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Abstract: In this paper we propose a method for real-time blob detection in large 

images with low memory cost. The method is suitable for implementation on the 

specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It 

uses parallelism to speed-up the blob detection. The input image is divided into 

blocks of equal sizes to which the maximally stable extremal regions (MSER) 

blob detector is applied in parallel. We propose the usage of multiresolution 

analysis for detection of large blobs which are not detected by processing the 

small blocks. This method can find its place in many applications such as 

medical imaging, text recognition, as well as video surveillance or wide area 

motion imagery (WAMI). We explored the possibilities of usage of detected 

blobs in the feature-based image alignment as well. When large images are 

processed, our approach is 10 to over 20 times more memory efficient than the 

state of the art hardware implementation of the MSER. 

Keywords: Real-time blob detection, Maximally stable extremal regions, Paral-

lelism, Multiresolution analysis, Image alignment. 

1 Introduction 

In computer vision, blob detection is usually defined as a detection of 

regions in an image that possess some distinguishing properties compared to 

surrounding regions or to the image background. For example, characteristic 

properties of those so-called blobs can be brightness or color. Blob detection is 

one of the basic parts of a lot of image analysis systems. Blobs are often already 

the objects we want to detect, e.g. some particles, cells in medical imaging, 

characters in text recognition etc. However, sometimes it is impossible to 

determine whether a detected blob is a desired object by using simple detection. 

In such cases, the detected regions are usually the input to the other stage of the 

object detection algorithm, e.g. moving car detection and tracking in the video 

surveillance applications. The detected blobs are also frequently used as 

distinctive image features for the image matching together with the SIFT [1], 

SURF [2], BRIEF [3] or other descriptors. Many of these applications require 

real-time performance which can be achieved in software only on high 
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processing power platforms. Hence, if needed in low power embedded systems, 

the existing blob detection algorithms need parallelization in order to achieve 

the required performance with low energy and memory cost. 

Well known methods for blob detection are Laplacian of Gaussian, the 

difference of Gaussians and the determinant of Hessian approach, including 

their affine and hybrid versions. Other common methods for image 

segmentation and region detection are watershed algorithms. Typical example 

of the watershed algorithm is a blob detection method of maximally stable 

extremal regions (MSER) [4]. The MSER detection algorithm is able to detect 

both fine and coarse blobs, i.e. both small and large objects. It is used in 

applications such as cell detection in medical imaging [5], automatic 3D-

reconstruction from a set of images [6], feature detection and matching [7], or in 

automated surveillance systems for object detection and tracking [8]. 

Although the MSER detection algorithm is suitable for many applications, 

its computational cost is high and limits its real-time performance only for low 

resolution images. State of the art FPGA implementation has real-time 

performance, but only for images with spatial resolution up to 350 × 350 pixels 

[9]. The recent ASIC implementation has better performance, but it is designed 

to work on a higher clock rate [10]. Those two implementations have similar 

speed performance if comparison is based on the number of operations per 

clock cycle. 

We propose a method for blob detection which uses the MSER detector 

from [9], but applied to blocks of the divided input image in parallel. 

Parallelism provides a great speed-up of the detection algorithm. If applied to a 

large input image, the MSER detector from [9] would not be able to achieve 

real-time performance and its implementation’s processing memory 

requirement would be extremely large. In our method, we use only small blocks 

of the image for calculation, hence the processing memory cost is significantly 

reduced. The limitation of this approach is the inability to detect blobs whose 

size is larger than the block size. Also, for some applications, it is unable to 

detect large blobs at the borders of blocks. We described that problem in our 

previous conference paper [11]. In this paper, we overcome it by proposing the 

multiresolution analysis which increases the initial memory cost, but enables 

detection of larger blocks. We believe that this method can be used in many 

applications, whether used with or without the multiresolution analysis. 

In the next section, we briefly describe the MSER detection algorithm and 

its FPGA implementation from [9] which is used as a reference for this work. 

The method for parallel image processing, some possible applications and 

analysis of performance and memory usage are described in Section 3, which is 

the main contribution of the paper. In Section 4 we present other applications of 

this approach and use the detected MSER regions for the feature-based image 
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alignment. Finally, we summarize our results and give conclusions and 

proposals for further work in Section 5. 

2 Maximally Stable Extremal Regions 

2.1 Definition of the maximally stable extremal regions 

In this paper we used 8-bits per pixel grayscale images. If we apply a 

threshold at every possible pixel level  0,  255t  to the image I , we get a set 

of binary images as the result of the calculation 

 bin

1,
.

0,

t
I t

I
I t


  

 (1) 

In each binary image, we can see the set of connected regions that are 

called extremal regions. If we look at this set of binary images, the extremal 

regions at lower threshold are divided into multiple smaller extremal regions as 

the threshold increases. These extremal regions create a component tree as 

shown in Fig. 1. Each node of the tree represents a connected region at 

threshold t  noted as t

jR , where j  is the number of the region. Size of the 

region i.e. number of pixels in the region is t

jR . We can observe the region jR  

at different threshold values by looking at one branch of the component tree. 

 

Fig. 1 – A part of the regions tree for determining maximally stable  

extremal regions, for an example image in the upper-left corner.  

The complete regions tree contains regions for all possible thresholds. 

 

The region is maximally stable if the stability factor  q t  defined as 



V.L. Petrović, J.S. Popović-Božović 

70 

  
t t

j j

t

j

R R
q t

R

 
  (2) 

has a local minimum at *t , where   is the parameter of the method. The 

authors of the MSER blob detection method define the parameter called 

maximal value of the stability factor maxq  [4]. If a region has the stability factor 
*( )q t  larger than maxq , it should be rejected although it has a local minimum at 

*t . The larger the maxq is, the more MSER regions are detected, but the detected 

regions are less stable. In these paper, we chose max 0.25q  . This analysis 

applies to detection of the bright regions on a dark background, while the 

analysis of the inverted input image inv 255I I  gives the dark regions on a 

bright background. 

2.2 Implementation of the MSER algorithm 

Algorithm for MSER detection can be divided into three basic stages. The 

first one is preprocessing, where the intensity level histogram of an image is 

calculated and pixels are sorted by intensity. The sorting is done by using the 

bin sort algorithm [12], since it is very efficient if the intensity level histogram 

is known before the sorting starts. The second stage is clustering at which the 

representation of all regions at each threshold is created. This is done by using 

the Union-find algorithm [12] which is used to keep track of the regions of 

connected pixels. The final stage is tracking the sizes of the regions and their 

stability factors. Local minimums of the stability factor determine the 

maximally stable extremal regions. 

As a reference design in this paper we use the implementation of the MSER 

algorithm described in [9]. At the beginning of processing, the pixels are sorted. 

If the image has N  pixels, the sorted pixels positions are written to the N -

entry memory where each entry has 2log N  bits. When the sorting is finished, 

each pixel in the image is processed in sorted order. The algorithm uses a 

memory which is called the Region Map (RM). The region map has N  memory 

locations too. Each memory location has three numbers that are used to keep 

track of which pixels are added to which region, which pixels belong to a single 

region and which pixels have already been processed. The first number is called 

the union-find number (U ). If this number is equal to 0, it means that the pixel 

is not connected to any other pixel or that the pixel has not yet been processed. 

If 0U  , the pixel is a member of the same region as the pixel at position U . 

Finally, if 0U  , the pixel is the reference point of the region and 1 U  is the 

region size (number of pixels in the region). Union-find number U  is a 

21 log N  bits long word. 
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A single bit is added to each region map location and it is an indicator that 

shows whether the pixel is processed or not. 

In order to speed-up determining which pixels belong to the region with the 

reference point at the location p, every region has the linked list of pixels in that 

region. This means that each entry in the region map has additional 2log N -bit 

number which is a pointer to the next pixel in the list. 

An example of adding a pixel at level 1t i     to the region map is 

shown in Fig. 2. When processing the pixel, we check right, up, left and down 

neighboring pixels. If a neighbor belongs to an existing region ( 0U   or 

0U  ) we add the current pixel to that region. Otherwise, we check if the 

neighbor is already processed. If it is not, that means that it has lower intensity 

value than the current pixel and it is therefore skipped. If it is processed, a new 

region is made from the current processing pixel and the neighboring pixel. The 

example in Fig. 2 shows the most complex situation when a single pixel causes 

merging of two regions. 

 

Fig. 2 – A region map (RM) for the union-find operations. Each RM memory  

location represents one pixel. The large middle number in each memory location 

 is the union-find number (U). The number in the upper-right corner is the pixel 

address, and the number in the lower-right corner is an indicator that shows  

whether the pixel is processed (1) or not (0). Number in the lower-left corner is the 

address of the next pixel in the linked list of connected pixels in the region. The  

example here (taken from [9]) shows processing of the pixel at position 7 whose 

intensity is 1i    . The upper-left image shows the RM at intensity i. Initially, the 

pixel at position 7 is added to the region on the right due to the first neighbor  

check at the right side. After the neighbor check at the left side, two regions merge  

since the processing pixel needs to be added to both of neighboring regions. In  

case we need region pixels at threshold t i , first links are bypassed, while  

needed pixels are shadowed ones, like it is shown in the lower-right image. 
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In order to keep track of the sizes of connected regions, a hash indexed 

memory is used. Whenever all pixels from one intensity level have been 

processed, the size of all regions that grew is updated in this memory. Sizes for 

the region jR  are kept only for the intensity levels from 1t     to 1t    . 

These intensity levels are needed for the calculation of stability factors  1q t  , 

 q t  and  1q t  . If these three stability factors are known, we can check if the 

 q t  is a local minimum. If it is a local minimum, then the region t

jR  is the 

maximally stable extremal region. For further details about the implementation, 

please refer to [9]. 

3 Parallelism for the Detection Speed-up and Reduced Memory Cost 

In this section we propose a system for real-time detection of the MSER 

blobs with reduced memory cost. The system realizes the concept of parallelism 

which enables high-speed performance, while dividing large image into smaller 

blocks induces low memory cost. Input image is firstly divided into smaller 

squared blocks during reading from the sensor or from the memory where the 

image is stored. The processing is now done on these smaller blocks in parallel 

which induces the great speed-up of the original MSER implementation from 

[9]. However, the processing of the small blocks makes the missed blob 

detections, since the large blobs and the blobs at the edges of the blocks can be 

skipped. This problem can be partially solved by overlapping the blocks and by 

using the multiresolution analysis which increases the reliability of the method. 

Multiresolution analysis is performed by resizing the input image to smaller 

resolution images and by applying the blob detection to these resized images. 

This is how large objects can be detected using small block detectors. Further in 

this paper, multiresolution analysis is offered as optional and analyzed 

separately since there are applications [8] where the objects of interest are much 

smaller than the block size and where the multiresolution is not needed. Note 

that we tested the algorithm in software and have done a performance and 

memory cost analysis, but we leave the FPGA or ASIC implementation for 

future work. 

3.1 System description 

Block diagram of the proposed system is shown in Fig. 3. The system 

contains several independent processors for each scale of the multiresolution 

analysis. If the multiresolution analysis is used, the input image is decimated by 

a factor 12S , where  1,  2,  3,...S  is the scale number. The original image 

corresponds to the scale 1S  . Firstly, let’s consider the single scale blob 

detection processor, called Scale S processor, where S is the corresponding 

image scale.  
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Each processor contains M  independent MSER detectors described in 

Sub-section 2.2. The inputs of each detector are the image blocks that can be 

overlapping or non-overlapping. Overlapping increases the computational load 

since more processing blocks are needed for the same image dimensions. Yet it 

reduces the number of missed detections at many applications. It is 

recommended that the blocks are squared and have dimensions that are powers 

of 2. With these dimensions, some important operations like dividing and 

multiplying by the block width or height are simple right or left shifts. 

As the image stream is being read from the camera or some local memory, 

the Controller of the image read gets the pixels data for a number of lines and 

writes them to the M  image block memories of the Scale 1 processor (M11 to 

M1M). The MSER detectors use the data from these memories for processing 

while the Controller writes next lines in the second set of M  memories M21 to 

M2M. When the processing of the first set of memories is finished, the MSER 

detectors use the second set of memories as input. Now, the Controller again 

writes the new set of data to the first set of memories etc.  
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Fig. 3 – Block diagram of the proposed system. Gray blocks are  

only present if the multiresolution analysis approach is used. The 

example shows the hardware for only 3 scales of the input image. 
 

When new MSER is detected, the MSER detector sends the pixel positions 

of the new MSER to the Collector of detections. The Collector can use this new 

detection for the post processing or reject it if it is invalid. Also, it can just 

bypass the new detected blobs via the outer world interface to the other system 

that uses them as input for some more complex processing.  
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Scale 1

Scale 2

Scale 3

 

Fig. 4. – Results of the multiresolution blob detection in the text recognition application. 

The example is the photo of a cover page of a textbook on which title letters are larger 

than author’s. Small letters are detected in scales 1 and 2, while large letters are 

detected at scales 2 and 3. The block size is block 64 64N    with the overlapping strip 

width of ol 18w   pixels. The parameter   is set to 3. 

 

While the Controller of the image read writes the pixels data to the 

memories in the Scale 1 processor, the Downsample block 1 takes these pixels 

and calculates the decimated version of the input image. Decimated image is 

further written to memories in the Scale 2 processor and forwarded to the 

Downsample block 2 for further decimation. The Downsample block 2 does the 

same job as the Downsample block 1, just at the lower frequency. If there is a 

need for even smaller image resolution, the additional Downsample blocks and 

Scale processors may be added.  

Downsampling is done by simple decimation of the input image. In order to 

prevent aliasing, the input image is filtered using the 3×3 Gaussian mask with 

the standard deviation 1  . Note that for filtering, the line buffers are needed 

as shown in the Fig. 3. The example in Fig. 4 shows the bright-on-dark blob 

detection in the cover page of a textbook. The blobs of interest are the letters in 

author’s name and textbook title. Since the image contains letters of different 

sizes, large letters cannot be detected at the original image scale; hence the 
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multiresolution analysis must be used. It is shown that at all scales from 1 to 3, 

almost every letter blob is detected. The parameter   is set to 3, the block size 

is set to block 64 64N    while the overlapping strip width olw  is set to 18 

pixels. This approach gives good results for our example in Fig. 4, although 

some other approaches like bilinear or bicubic interpolation could be used. 

When we use the non-overlapping image partitioning, there is a chance that 

a single region positioned at the block border is divided and detected as two or 

more neighboring regions as shown in the top row of Fig. 5. Some of these 

border regions could be the product of image dividing if we cut a piece of large 

background. These detections are false detections. This is why we sometimes 

should use the image partitioning with the overlapping for detection of small 

objects and reject all border detections. In these cases, even when using the 

multiresolution, the method can skip some blobs. This is a limitation that is not 

crucial for many applications shown in this paper. 

3.2 Merging of border regions when the type of object is known 

In medical imaging the MSER detection is commonly used for cell 

detection. Cells are usually light or dark blobs on the uniform background, 

hence all the MSER detections in this kind of images refer to the cells [5]. In the 

situations like this, we can use non-overlapping image partitioning, detect 

multiple region parts in multiple blocks and then merge these parts into one 

region. If the cell sizes do not differ too much, we can also avoid using the 

multiresolution analysis. 

 

Fig. 5 – Connecting of border detections into one region.  

Dots inside regions represent centroids of regions. 

 

In order to merge partial regions into a single region, we use a Resultant 

memory bitmap whose capacity is N  bits, where N  is the number of pixels in 

the input image. Each bit represents one pixel in the input image and is set to 1 

if that pixel is a part of any detected MSER. During the detection in the MSER 

detector, we keep information whether the detected MSER is the MSER at the 
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border of the block and forward that information together with the region pixels 

to the Collector of detections. If the detected MSER is the MSER at the block 

border, the Collector of detections checks in the Resultant bitmap if there is a 

detected MSER in the neighboring block. If this is true, the current MSER is 

merged with the neighboring one. The neighboring region is determined by 

finding the shortest Euclidean distance between the current region and regions 

in the neighboring block. The example is shown in Fig. 5. Merging of border 

regions allows us to detect almost all possible blobs for applications like these. 

3.3 Performance analysis 

Since we have not implemented the algorithm on any target platform 

(FPGA, GPU, ASIC), yet only in the software, we base our performance 

analysis on the analysis from [9].  

Based on the analysis from Sub-section 2.2 and [9], the needed memory 

cost for image storing and implementation of the MSER detection in an N -

pixel image is 

  
 

MSER image sort region_map result_bitmap

2 2 2

2

8 log 1 1 log log

11 3log  bits.

M M M M M

N N N N N N N

N N

   

      

 

 (3) 

According to that, the needed memory cost for one block processing is 

  MSER_block 2 block block10 3log  bitsM N N  , (4) 

where blockN  is the number of pixels in one block. Note that now we have 

number 10 inside the brackets, since in [9] N  bits are needed for the resultant 

memory. We firstly analyze the needed processing memory. The number of bits 

for the resultant memory will be added in the end.  

Let’s consider a case when a single scale is used, i.e. the MSER detection is 

done only in the original input image. If the image is squared, which we will 

consider for simplicity, and if there is no overlapping, then the number of the 

processing blocks is block 1numPB N N    . If we use overlapping, the 

number of processing blocks is  block ol 1numPB N N w     , where olw  is 

the width of overlapping strip. Therefore, the total memory cost is 

  MSER,tot block 2 block

block

10 3log 1
N

M N N N
N

  
          

 (5) 

If we use the multiresolution analysis, we need to calculate the additional 

memory cost in other scale processors. Since the size of the block is the same 
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for the whole system, the memory cost for processing of one block remains the 

same. Since the line at scale S is 12S  times shorter than at the original scale, the 

number of the processing blocks for the scale processor at scale S is 

  1

, block2 1S

num SPB N N    . (6) 

The resultant memory at scale S needs 
 2 1

2
S

 times less bits for storing the 

result bitmap. This gives us the total memory cost for the multiresolution 

processing up to the scale maxS S  

  
max

MSER,tot,multi block 2 block1 1
1 block

10 3log 1 .
2 2

S

S S
S

N N
M N N

N
 



   
            

  (7) 

Processing memory cost for different levels of multiresolution analysis 

depending on the squared image resolution is shown in Fig. 6. The maximum 

image size in this example is 4 megapixels. For image this large, the maximum 

number of scales, where the last scale image is smaller than or equal to the 

block size, is max 7S  . 
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Fig. 6 – Processing memory cost using the multiresolution approach depending on the 

resolution of an input image for different number of calculated scales block 64 64N   . 

 

Execution time of the MSER detection in [9] is approximated to 

exe CLK10t NT , where CLKT  is the clock period, but the algorithm only detects 

either bright or dark regions. In order to detect both the bright and the dark 

regions, the needed time is exe CLK20t NT . In our approach, the input image is 



V.L. Petrović, J.S. Popović-Božović 

78 

divided into horizontal stripes which are further divided into equal sized blocks. 

Therefore, the total execution time is the time needed for processing of one 

stripe multiplied by the number of stripes. The blocks in one stripe are 

processed in parallel, hence the time needed for processing of one stripe is equal 

to the processing time of one block exe,stripe exe, block block CLK20t t N T  . Since the 

image in our example is squared, the number of stripes is equal to numPB , hence 

the total execution time is 

  exe block CLK block CLK block20 20 1numt N T PB N T N N     . (8) 

The Scale 2 processor and other scales processors work with the decimated 

image. The execution time for the lower resolutions is smaller than the 

execution time needed for processing of the image at Scale 1. Since all these 

processors work in parallel, the total execution time of the multiresolution 

processing is determined by the execution time at scale 1. 

We summarize our estimations in Table 1 and compare them to the state of 

the art FPGA and ASIC implementations from [9] and [10]. The results for the 

squared image of 1536×1536 pixels are calculated in the case when there is no 

overlapping. The execution time and memory cost are greater when blocks are 

overlapping. However, there is still significantly large reduction of both 

performance parameters comparing to the referenced implementations. 

Table 1 
Performance comparison with the state of the art MSER detector hardware 

implementations based on the squared image example. 

Performance 

Metric 
FPGA [9]  

ASIC [10] 

(expected) 

This work 

(expected) 

This work - multiresoluton 

(expected) 

MSER regions 
Either bright or 

dark 
Bright and dark Bright and dark Bright and dark 

All MSER 

regions? 
Yes Yes No No 

block ,1num

N

M PB

 max

block ,1
1 2

S

num SS
S

N
M PB



  

Processing 

memory cost (bits, 

approx.) 

 211 3logN N   29 2logN N   block block 2 block10 3logM N N   

 1

, block ol2 1S

num SPB N N w    
 

Execution time CLK10NT  CLK10NT  block CLK ,120 numN T PB  

For: N=1536×1536 and Nblock = 64×64 ⇒ PBnum,1 = 24, Smax = 6, no overlapping 

Memory cost: 176 Mbits 121 Mbits 7.07 Mbits 13.92 Mbits 

Frame rate: 

fCLK = 50 MHz 
2.12 fps 2.12 fps 25 fps 25 fps 
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Additional comparison with the implementations from [9] and [10] are 

shown in the Figs. 7 and 8. Fig. 7 shows extremely high memory cost efficiency 

of our approach in comparison with the referenced MSER detection 

implementations. Fig. 8 shows comparison of the frame rate for different 

resolutions of the input image. For the block size block 64 64N   , we can 

achieve real-time performance for the maximal image resolution 

max 1536 1536N   , when detecting both the bright and the dark regions. Note 

that if we detect only bright or only dark regions, we can achieve much higher 

frame rate. Likewise, the memory cost for the maximal image resolution is 

reduced about 25 times compared to [9] and about 17 times compared to [10], if 

processed at only one scale. 
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Fig. 7 – Processing memory cost depending on resolution of an input image for 

reference designs from [9] and [10] and for our approach where block 64 64N   . 
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Fig. 8 – Approximated frame rate depending on the resolution of the input image  

for the reference designs from [9] and [10] and for our approach. The execution  

time is approximated for detection of both the bright and the dark regions. 
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4 Applications in Video Surveillance and Image Alignment 

Besides numerous applications of the MSER detector which we mentioned 

before in the introduction and in Sub-sections 3.1 and 3.2, we analyzed the 

usage of the detected MSER blobs in the feature based image alignment. The 

image alignment is an important step in many image processing and computer 

vision applications. We found our MSER detector particularly suitable for 

applications such as video surveillance and wide area motion imagery (WAMI) 

[8]. In wide area motion imagery, the image covers a large area. In these cases 

objects of interest are usually small objects. The MSER blob detection is used in 

[8] for objects tracking when a camera is placed on the flying drone. The 

camera is far from the objects and hence objects are small which makes our 

method suitable for fast detection. In order to track moving objects, there is a 

need for image alignment since the drone is slightly moving. The image 

alignment is done by using the non-moving detected blobs as features for 

feature-based image alignment. This can be very convenient, since we can spare 

time for feature detection in the feature-based alignment, by taking already 

detected blobs for the image features. We were not able to get usable WAMI 

data, so we tested the image alignment applications using the multiple images 

taken on the ground by the DSLR camera in burst mode. 

 

Fig. 9 – Detected MSER features in the example image. 
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Feature-based image alignment [13] is done in several stages. First stages 

are feature detection, feature description and feature matching. Afterwards, the 

geometric relationship between the two images is found based on the matched 

features. Finally, the alignment of the second image to the first one is done by 

its geometric transformation using the found geometric relationship. Feature 

detection is already done by detecting blobs using the proposed design. The 

example image with the detected blobs is shown in Fig. 9. In this example we 

used the detection without multiresolution, hence only small regions are 

detected. 

To demonstrate that our features can be used for this application, we apply 

the SURF descriptor [2] to each detected region in both images. After the 

extraction of SURF features, the matching is done and the pairs of matched 

features in the first and the second image are formed. Matched MSER/SURF 

features in two images are shown in Fig. 10. 

 

 

Fig. 10 – Matched MSER/SURF features of original and shifted  

image used for the feature-based image alignment. Note that there 

 are some false matches, but that most of them are correct. 
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After the feature matching is done, the geometric relationship between the 

two images is estimated by using the M-estimator SAmple Consensus (MSAC) 

algorithm described in [14]. The second image is then transformed using the 

estimated geometric transformation. 

In order to determine the quality of alignment, for quality metric, we 

choose the mean squared error (MSE) of all pixels in the aligned second image 

as compared to the pixels in the first image. The MSE is calculated as 

     2

2,aligned 1

1

1 N

p

MSE I p I p
N 

  . (9) 

For the example shown in Figs. 9 and 10, the initial mean squared error of 

non-aligned images is equal to original 69.8MSE  . After the feature-based 

alignment is done, with the MSER detection from this paper, block size 

block 64 64N   , overlapping strips of 8 pixels wide and by using only first 

scale, we get the mean squared error alligned 15.7MSE  .  

    

(a)                                                             (b) 

Fig. 11 – (a) The difference between non-aligned images 1 2I I ; (b) The difference 

between aligned images 1 2,alignedI I  with the MSER detection from this paper. 
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The differences between non-aligned images and between aligned images 

are shown in Figs. 11.a and 11.b. Note that there is a significant difference 

between the two aligned images in the bottoms which increases the MSE. This 

is the product of moving objects in the image. These moving objects have no 

influence to the alignment result. We compared the MSE when detection is 

done by using our approach and when detection is done by the conventional 

MSER detection algorithm. We could not see any differences in alignment 

results except those that are caused by the statistical properties of the MSAC 

algorithm.  

5 Conclusion 

In this paper we described the method for the memory efficient blob 

detection based on the MSER algorithm which can work in real-time for large 

images. The method significantly outperforms the state of the art MSER 

hardware detection realizations in terms of the needed processing memory and 

the frame rate, but it induces smaller number of the detected regions. Dividing 

the image into the smaller blocks, even when overlapping, makes the method 

unable to detect large blobs. However, we gave some examples in medical 

imaging, wide area motion imagery and feature-based image alignment which 

show that the method can still give good results, but much faster and with 

reduced memory cost compared to other realizations. This was the main 

contribution of our previous conference paper [11]. Additionally, we explored 

possibilities for multiresolution analysis of the image and proposed the system 

that can detect large objects as well. A good example for this application is the 

real-time letters detection when the text contains letters of different sizes.  

We believe that, with proper setting of parameters (the number of scales in 

the multiresolution analysis S , the size of a block blockN , and overlapping strip 

width olw  at first), this approach can be used in many other applications too. 

The algorithm provides the space for compromise between accuracy and the 

number of detected regions, on one side and the memory cost and the execution 

speed, on the other side. 

In the future work we plan to implement our parallel algorithm on an FPGA 

platform and explore more possibilities and new applications of this approach. 
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