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Measurement of Definite Integral of  
Sinusoidal Signal Absolute Value Third  
Power Using Digital Stochastic Method 
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Abstract: In this paper a special case of digital stochastic measurement of the 
third power of definite integral of sinusoidal signal’s absolute value, using 2-bit 
AD converters is presented. This case of digital stochastic method had emerged 
from the need to measure power and energy of the wind. Power and energy are 
proportional to the third power of wind speed. Anemometer output signal is 
sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. 
Two approaches are proposed for the third power calculation of the wind speed 
signal. One approach is to use absolute value of sinusoidal signal (before AD 
conversion) for which there is no need of multiplier hardware change. The 
second approach requires small multiplier hardware change, but input signal 
remains unchanged. For the second approach proposed minimal hardware change 
was made to calculate absolute value of the result after AD conversion. 
Simulations have confirmed theoretical analysis. Expected precision of wind 
energy measurement of proposed device is better than 0,00051% of full scale. 

Keywords: AD conversion, Digital measurements, Electrical measurements, 
Probability, Stochastic processes. 

1 Introduction 

Wind is a vector quantity – to describe it, it is necessary to conduct detailed 
measurements of the wind speed (intensity), its line and direction. Typically, the 
measurement results are shown as a wind rose – Fig. 1. 

For the accurate assessment of a location, for the construction of wind 
farms, it is necessary to perform measurements. The most important factor to 
consider before deciding on location of wind energy plant is the wind speed. 
The measurements are performed for a minimum period of one year in order to 
cover all seasons and get relevant information. In order for a location to be 
considered, the lowest annual wind speed should be higher than 5 m/s. Wind 
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farm is a large investment, therefore it is of great importance to perform 
comprehensive measurements and choose the optimum location. Wrong choice 
of location is a mistake that cannot be corrected later. For example, price of 
wind turbines with installed power of 1 MW amounts to over one million euros. 
To obtain a complete picture of the wind resources at a desired micro-location 
we must set up monitoring devices for wind characteristics tracking. 

Most widely used measuring instrument in meteorology for measuring the 
wind speed is an anemometer. The cup anemometers generate sinusoidal signal 
at their output, where amplitude and frequency are proportional to the wind 
speed. It is well known [1] that wind power (1) and energy are proportional to 
the third power of wind speed: 

 31

2
P Av  . (1) 

 

Fig. 1 – Wind rose for Jan. 1, 2011 to Dec. 31, 2015. 
 

Where: P is power (W), ρ is density of air (kg/m3), A is a cross-section area 
perpendicular to the wind that wind is passing through the windmill (m2), and v  
is wind speed (m/s). German physicist Albert Betz concluded in 1919 that no 
wind turbine can convert more than 16/27 (theoretical maximum power 
efficiency 

maxPC of any design of wind turbine is 59.3%) of kinetic energy of 

wind into mechanical energy turning a rotor. To this day, this is known as the 
Betz Limit or Betz's Law. Wind turbines cannot operate at this maximum limit. 
The real world limit is well below the Betz Limit with values of 35–45% 
common even in the best designed wind turbines. By the time we take into 
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account other losses in a complete wind turbine system - e.g. gearbox, bearings, 
generator and so on - only 10–30% of the power of wind is ever actually 
converted into usable electricity. Hence, the power coefficient PC  needs to be 
factored in (1) and the extractable power from the wind is: 

 31

2 pP Av C  . (2) 

 

Fig. 2 – Block diagram of application of a uniform  
random dither h to the measured signal y. 

 

2 Principle of Digital Stochastic Measurement  
Using 2-bit Flash AD Converter 

Sampling measurement method has been the backbone of measurement 
evolution and is a standard in metrology, control, telecommunications, etc. 
Time-continuous signals are sampled (at discrete time instants) and converted 
into discrete digital values in AD converters. In the conversion process, 
accuracy and speed are opposing requirements. 

Accurate measurements of low, noisy and distorted signals has been a 
challenging problem in theory and practice of measurement science and 
technology. Since 1956 [2], the possibility of reliable operation of instruments 
with inherent random error has been researched. It has been shown that adding a 
random uniform dither to the input signal prior to quantization decouples 
quantization error from the input signal [3 – 5]. Fig. 2 shows the principle of 
adding a uniform random dither signal h to the measured signal y. 

 

Fig. 3 – Two-bit flash ADC with the minimal hardware structure. 
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High speed of all electronic circuits implies the viability of application of 
the Central limit theorem for practical measurements. Digital stochastic 
measurement, formulated in [6], enables very simple hardware to be used and 
easy parallel processing (practically without additional delays in signal 
processing). 

Let us assume that set of the following conditions are met: 

 , , ,
2 2

a a
y R R Za h y h R      , (3) 

where R  is the range of ADC, Z  is a number of quantum levels, and a  is a 
quantum of ADC uniform quantizer. For 3Z  , 2-bit flash ADC is extremely 
simple, with minimal hardware structure shown in Fig. 3. Practically, ADC 
consists of two comparators that have decision levels  
(threshold voltages) g and g . 

A probability density function (PDF) of uniform random dither signal h  is 
1

( )p h
a

  for 
2

a
h  . Voltage ranges and decision thresholds associated with 

mean input signal measuring process using uniform quantizer are presented in 
Fig. 4. 

Ideal uniform quantizer characteristic of this 2-bit flash ADC is shown in 
Fig. 5. For this kind of 2-bit flash ADC, when 2a g , (3) becomes (4): 

 2 2 , , 3y g R g h g y h g     , (4) 

 

 

Fig. 4 – Principle of stochastic measurement of DC signal y. 



Measurement of Definite Integral of Sinusoidal Signal Absolute Value Third Degree... 

89 

Possible values of   are  2 ,0, 2g g    , and analytical expression for 

  is: 

 1 12 ( )g b b   , (5) 

where 1 1, {0,1}b b   and 1 1 0b b  . It is not possible for 1b  and 1b  to be 1 

simultaneously - it would mean that 0y   and 0y   are simultaneously. 

Device from Fig. 6 have two 2-bit flash ADC from Fig. 3. If, during one 
measurement interval, N conversions of ADC are performed by each ADC, then 
accumulator from Fig. 6 accumulates the sum of N subsequent multiplier 

outputs: 1 2
0

( ) ( )
N

i

i i


  . This accumulation can be used for simple calculation 

of the mean of a multiplier output   over the measurement interval as: 

  1 2
1

1
( ) ( )

N

i

i i
N 

    . (6) 

 

Fig. 5 – Ideal quantizer characteristic of 2-bit flash ADC  
implemented using two comparators. 

 

The mean of the multiplier output   (when sampling frequency is infinite) 
is mean of products of y1 and y2: 
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 (7) 

Variance of the measurement error e for product of signals y1 and y2 is: 

 
  2 2

1 1

2

2 2 2
1 2 1 2

2 1 2 1

2 1
( ) ( ) d ( ) ( )d

t t

e

t t

g
f t f t t f t f t t

t t t t
  

   , (8) 

which enables us to see how the error varies when the power of signal is 
measured using a device from Fig. 6. 
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The necessary condition for validity of the Central limit theorem is that any 
third moment, including the central third moment, is limited [7]: 

 6
3 8(2 )M g . (9) 

As a consequence of (9) and the Central limit theorem, statistical sampling 
theory can be applied to the error e. Therefore, following estimation can be 
made: 

 
2

2 e
e N


  , (10) 

where N is a finite number of samples within the time interval 2 1( )T t t  . 

Estimation of (10) is correct if discrete sets of samples 

1 1 1 1{ (1), (2).... ( )}N      can represent function 1 1( )y f t  and 

2 2 2 2{ (1), (2).... ( )}N      can represent function 2 2 ( )y f t , which 

means that the Nyquist sampling criterion, regarding a uniform sampling of the 
signals y1 and y2, is satisfied. In [7] it is not only shown that standard 
measurement uncertainty of type A can be defined as e , but it is also shown 
how this parameter can be determined on-line. 

Expressions (6), (8) and (10) can be generalized for a product of S input 
signals. Then a device from Fig. 6 can be improved to accommodate S inputs 
( ( ), 1, 2,..., )i iy f t i S  , and 2-input multiplier can be replaced with S-input 

multiplier, thus being adjusted for measurement of the mean of multiplier output 
as follows: 

  1 2
1

1
( ) ( ) ( )

N

S
i

i i i
N 

      . (11)
 

In that case, the mean of the multiplier’s output   is given as: 

 
2

1

1 2
2 1

1
( ) ( ) ( )d

t

S

t

f t f t f t t
t t

 
   , (12) 

and measurement error variance is: 

 
  2 2

1 1

2 2 2 2
1 2 1 2

2 1 2 1

2 1
( ) ( ) ( ) d ( ) ( ) ( )d

S t t

e S S

t t

g
f t f t f t t f t f t f t t

t t t t
  

    . (13) 

Of course, a standard measurement uncertainty of type A can also be 
calculated using (10). 

In articles [8 – 12] theoretical aspect of error was considered, at the same 
time the theory was proven using simulations. Devices that were developed and 
their practical use has proven the efficiency of this method. We speak about 
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measurements on the grid where the most common measurements are of RMS 
values of voltage and current, as well as measurements of power and energy. 

3 Application of Digital Stochastic Measurement  
in Wind Speed Measurement 

To measure wind power and energy, input signal (of the wind speed) must 
be raised to the third power. For this purpose, to device shown in Fig. 6, one 
more AD converter together with uncorrelated dither signal associated with – 
Fig. 7 was added. Outputs of all three AD converters are connected to the 
multiplier input. 

Direct application of the device from Fig. 7, where 1 2( ) ( )y t y t   

3 ( ) ( )y t f t , (we connected the same input signal to all three AD converter 

inputs) calculates the third power of the input signal. Since ( )f t  is a sinusoidal 
signal, the device at its output (as a result) generates value close to 0 (sinusoidal 
signal third power mean value), which is a direct application of (12) for S = 3. 
This result is independent of the wind speed. To be able to use this device, for 
measuring sinusoidal signal third power, it is necessary to change the input 
signal or to modify device itself. Both of these solutions are proposed. 

The first solution is to use sinusoidal signal absolute value as an input - 
namely to modify it into full-wave rectified sinusoidal signal. In this case 
absolute value is calculated before AD conversion. 

The second solution would be to leave the input signal unchanged, but 
requires a small change of device’s hardware itself. This change can be done by 
modifying multiplier output to convert result -1 into 1. It is easily done by 
adding single OR gate on multiplier output. This way accumulator is not up-
down counter any more, but becomes up counter. 

In both cases mean signal absolute value is calculated and it depends on the 
wind speed. 

Theoretical mean absolute value of the third power of sinusoidal signal is:  

 
3 3

0

1 4
[ sin( ) d ] ...

3

T

m mU t t U
T

  
 . (14) 

Because of the fact that wind speed is extremely slow changing quantity 
(compared to electronics), we can significantly simplify device from Fig. 7. 
This simplification is shown in Fig. 8. 

Anemometer A generates voltage u at its output. That voltage u is 
proportional to the wind speed v. 
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Fig. 6 – Structure of a device, based on two 2-bit flash ADC,  
for measurement of definite integral product of two signals. 

 

 

Fig. 7 – Structure of a device, based on three 2-bit flash ADC, 
 for the measurement of product of three signals definite integral. 
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Fig. 8 – Block diagram of a device for the measuring wind power and energy. 
 

To use only one dither signal h for calculating the third power, we must 
prove that there’s no correlation between factors. This is achieved using three 
consecutive samples in every product. This is possible due to oversampling, 
because between 3 consecutive signal samples there’s practically no difference 
(signals from anemometer are slow changing so we can assume that samples 
have equal values). Results of multiplying obtained this way (wind speed third 
power) are sent to the accumulator (up counter). 

Two D flip-flops are used for each bit to remember previous two samples. 
They allow us to multiply current sample and two previous ones to form every 
product, i. e. third power of the signal current value. 

Instead of multipliers used in a device in Fig. 7, Fig. 8 shows a simplified 
device that uses logic AND gates. If anyone of three samples is zero (both bits 
are logic FALSE), it means that the result of the corresponding AD conversion 
was zero. In this case there is no increase in the value of up counter. 

Only in the case when we have 3 consecutive samples with AD conversion 
value other than 0 (-1 or 1), up counter will increase its value. That means that 
this combination of logic gates and D flip-flops form absolute value of the 
product for 3 consecutive dithered samples from the input signal. 

4 Comparison of Theoretical Error and  
Error Obtained by Simulations 

Theoretical value of the measurement error is calculated according to the 
(13), considering S = 3 and (10). Device from Fig. 8 measures the third power 
of the input signal absolute value. If ( ) sinmu t U t   then theoretical 
measurement error variance is: 
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  
2 2

32 3 6

0 0

2
2 sin d sin d

T

T T

m me
g U t t U t t

N

 
      
  

  . (15) 

Even though there’s no practical application, due to theoretical importance, 
simulation was carried out with sinusoidal signal which were connected to the 
inputs of all three AD converters. AD converter outputs (–1, 0, 1) were fed to 
the multiplier input, whose output was connected to accumulator. Multiplier can 
also have three values, accumulator can decrease by 1 or increase by 1 its value, 
or remain the same. Simulations were performed for input signals of amplitude 
from 0.2 V to 5.0 V with step of 0.2 V, sampling frequency was 100 kHz and 
duration of each measurement was 1 s. Each measurement was repeated 300 
times. The results, of simulations, were close to zero, and they were statistically 
processed. 

For practical application more important is second group of simulations. 
This group of simulations were performed for the same range of input signal 
amplitudes, with the same sampling frequency and duration of each individual 
measurement. Each measurement was repeated 300 times. Unlike the first group 
of simulations where multiplier’s output has three (–1, 0, 1) possible values it 
was necessary for a small hardware change to have only two values (0, 1) at its 
output. This effect was achieved by adding single OR gate at multiplier output. 
This way the result of product with value –1 is now 1. That means that 
accumulator can only increase its value by 1 or remain the same. 

Table 1 
Measurement Error Standard Deviation. 

TRUE
VALUE

10 0.05 0.0081 0.0085 0.0003 0.0003 0.0009

20 0.42 0.0230 0.0233 0.0003 0.0003 0.0027

30 1.43 0.0419 0.0436 0.0017 0.0017 0.0048

40 3.40 0.0636 0.0659 0.0023 0.0023 0.0073

50 6.63 0.0868 0.0879 0.0011 0.0011 0.0100

60 11.46 0.1098 0.1022 -0.0076 0.0076 0.0127

70 18.20 0.1304 0.1301 -0.0003 0.0003 0.0151

80 27.16 0.1454 0.1426 -0.0028 0.0028 0.0168

90 38.67 0.1496 0.1492 -0.0005 0.0005 0.0173

100 53.05 0.1322 0.1382 0.0059 0.0059 0.0153

% FS ത݁ߪത݁ೄߪ ் ത݁೅ߪ-ത݁ೄߪ ത݁ܶߪ-ത݁ܵߪ ௘̅ߪ∆
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Duration of measurement was 1 s and sampling frequency was 
100 kHzcf  . These results are presented in Table 1. In the same table, we also 

presented the value of error variance of wind power, for both simulations, of 
300 repeated measurements. As we can see we have good match between the 
theoretical and (fist and second) simulation results of standard deviation. 

Fig. 9 shows dependence of measurement error standard deviation in 
relation to percentage of full scale (FS): 

- For the measurement error theoretical value of definite integral third 
power sinusoidal signal, 

- For the measurement error simulation of definite integral third power 
sinusoidal signal and 

- For the measurement error simulation of definite integral third power 
sinusoidal signal with calculated absolute value after AD conversion. 

 

 

Fig. 9 – Measurement error standard deviation in relation to  
FS percentage for the sinusoidal signal third power. 

 

We observed standard deviation theoretical value and standard deviation 
obtained by both groups of simulation. The results were consistent with 
expectations. Deviations from ideal (theoretical) curve for simulation results 
were minimal because simulation used built-in function to generate random 
number and threshold levels were constant. 

If we were to conduct the experiment, higher deviations of experimentally 
obtained results, from ideal (theoretical) curve, should be expected due to non-
ideal random number generator, voltage instability of threshold levels 
associated with practical device and other influences associated with real word 
measurements. 
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Let us now see how we can calculate the energy of the wind. If we assume 
that: 

 E PT  (16) 

where E stands for energy, P  for average power of measurements in time 
interval T, we can calculate the differential of energy as: 

 
d d d

d d d , i.e.:
E P T

E PT P T
E TP

    , (17) 

where dT T  can be neglected because even at time interval of 1s relative 

precision of time measurement drops below 61 10 . 

Therefore it can be concluded that relative precision (in this case, also 
accuracy, we assumed ideal components of the device) is the same for energy 
and average power. 

By increasing the measurement interval from 1 s to one day, i.e. 86400 s 
(when measuring the wind power and energy, it is necessary to measure for at 

least a year), accuracy increases approximately 294 times  86400 s 1s  and 

amounts to 0.00051% FS i.e. (0.1492 294)% FS . 

By increasing the sampling frequency from 100 kHz to 12 MHz, accuracy 

increases about 11 times  12 MHz 100 kHz  and amounts to 0.000046% FS 

or below one ppm of FS. 

5 Discussion 

During analysis we were guided by the fact that theoretical error is known 
value defined by (10). We conducted simulation with 300 measurements, each 
lasting 1 s. By checking if theoretical results and results of simulation for wind 
power measuring are within acceptable limits, we came to conclusion that 
simulation error deviation from its theoretical value inside acceptable limits 
(Table 1). If we observe how wind energy is measured and how its relative 
precision behaves we came to conclusion that for long enough measurement 
period (longer period, greater precision) the precision of measuring wind energy 
is equal to the precision of measuring mean wind power. Therefore, with device 
from Fig. 8 we can measure wind power as well as its energy. Measuring device 
is very simple, as it can be seen in Fig. 8, so it has very small number of sources 
of systematic errors, which can easily be kept under control. On the other hand, 
its modern high-speed electric circuits make it very precise – in time interval of 
one day it can reach the accuracy of approximately 5 ppm of FS. 
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The only quantity that changes is the wind speed. It is measured and its 
third power integral calculated. It is shown that measurement precision is 
proportional to the square root of sampling frequency. The accurate values of 
wind power and wind energy are obtained by multiplying with constants. This is 
a task for the simplest supporting microprocessor. It needs to support commands 
for instrument operation, communication with other devices and display.  

6 Conclusion 

This paper arose from the need to measure wind power and energy which 
are proportional to the third power of wind speed. This paper elaborates 
developed theory of accurate and precise measurements of definite integral of 
sinusoidal signal absolute value third power using 2-bit flash ADC. Proposed 
solutions are in domain of hypothesis and have yet to prove themselves. In 
developed theory, no assumptions were made regarding waveform of the 
measured signals. Signal waveform directly affects both the measured quantity 
and standard deviation of measurement error. Consequently, if the waveform of 
measured signal is unknown, standard deviation of its measurement error cannot 
be calculated, but can be measured on-line. However, if the conditions of the 
sampling theorem are satisfied, then dithered 2-bit samples will contain 
sufficient information of the waveform of measured signal and it will be 
possible to accurately determine measurement uncertainty.  

In discussed case waveform of the signal is known (sinusoidal) so 
theoretical measurement uncertainty can be calculated. Comparison between the 
theoretical and simulation results show good basis of developed theory in both 
considered cases. Therefore, it is realistic to expect, for measuring interval of 
one day, for above mentioned device, to achieve precision of 0.0005% FS, i.e., 
5ppm FS. 
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