

Simulation  model 2.50 14.37 19.90 3.09 35.92 0.58 10.0 

Relative error γ (%) 1.21 3.60 0.50 0.32 4.80 3.45 4.80 

As shown in Table 3, the relative error γ of the short circuit current and 
open circuit voltage is below 1%. In addition, the relative error γ of maximum 
power-output, fill factor and efficiency are below to 4.80%. 

4 Evaluation and Analysis of Degradation 

The main requirement for a PV module is to obtain the top performance 
results during the solar energy conversion procedure. On the other hand, 
efficiencies of the PV modules during real working conditions must be 
measured in order to rule on the most adapted plan topology. The performance 
of photovoltaic (PV) modules is greatly influenced by many factors, such as 
solar insolation, ambient temperature and the time under exposure to the sun, 
they factors contributes significantly to the final power output. The mode citied 
below are at the origin of the degradation of the modules, which is manifested 
in several forms. 
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4.1 Degradation mode 

Table 4 summarizes the degradations modes of the photovoltaic modules 
existing in reviews literature [20, 34, 35]. 

 

Table 4 
Degradations modes. 

Degradations modes. 
Encapsulant delamination  
Encapsulant discoloration  
Corrosion 
Broken cells 
Junction box failures 
Broken interconnects 
Hotspots 

 

4.2 Degradation analysis methodology 

The effect of degradation of photovoltaic solar modules and their 
subsequent loss of performance has a serious impact on the total output power. 
According to the literature, there are some methods used to evaluate the 
photovoltaic modules degradation such as [36 –38]: 

 Visual inspection. 
 I–V Curves measurement normalized at STC.  
 Infrared thermography (IRT). 
 Analytical calculations of degradation rates. 
  Insulation resistance of all modules in dry and wet condition. 
  Cost analysis. 

In this paper, the presented study was carried out using Visual inspection, I-
V curves measurement normalized at STC by two methods (described in IEC-
60891) comported with Solmetric PV Analyzer Data Analysis Tool and 
calculation of degradation rates. 

 

4.3 Visual inspection 

Visual inspection is part of the test described in IEC 61215 [39]. It is the 
first step to evaluate the degradation modes in photovoltaic modules. The 
inspection must be executed under real work conditions where PV modules can 
get good quality solar irradiance. Moreover, reflections should be evaded during 
the test because it can result in defective images. In order to present the long 
term degradation of module. The inspection allows detecting some failures after 
12 years of exposure in the desert environment that can be observed visually; 
such discoloration (see Fig. 10).  
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Fig. 10 – Main failures observed of PV module in the site after 12 years of working. 

 

The main impact of discoloration of the encapsulation is reduction of short 
circuit current of the panel witch consequently also reduces the power output of 
the panel PV. 

 

4.4 Translation methods to STC 

According to the ICE 60891 standard [40], data measurements were 
conducted under clear sky conditions with irradiance values greater than 800 
W/m2. It was translated into photovoltaic output characteristics in STC by using 
translation methods. The object is to translate I-V curves from the real 
conditions at which they were measured (Tx and Gx) to any another set of 
conditions (T2 and G2). Habitually these second conditions are chosen to be the 
STC (25°C and 1000 W/m2) [41]. Table 5 shows the STC translation equations. 

Table 5 
Translation Methods to STC. 

Translation Methods 
I-V curves 

IEC 60891 Procedure 1    

2 1 sc,1 2 1 2 1= + ×(( / 1 )+ ( ))I I I G G T T    

2 1 2 1 2 1 2 2 1= ( ) ( ) K ( )sV V T T R T T I T T       

IEC 60891 Procedure 2  
   2 sc,1 2 2 1= ×(( /1000)+ ( ))I I G T T      

2 1 2 1 2 1 2 2 1 oc, 1 2 1= ( ) ( ) K ( ) ×g×ln( / )sV V T T R T T I T T V G G        

oc, 1 sc, 1 o,x 2 1= ×ln( /  )+ ( )s tV N V I I T T   [37]. 

 

The Table nomenclature is defined as: K – Curve compensation factor 
(/°C); α and  – the relative current and voltage temperature coefficients; g – 

Irradiance correction factor for the Voc.  

4.5 Degradation rates 

In order to assess the degradation performance of the photovoltaic modules 
or arrays over its lifetime after a long term exposure to the sun in desert climatic 
condition, the degradation rate (Rd) and annual degradation (Rda) of each 
parameters such as maximum power (Pmp) were determined, and current at the 

Interconnect discoloration  
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maximum power point (Imp), voltage at the maximum power point (Vmp), open 
circuit voltage (Voc), fill factor (FF) and efficiency η were calculated 
analytically by following expressions equation [42, 43]: 

  
0

1d

X
R X

X

 
  
 

, (5) 

 mp mp mp sc ocX P I V I V FF    ,   0 0 0 0 0 0 0 0mp mp mp sc ocX P I V I V FF    , 

where 0X  represents the reference value of the parameters under STC given by 
manufacturer and X  represents value after degradation, 

 ( ) [%]d
d

R
R X

T



, (6) 

where T  (years) is the time of exposure under real operating condition. 

Fig. 11 shows the Simulink block diagram of simulation methodology. Iscmes 
and Vocmes are the measured short circuit current and open circuit voltage 
respectively, Impmes and Vmpmes are the measured current and voltage at the 
maximum power point respectively, GSTC and Gmes are the reference and 
measured irradiances.  
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Fig. 11 – Simulink block diagram of Different Methods to Evaluate the Degradation Rate. 
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4.6 Results and discussion 

From data measurements, the I-V characteristics of   photovoltaic module 
under test translated to STC by using conversion methods to STC after 12 years 
of continuous exposure on URAER in the desert region in south of Algeria are 
illustrated in Fig. 12. 
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Fig. 12 – I-V curve of the module translated to STC based  
on conversion methods and data obtain by the model. 

(Colors can be seen in electronic version) 

 

The results of the translation methods are summarized in Table 6. The term 
γ1 (%) in this table is the relative error between simulated and experimental 
values translated to STC which is given by 

 
,

1 100%
simulation STC PE

PE

X X

X


   . 

The index ‘‘PE” refers to the Electrical Parameters translated to STC and 
the index ‘‘Simulation” refers to the simulation. 

The deviation of the relative error of the Pmp, FF and η is high by using 
Solmetric PV Analyzer (Table 6). It includes various factors that lower solar 
module output such as: Effects of spectral changes over time, module 
temperature, effects of reflection by PV incident angles, effects of solar 
spectrum according to measurements conditions [44, 45]. Thus from the 
translated I-V data using Procedure 1, 2, and PV Solmetric Analyzer translated, 
error in the value of Pmp was calculated and plotted at different irradiances. 
Fig. 13 shows the error in Pmp at different irradiances for mono c-Si.  

According to Fig. 13 the translated by Procedure 1 and PV Solmetric are 
not suited for making large irradiance translations that differ from the measured 
value more than 20%. The procedure 2 yields more accurate results for larger 
irradiance corrections [20]. 
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Table 6 
Data Translation to STC of the PV module. 

Parameters 
Imp 

[A] 
Vmp 

[V] 
Voc 
[V] 

Isc 

[A] 
Pmp 

[W] 
FF 

η 
[%] 

Under Outdoor test 
G=973W/m2 

T=47.46 °C 
2.47 13.87 19.80 3.08 34.20 0.56 9.80 

After exposure  at STC 
(Simulation) 

2.54 15.63 21.65 3.143 39.70 0.58 11.07 

Relative error γ [%] -1.21 -3.60 -0.50 -0.32 -4.80 -3.45 -4.80 

Procedure 1 2.538 15.08 21.58 3.148 38.28 0.57 10.97 

Relative error γ1 [%] 0.078 3.64 0.32 -0.16 3.70 0.03 0.066 

Total Relative Error 
γ1+γ [%] 

-1.13 -0.04 -0.18 -0.48 -1.10 -3.42 -4.73 

Procedure 2 2.52 15.21 21.58 3.147 38.34 0.57 10.99 

Relative error γ1 (%) 0.793 2.76 0.32 -0.16 3.54 0.03 0.007 

Total Relative Error 
γ1+γ [%] 

-0.42 -0.84 -0.18 -0.48 -1.25 -3.42 -4.79 

Solmetric PV 
Analyzer translated 

2.31 15.26 21.53 3.13 35.18 0.52 10.08 

Relative error γ1 [%] 9.95 2.42 0.56 0.41 12.84 11.5 9.82 

Total Relative Error 
γ1+γ [%] 

8.74 1.17 0.06 0.09 8.05 8.09 5.02 
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Fig. 13 – Error in Pmp at different irradiances. 
(Colors can be seen in electronic version) 
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A comparison between the values given by manufacturer (see Table 1), 
data measurement obtained after translation in Standard Test Condition 
(Procedure 1, 2) data translated using Solmetric PV Analyzer and Data 
calculated by simulation model. Table 7 shows the values of degradation rates 
(Rd) and annual degradation of the module electrical performances at STC, 
considering measurements at 03.05.2016. 

Table 7 
Degradation rate (Rd) and Annual Degradation (Rda). 

Parameters 
Imp 

[A] 
Vmp 

[V] 
Voc 
[V] 

Isc 

[A] 
Pmp 

[W] 
FF 
[%] 

η 
[%] 

Rd 
Pro1 [%] 

12.49 12.81 0.098 1.633 23.45 22.00 21.30 

Rd 
Pro 2[%] 

13.09 12.06 0.087 1.648 23.82 21.87 21.17 

Rd 
Simulation [%] 

12.41 9.65 0.23 1.78 20.60 19.72 20.60 

Rd 
Sol PV [%] 

20.34 11.79 0.324 2.19 29.64 28.03 27.69 

Rda 
Pro1 [%] 

1.04 1.068 0.0081 0.136 1.95 1.83 1.75 

Rda 
Pro 2[%] 

1.09 1.005 0.0072 0.137 1.94 1.82 1.76 

Rda 
Simulation [%] 

1.03 0.80 0.02 0.15 1.71 1.64 1.72 

Rda 
Sol PV [%] 

1.70 0.98 0.027 0.18 2.47 2.34 2.30 
 

 

Fig. 14 – Degradation rate of IV parameters for PV module for  
outdoor exposure test after 12 years of operating. 

(Colors can be seen in electronic version) 
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Fig. 14 displays the yearly degradation rates of Imp, Vmp, Voc, Isc, Pmp, FF, 
and η for the module. The first observation, we can report a decrease in the Pmp, 
Vmp, Imp, FF and η.  Surely, the increase in Rs has principally contributed in the 
performances degradation of tested photovoltaic module, its study and 
understanding is important in order to find solutions for the decrease of the 
output power of PV modules [46]. From Fig. 12 it can be seen that the Rs affects 
the slope of the IV characteristics, by reducing voltage output (ΔV), fill factor 
(FF) and hence the efficiency of the module [46].  

Series resistance increase could arise from three interfaces/contacts:  
 Cell and Metallization contact.  
 Metallization and Ribbon contact.  
 Ribbon and Ribbon contact. 

5 Standard Uncertainties and Uncertainty Analysis 

The International Guidelines of Uncertainty in Measurement (GUM) [23] 
are used for calculating the combined uncertainty of the corrected power PSTC. 
The GUM technique employs two types of uncertainty estimates: type A and 
Type B. This paper describes a method for calculating estimated measurement 
uncertainties of PSTC data obtained by Solmetric I-V Curve Tracer.  Uncertainty 
in field measurement is a result of SolSensor (irradiance and temperature), 
equipment installation, translation methods, and the environmental conditions at 
the site where the experimentation is used. 

The GUM steps to evaluating overall uncertainty of a measurement can be 
summarized in five steps [47]:  
Sources of uncertainties 

o Obtained from manufacturers specifications, from past experience of the 
measurement, from calculations and from calibration certificates.   

Standard Uncertainty (u) 
o Calculated using expanded uncertainty and statistical distribution (type 

A), and/or Non-statistical distribution (type B).  
o The expressions of the standard uncertainty of the both type A and type 

B are given respectively by: Au n   or Au U k  (σ – standard 
deviation, n – Number of readings, U – expanded uncertainty and k – 

coverage factor), 3Bu U  (rectangular distribution). 
Sensitivity Coefficient (c) 

o Calculated using partial derivative from the measurement equation for 
each input variable.  

Combined Uncertainty 
o Calculate the combined standard uncertainty time using the root-sum-of-

squares method for all standard uncertainties time in step 2, 3. 

o The expression is given by: 
1

2

0

( )
n

c
j

u u c




  . 
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Expanded Uncertainty (U95) 
o Calculate the expanded uncertainty by multiplying the combined 

standard uncertainty time by the coverage factor (k = 1.96 for a 95% 
confidence interval). 

o The expression is given by: 95 cU k u  . 

5.1 Uncertainty calculation 

Quantification of uncertainty is an obligation for calibration measurements. 
It is critical for all power measurements systems to gain a proper understanding 
of the influence of factors such as uncertainties on measured values (current and 
voltage), sensor uncertainties for irradiance and temperature, uncertainty in 
corrections to STC.  

The electrical parameters at STC are derived from measurement and 
translation procedure. Consequently the uncertainty in the STC data is 
composed of the actual measurement uncertainties introduced by the instrument 
plus the uncertainties in the temperature coefficients which are used in the 
translation equations (Fig. 15). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Fig. 15    – Major influences on the combined uncertainty of power at STC [48]. 
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4.1. Uncertainties in measurements 

The method in GUM [23] is used to calculate the uncertainty contributions 
of the corrected power (PSTC). In Table 8, we have listed an uncertainty for the 
measurement parameters. 

Table 8 

Source of uncertainties that contribute to the measurement uncertainty. 

Parameters Quantity 
Standard Uncertainty 

(u) 
Expanded Uncertainty 

(U) 

Current (Idc) 3 0.29%U   0.5% 

Voltage (Vdc) 3 0.29%U   0.5% 

Irradiance (G) 3 1.15%U   2% 

Temperature (T) 3 1.15%U   2°C 

According to [48] the estimated of parameters uncertainties of the 
correction parameters is summarized in Table 9. For plus details of the 
calculated of uncertainties parameters correction see [48]. 

Table 9 
Estimated parameters correction uncertainties for the crystalline silicon. 

Parameters Quantity 
Standard Uncertainty 

(u) 
Expanded Uncertainty 

(U) 

Current Temperature 
coefficient 

(α) 3 0.073%U   0.063%/°C×2°C 

Voltage Temperature 
coefficient 

(β) 3 0.445%U   0.385%/°C×2°C 

Curve compensation 
factor 

(K) 3 0.096%U   0.08316%/°C×2°C 

Series resistance (Rs) 3 4.04%U   7% 

 

The algorithm has been implemented in Matlab program that automatically 
calculates the expanded uncertainties in power at STC (Fig. 16). 

The major contributions to the uncertainty of the power at STC determined 
by field I-V curve measurements were presented. The expanded uncertainty 
with 95% confidence in the maximum power is listed in Table 10. 
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Fig. 16 – Methodology user defined subsystem block. 
 

Table 10 
The expanded uncertainty in the maximum power. 

The expanded uncertainty 

G = 800 W/m2 and T = 44.9°C 973 W/m2 and T = 47.46°C 

mpPU  Pro 1 
mpPU  Pro 2 

mpPU  Pro 1 
mpPU  Pro 2 

3.21 3.34 3.53 3.56 

6 Conclusion 

The objective of this paper is to present the effect of the real outdoor 
conditions on the photovoltaic modules performance in the desert environment 
after a long term exposure of more than 12 years using Solmetric PV Analyzer. 
A general approach on modeling and simulation of PV module has been 
presented. 
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Various translation procedures available in the literature were examined, 
and decision was made to use procedures 1 and 2 of IEC 60891 for translating 
the field I-V data to the STC. MATLAB/SIMULINK software has been 
developed to implement these procedures.  

There was visual degradation and relative differences between the electrical 
parameters of the PV module given by manufacturers and investigated after 12 
years of exposure in desert environment.  

The observed results lead to the following conclusions:  
 Maximum power losses (>20%) are attributed  generally to FF losses 

(series resistance increase); 
 The maximum power degrades 2%/year average; 
 The module efficiency also showed a significant degradation under real 

outdoor conditions.    

The uncertainties relate typically to the evaluation of the solar resource and 
to the performance of the system itself. We have calculated the uncertainty in 
the data by using the International Guidelines of Uncertainty in Measurement 
(GUM). The uncertainties introduced in translating the Pmp depending on the 
environment conditions.  
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