
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING

Vol. 14, No. 1, February 2017, 67-84

67

A Method for Real-Time Memory Efficient

Implementation of Blob Detection in Large Images

Vladimir L. Petrović1
, Jelena S. Popović-Božović1

Abstract: In this paper we propose a method for real-time blob detection in large

images with low memory cost. The method is suitable for implementation on the

specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It

uses parallelism to speed-up the blob detection. The input image is divided into

blocks of equal sizes to which the maximally stable extremal regions (MSER)

blob detector is applied in parallel. We propose the usage of multiresolution

analysis for detection of large blobs which are not detected by processing the

small blocks. This method can find its place in many applications such as

medical imaging, text recognition, as well as video surveillance or wide area

motion imagery (WAMI). We explored the possibilities of usage of detected

blobs in the feature-based image alignment as well. When large images are

processed, our approach is 10 to over 20 times more memory efficient than the

state of the art hardware implementation of the MSER.

Keywords: Real-time blob detection, Maximally stable extremal regions, Paral-

lelism, Multiresolution analysis, Image alignment.

1 Introduction

In computer vision, blob detection is usually defined as a detection of

regions in an image that possess some distinguishing properties compared to

surrounding regions or to the image background. For example, characteristic

properties of those so-called blobs can be brightness or color. Blob detection is

one of the basic parts of a lot of image analysis systems. Blobs are often already

the objects we want to detect, e.g. some particles, cells in medical imaging,

characters in text recognition etc. However, sometimes it is impossible to

determine whether a detected blob is a desired object by using simple detection.

In such cases, the detected regions are usually the input to the other stage of the

object detection algorithm, e.g. moving car detection and tracking in the video

surveillance applications. The detected blobs are also frequently used as

distinctive image features for the image matching together with the SIFT [1],

SURF [2], BRIEF [3] or other descriptors. Many of these applications require

real-time performance which can be achieved in software only on high

1University of Belgrade, School of Electrical Engineering, Bulevar kralja Aleksandra 73, 11120 Belgrade,

Serbia; E-mails: petrovicv@etf.rs; jelena@etf.rs

UDC: 004.25 DOI: 10.2298/SJEE1701067P

V.L. Petrović, J.S. Popović-Božović

68

processing power platforms. Hence, if needed in low power embedded systems,

the existing blob detection algorithms need parallelization in order to achieve

the required performance with low energy and memory cost.

Well known methods for blob detection are Laplacian of Gaussian, the

difference of Gaussians and the determinant of Hessian approach, including

their affine and hybrid versions. Other common methods for image

segmentation and region detection are watershed algorithms. Typical example

of the watershed algorithm is a blob detection method of maximally stable

extremal regions (MSER) [4]. The MSER detection algorithm is able to detect

both fine and coarse blobs, i.e. both small and large objects. It is used in

applications such as cell detection in medical imaging [5], automatic 3D-

reconstruction from a set of images [6], feature detection and matching [7], or in

automated surveillance systems for object detection and tracking [8].

Although the MSER detection algorithm is suitable for many applications,

its computational cost is high and limits its real-time performance only for low

resolution images. State of the art FPGA implementation has real-time

performance, but only for images with spatial resolution up to 350 × 350 pixels

[9]. The recent ASIC implementation has better performance, but it is designed

to work on a higher clock rate [10]. Those two implementations have similar

speed performance if comparison is based on the number of operations per

clock cycle.

We propose a method for blob detection which uses the MSER detector

from [9], but applied to blocks of the divided input image in parallel.

Parallelism provides a great speed-up of the detection algorithm. If applied to a

large input image, the MSER detector from [9] would not be able to achieve

real-time performance and its implementation’s processing memory

requirement would be extremely large. In our method, we use only small blocks

of the image for calculation, hence the processing memory cost is significantly

reduced. The limitation of this approach is the inability to detect blobs whose

size is larger than the block size. Also, for some applications, it is unable to

detect large blobs at the borders of blocks. We described that problem in our

previous conference paper [11]. In this paper, we overcome it by proposing the

multiresolution analysis which increases the initial memory cost, but enables

detection of larger blocks. We believe that this method can be used in many

applications, whether used with or without the multiresolution analysis.

In the next section, we briefly describe the MSER detection algorithm and

its FPGA implementation from [9] which is used as a reference for this work.

The method for parallel image processing, some possible applications and

analysis of performance and memory usage are described in Section 3, which is

the main contribution of the paper. In Section 4 we present other applications of

this approach and use the detected MSER regions for the feature-based image

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

69

alignment. Finally, we summarize our results and give conclusions and

proposals for further work in Section 5.

2 Maximally Stable Extremal Regions

2.1 Definition of the maximally stable extremal regions

In this paper we used 8-bits per pixel grayscale images. If we apply a

threshold at every possible pixel level 0, 255t to the image I , we get a set

of binary images as the result of the calculation

 bin

1,
.

0,

t
I t

I
I t

 (1)

In each binary image, we can see the set of connected regions that are

called extremal regions. If we look at this set of binary images, the extremal

regions at lower threshold are divided into multiple smaller extremal regions as

the threshold increases. These extremal regions create a component tree as

shown in Fig. 1. Each node of the tree represents a connected region at

threshold t noted as t

jR , where j is the number of the region. Size of the

region i.e. number of pixels in the region is t

jR . We can observe the region jR

at different threshold values by looking at one branch of the component tree.

Fig. 1 – A part of the regions tree for determining maximally stable

extremal regions, for an example image in the upper-left corner.

The complete regions tree contains regions for all possible thresholds.

The region is maximally stable if the stability factor q t defined as

V.L. Petrović, J.S. Popović-Božović

70

t t

j j

t

j

R R
q t

R

 (2)

has a local minimum at *t , where is the parameter of the method. The

authors of the MSER blob detection method define the parameter called

maximal value of the stability factor maxq [4]. If a region has the stability factor
*()q t larger than maxq , it should be rejected although it has a local minimum at

*t . The larger the maxq is, the more MSER regions are detected, but the detected

regions are less stable. In these paper, we chose max 0.25q . This analysis

applies to detection of the bright regions on a dark background, while the

analysis of the inverted input image inv 255I I gives the dark regions on a

bright background.

2.2 Implementation of the MSER algorithm

Algorithm for MSER detection can be divided into three basic stages. The

first one is preprocessing, where the intensity level histogram of an image is

calculated and pixels are sorted by intensity. The sorting is done by using the

bin sort algorithm [12], since it is very efficient if the intensity level histogram

is known before the sorting starts. The second stage is clustering at which the

representation of all regions at each threshold is created. This is done by using

the Union-find algorithm [12] which is used to keep track of the regions of

connected pixels. The final stage is tracking the sizes of the regions and their

stability factors. Local minimums of the stability factor determine the

maximally stable extremal regions.

As a reference design in this paper we use the implementation of the MSER

algorithm described in [9]. At the beginning of processing, the pixels are sorted.

If the image has N pixels, the sorted pixels positions are written to the N -

entry memory where each entry has 2log N bits. When the sorting is finished,

each pixel in the image is processed in sorted order. The algorithm uses a

memory which is called the Region Map (RM). The region map has N memory

locations too. Each memory location has three numbers that are used to keep

track of which pixels are added to which region, which pixels belong to a single

region and which pixels have already been processed. The first number is called

the union-find number (U). If this number is equal to 0, it means that the pixel

is not connected to any other pixel or that the pixel has not yet been processed.

If 0U , the pixel is a member of the same region as the pixel at position U .

Finally, if 0U , the pixel is the reference point of the region and 1 U is the

region size (number of pixels in the region). Union-find number U is a

21 log N bits long word.

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

71

A single bit is added to each region map location and it is an indicator that

shows whether the pixel is processed or not.

In order to speed-up determining which pixels belong to the region with the

reference point at the location p, every region has the linked list of pixels in that

region. This means that each entry in the region map has additional 2log N -bit

number which is a pointer to the next pixel in the list.

An example of adding a pixel at level 1t i to the region map is

shown in Fig. 2. When processing the pixel, we check right, up, left and down

neighboring pixels. If a neighbor belongs to an existing region (0U or

0U) we add the current pixel to that region. Otherwise, we check if the

neighbor is already processed. If it is not, that means that it has lower intensity

value than the current pixel and it is therefore skipped. If it is processed, a new

region is made from the current processing pixel and the neighboring pixel. The

example in Fig. 2 shows the most complex situation when a single pixel causes

merging of two regions.

Fig. 2 – A region map (RM) for the union-find operations. Each RM memory

location represents one pixel. The large middle number in each memory location

 is the union-find number (U). The number in the upper-right corner is the pixel

address, and the number in the lower-right corner is an indicator that shows

whether the pixel is processed (1) or not (0). Number in the lower-left corner is the

address of the next pixel in the linked list of connected pixels in the region. The

example here (taken from [9]) shows processing of the pixel at position 7 whose

intensity is 1i . The upper-left image shows the RM at intensity i. Initially, the

pixel at position 7 is added to the region on the right due to the first neighbor

check at the right side. After the neighbor check at the left side, two regions merge

since the processing pixel needs to be added to both of neighboring regions. In

case we need region pixels at threshold t i , first links are bypassed, while

needed pixels are shadowed ones, like it is shown in the lower-right image.

V.L. Petrović, J.S. Popović-Božović

72

In order to keep track of the sizes of connected regions, a hash indexed

memory is used. Whenever all pixels from one intensity level have been

processed, the size of all regions that grew is updated in this memory. Sizes for

the region jR are kept only for the intensity levels from 1t to 1t .

These intensity levels are needed for the calculation of stability factors 1q t ,

 q t and 1q t . If these three stability factors are known, we can check if the

 q t is a local minimum. If it is a local minimum, then the region t

jR is the

maximally stable extremal region. For further details about the implementation,

please refer to [9].

3 Parallelism for the Detection Speed-up and Reduced Memory Cost

In this section we propose a system for real-time detection of the MSER

blobs with reduced memory cost. The system realizes the concept of parallelism

which enables high-speed performance, while dividing large image into smaller

blocks induces low memory cost. Input image is firstly divided into smaller

squared blocks during reading from the sensor or from the memory where the

image is stored. The processing is now done on these smaller blocks in parallel

which induces the great speed-up of the original MSER implementation from

[9]. However, the processing of the small blocks makes the missed blob

detections, since the large blobs and the blobs at the edges of the blocks can be

skipped. This problem can be partially solved by overlapping the blocks and by

using the multiresolution analysis which increases the reliability of the method.

Multiresolution analysis is performed by resizing the input image to smaller

resolution images and by applying the blob detection to these resized images.

This is how large objects can be detected using small block detectors. Further in

this paper, multiresolution analysis is offered as optional and analyzed

separately since there are applications [8] where the objects of interest are much

smaller than the block size and where the multiresolution is not needed. Note

that we tested the algorithm in software and have done a performance and

memory cost analysis, but we leave the FPGA or ASIC implementation for

future work.

3.1 System description

Block diagram of the proposed system is shown in Fig. 3. The system

contains several independent processors for each scale of the multiresolution

analysis. If the multiresolution analysis is used, the input image is decimated by

a factor 12S , where 1, 2, 3,...S is the scale number. The original image

corresponds to the scale 1S . Firstly, let’s consider the single scale blob

detection processor, called Scale S processor, where S is the corresponding

image scale.

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

73

Each processor contains M independent MSER detectors described in

Sub-section 2.2. The inputs of each detector are the image blocks that can be

overlapping or non-overlapping. Overlapping increases the computational load

since more processing blocks are needed for the same image dimensions. Yet it

reduces the number of missed detections at many applications. It is

recommended that the blocks are squared and have dimensions that are powers

of 2. With these dimensions, some important operations like dividing and

multiplying by the block width or height are simple right or left shifts.

As the image stream is being read from the camera or some local memory,

the Controller of the image read gets the pixels data for a number of lines and

writes them to the M image block memories of the Scale 1 processor (M11 to

M1M). The MSER detectors use the data from these memories for processing

while the Controller writes next lines in the second set of M memories M21 to

M2M. When the processing of the first set of memories is finished, the MSER

detectors use the second set of memories as input. Now, the Controller again

writes the new set of data to the first set of memories etc.

Interface to 1
st

block of memories

М11

Interface to 2
nd

block of memories

М12 М1M М21 М22 М2M

MSER

detector

1

MSER

detector

2

MSER

detector

M

Scale S

processor

Camera/memory

interface

Interf. to

1
st

bl. of

mem.

Collector of detections

Outer world

interface

Resultant memory bitmap

(optional)

Controller of the

image read

Scale 1

processor

Filter

core

Downsample

block 1 ↓2

Interf. to

2
nd

bl. of

mem.

Interf. to

1
st

bl. of

mem.

Scale 2

processor

Interf. to

2
nd

bl. of

mem.

Interf. to

1
st

bl. of

mem.

Scale 3

processor

Interf. to

2
nd

bl. of

mem.

Downsample

block 2

Line buffers

Antialiasing filter

Downsample

block core

Fig. 3 – Block diagram of the proposed system. Gray blocks are

only present if the multiresolution analysis approach is used. The

example shows the hardware for only 3 scales of the input image.

When new MSER is detected, the MSER detector sends the pixel positions

of the new MSER to the Collector of detections. The Collector can use this new

detection for the post processing or reject it if it is invalid. Also, it can just

bypass the new detected blobs via the outer world interface to the other system

that uses them as input for some more complex processing.

V.L. Petrović, J.S. Popović-Božović

74

Scale 1

Scale 2

Scale 3

Fig. 4. – Results of the multiresolution blob detection in the text recognition application.

The example is the photo of a cover page of a textbook on which title letters are larger

than author’s. Small letters are detected in scales 1 and 2, while large letters are

detected at scales 2 and 3. The block size is block 64 64N with the overlapping strip

width of ol 18w pixels. The parameter is set to 3.

While the Controller of the image read writes the pixels data to the

memories in the Scale 1 processor, the Downsample block 1 takes these pixels

and calculates the decimated version of the input image. Decimated image is

further written to memories in the Scale 2 processor and forwarded to the

Downsample block 2 for further decimation. The Downsample block 2 does the

same job as the Downsample block 1, just at the lower frequency. If there is a

need for even smaller image resolution, the additional Downsample blocks and

Scale processors may be added.

Downsampling is done by simple decimation of the input image. In order to

prevent aliasing, the input image is filtered using the 3×3 Gaussian mask with

the standard deviation 1 . Note that for filtering, the line buffers are needed

as shown in the Fig. 3. The example in Fig. 4 shows the bright-on-dark blob

detection in the cover page of a textbook. The blobs of interest are the letters in

author’s name and textbook title. Since the image contains letters of different

sizes, large letters cannot be detected at the original image scale; hence the

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

75

multiresolution analysis must be used. It is shown that at all scales from 1 to 3,

almost every letter blob is detected. The parameter is set to 3, the block size

is set to block 64 64N while the overlapping strip width olw is set to 18

pixels. This approach gives good results for our example in Fig. 4, although

some other approaches like bilinear or bicubic interpolation could be used.

When we use the non-overlapping image partitioning, there is a chance that

a single region positioned at the block border is divided and detected as two or

more neighboring regions as shown in the top row of Fig. 5. Some of these

border regions could be the product of image dividing if we cut a piece of large

background. These detections are false detections. This is why we sometimes

should use the image partitioning with the overlapping for detection of small

objects and reject all border detections. In these cases, even when using the

multiresolution, the method can skip some blobs. This is a limitation that is not

crucial for many applications shown in this paper.

3.2 Merging of border regions when the type of object is known

In medical imaging the MSER detection is commonly used for cell

detection. Cells are usually light or dark blobs on the uniform background,

hence all the MSER detections in this kind of images refer to the cells [5]. In the

situations like this, we can use non-overlapping image partitioning, detect

multiple region parts in multiple blocks and then merge these parts into one

region. If the cell sizes do not differ too much, we can also avoid using the

multiresolution analysis.

Fig. 5 – Connecting of border detections into one region.

Dots inside regions represent centroids of regions.

In order to merge partial regions into a single region, we use a Resultant

memory bitmap whose capacity is N bits, where N is the number of pixels in

the input image. Each bit represents one pixel in the input image and is set to 1

if that pixel is a part of any detected MSER. During the detection in the MSER

detector, we keep information whether the detected MSER is the MSER at the

V.L. Petrović, J.S. Popović-Božović

76

border of the block and forward that information together with the region pixels

to the Collector of detections. If the detected MSER is the MSER at the block

border, the Collector of detections checks in the Resultant bitmap if there is a

detected MSER in the neighboring block. If this is true, the current MSER is

merged with the neighboring one. The neighboring region is determined by

finding the shortest Euclidean distance between the current region and regions

in the neighboring block. The example is shown in Fig. 5. Merging of border

regions allows us to detect almost all possible blobs for applications like these.

3.3 Performance analysis

Since we have not implemented the algorithm on any target platform

(FPGA, GPU, ASIC), yet only in the software, we base our performance

analysis on the analysis from [9].

Based on the analysis from Sub-section 2.2 and [9], the needed memory

cost for image storing and implementation of the MSER detection in an N -

pixel image is

MSER image sort region_map result_bitmap

2 2 2

2

8 log 1 1 log log

11 3log bits.

M M M M M

N N N N N N N

N N

 (3)

According to that, the needed memory cost for one block processing is

 MSER_block 2 block block10 3log bitsM N N , (4)

where blockN is the number of pixels in one block. Note that now we have

number 10 inside the brackets, since in [9] N bits are needed for the resultant

memory. We firstly analyze the needed processing memory. The number of bits

for the resultant memory will be added in the end.

Let’s consider a case when a single scale is used, i.e. the MSER detection is

done only in the original input image. If the image is squared, which we will

consider for simplicity, and if there is no overlapping, then the number of the

processing blocks is block 1numPB N N . If we use overlapping, the

number of processing blocks is block ol 1numPB N N w , where olw is

the width of overlapping strip. Therefore, the total memory cost is

 MSER,tot block 2 block

block

10 3log 1
N

M N N N
N

 (5)

If we use the multiresolution analysis, we need to calculate the additional

memory cost in other scale processors. Since the size of the block is the same

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

77

for the whole system, the memory cost for processing of one block remains the

same. Since the line at scale S is 12S times shorter than at the original scale, the

number of the processing blocks for the scale processor at scale S is

 1

, block2 1S

num SPB N N . (6)

The resultant memory at scale S needs
 2 1

2
S

 times less bits for storing the

result bitmap. This gives us the total memory cost for the multiresolution

processing up to the scale maxS S

max

MSER,tot,multi block 2 block1 1
1 block

10 3log 1 .
2 2

S

S S
S

N N
M N N

N

 (7)

Processing memory cost for different levels of multiresolution analysis

depending on the squared image resolution is shown in Fig. 6. The maximum

image size in this example is 4 megapixels. For image this large, the maximum

number of scales, where the last scale image is smaller than or equal to the

block size, is max 7S .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

Resolution (megapixels)

P
ro

c
e

s
s
in

g
 m

e
m

o
ry

 c
o

s
t
(M

b
it
s
)

No multiresolution

Multiresolution: 2 scales

Multiresolution: 3 scales

Multiresolution: all scales

Fig. 6 – Processing memory cost using the multiresolution approach depending on the

resolution of an input image for different number of calculated scales block 64 64N .

Execution time of the MSER detection in [9] is approximated to

exe CLK10t NT , where CLKT is the clock period, but the algorithm only detects

either bright or dark regions. In order to detect both the bright and the dark

regions, the needed time is exe CLK20t NT . In our approach, the input image is

V.L. Petrović, J.S. Popović-Božović

78

divided into horizontal stripes which are further divided into equal sized blocks.

Therefore, the total execution time is the time needed for processing of one

stripe multiplied by the number of stripes. The blocks in one stripe are

processed in parallel, hence the time needed for processing of one stripe is equal

to the processing time of one block exe,stripe exe, block block CLK20t t N T . Since the

image in our example is squared, the number of stripes is equal to numPB , hence

the total execution time is

 exe block CLK block CLK block20 20 1numt N T PB N T N N . (8)

The Scale 2 processor and other scales processors work with the decimated

image. The execution time for the lower resolutions is smaller than the

execution time needed for processing of the image at Scale 1. Since all these

processors work in parallel, the total execution time of the multiresolution

processing is determined by the execution time at scale 1.

We summarize our estimations in Table 1 and compare them to the state of

the art FPGA and ASIC implementations from [9] and [10]. The results for the

squared image of 1536×1536 pixels are calculated in the case when there is no

overlapping. The execution time and memory cost are greater when blocks are

overlapping. However, there is still significantly large reduction of both

performance parameters comparing to the referenced implementations.

Table 1
Performance comparison with the state of the art MSER detector hardware

implementations based on the squared image example.

Performance

Metric
FPGA [9]

ASIC [10]

(expected)

This work

(expected)

This work - multiresoluton

(expected)

MSER regions
Either bright or

dark
Bright and dark Bright and dark Bright and dark

All MSER

regions?
Yes Yes No No

block ,1num

N

M PB

 max

block ,1
1 2

S

num SS
S

N
M PB

Processing

memory cost (bits,

approx.)

 211 3logN N 29 2logN N block block 2 block10 3logM N N

 1

, block ol2 1S

num SPB N N w

Execution time CLK10NT CLK10NT block CLK ,120 numN T PB

For: N=1536×1536 and Nblock = 64×64 ⇒ PBnum,1 = 24, Smax = 6, no overlapping

Memory cost: 176 Mbits 121 Mbits 7.07 Mbits 13.92 Mbits

Frame rate:

fCLK = 50 MHz
2.12 fps 2.12 fps 25 fps 25 fps

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

79

Additional comparison with the implementations from [9] and [10] are

shown in the Figs. 7 and 8. Fig. 7 shows extremely high memory cost efficiency

of our approach in comparison with the referenced MSER detection

implementations. Fig. 8 shows comparison of the frame rate for different

resolutions of the input image. For the block size block 64 64N , we can

achieve real-time performance for the maximal image resolution

max 1536 1536N , when detecting both the bright and the dark regions. Note

that if we detect only bright or only dark regions, we can achieve much higher

frame rate. Likewise, the memory cost for the maximal image resolution is

reduced about 25 times compared to [9] and about 17 times compared to [10], if

processed at only one scale.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

Resolution (megapixels)

P
ro

c
e

s
s
in

g
 m

e
m

o
ry

 c
o

s
t
(M

b
it
s
)

FPGA [6]

ASIC [7]

This work, no multiresolution

Fig. 7 – Processing memory cost depending on resolution of an input image for

reference designs from [9] and [10] and for our approach where block 64 64N .

0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

160

Resolution (megapixels)

F
ra

m
e

 r
a

te
 (

fp
s
)

FPGA [6]

ASIC [7]

This work, no multiresolution

Fig. 8 – Approximated frame rate depending on the resolution of the input image

for the reference designs from [9] and [10] and for our approach. The execution

time is approximated for detection of both the bright and the dark regions.

V.L. Petrović, J.S. Popović-Božović

80

4 Applications in Video Surveillance and Image Alignment

Besides numerous applications of the MSER detector which we mentioned

before in the introduction and in Sub-sections 3.1 and 3.2, we analyzed the

usage of the detected MSER blobs in the feature based image alignment. The

image alignment is an important step in many image processing and computer

vision applications. We found our MSER detector particularly suitable for

applications such as video surveillance and wide area motion imagery (WAMI)

[8]. In wide area motion imagery, the image covers a large area. In these cases

objects of interest are usually small objects. The MSER blob detection is used in

[8] for objects tracking when a camera is placed on the flying drone. The

camera is far from the objects and hence objects are small which makes our

method suitable for fast detection. In order to track moving objects, there is a

need for image alignment since the drone is slightly moving. The image

alignment is done by using the non-moving detected blobs as features for

feature-based image alignment. This can be very convenient, since we can spare

time for feature detection in the feature-based alignment, by taking already

detected blobs for the image features. We were not able to get usable WAMI

data, so we tested the image alignment applications using the multiple images

taken on the ground by the DSLR camera in burst mode.

Fig. 9 – Detected MSER features in the example image.

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

81

Feature-based image alignment [13] is done in several stages. First stages

are feature detection, feature description and feature matching. Afterwards, the

geometric relationship between the two images is found based on the matched

features. Finally, the alignment of the second image to the first one is done by

its geometric transformation using the found geometric relationship. Feature

detection is already done by detecting blobs using the proposed design. The

example image with the detected blobs is shown in Fig. 9. In this example we

used the detection without multiresolution, hence only small regions are

detected.

To demonstrate that our features can be used for this application, we apply

the SURF descriptor [2] to each detected region in both images. After the

extraction of SURF features, the matching is done and the pairs of matched

features in the first and the second image are formed. Matched MSER/SURF

features in two images are shown in Fig. 10.

Fig. 10 – Matched MSER/SURF features of original and shifted

image used for the feature-based image alignment. Note that there

 are some false matches, but that most of them are correct.

V.L. Petrović, J.S. Popović-Božović

82

After the feature matching is done, the geometric relationship between the

two images is estimated by using the M-estimator SAmple Consensus (MSAC)

algorithm described in [14]. The second image is then transformed using the

estimated geometric transformation.

In order to determine the quality of alignment, for quality metric, we

choose the mean squared error (MSE) of all pixels in the aligned second image

as compared to the pixels in the first image. The MSE is calculated as

 2

2,aligned 1

1

1 N

p

MSE I p I p
N

 . (9)

For the example shown in Figs. 9 and 10, the initial mean squared error of

non-aligned images is equal to original 69.8MSE . After the feature-based

alignment is done, with the MSER detection from this paper, block size

block 64 64N , overlapping strips of 8 pixels wide and by using only first

scale, we get the mean squared error alligned 15.7MSE .

(a) (b)

Fig. 11 – (a) The difference between non-aligned images 1 2I I ; (b) The difference

between aligned images 1 2,alignedI I with the MSER detection from this paper.

A Method for Real-Time Memory Efficient Implementation of Blob Detection...

83

The differences between non-aligned images and between aligned images

are shown in Figs. 11.a and 11.b. Note that there is a significant difference

between the two aligned images in the bottoms which increases the MSE. This

is the product of moving objects in the image. These moving objects have no

influence to the alignment result. We compared the MSE when detection is

done by using our approach and when detection is done by the conventional

MSER detection algorithm. We could not see any differences in alignment

results except those that are caused by the statistical properties of the MSAC

algorithm.

5 Conclusion

In this paper we described the method for the memory efficient blob

detection based on the MSER algorithm which can work in real-time for large

images. The method significantly outperforms the state of the art MSER

hardware detection realizations in terms of the needed processing memory and

the frame rate, but it induces smaller number of the detected regions. Dividing

the image into the smaller blocks, even when overlapping, makes the method

unable to detect large blobs. However, we gave some examples in medical

imaging, wide area motion imagery and feature-based image alignment which

show that the method can still give good results, but much faster and with

reduced memory cost compared to other realizations. This was the main

contribution of our previous conference paper [11]. Additionally, we explored

possibilities for multiresolution analysis of the image and proposed the system

that can detect large objects as well. A good example for this application is the

real-time letters detection when the text contains letters of different sizes.

We believe that, with proper setting of parameters (the number of scales in

the multiresolution analysis S , the size of a block blockN , and overlapping strip

width olw at first), this approach can be used in many other applications too.

The algorithm provides the space for compromise between accuracy and the

number of detected regions, on one side and the memory cost and the execution

speed, on the other side.

In the future work we plan to implement our parallel algorithm on an FPGA

platform and explore more possibilities and new applications of this approach.

6 Acknowledgement

We would like to thank Dragomir El Mezeni from the University of

Belgrade - School of Electrical Engineering, and Prof. Dejan Marković and

Dejan Rozgić from the University of California, Los Angeles for useful

suggestions and comments.

V.L. Petrović, J.S. Popović-Božović

84

7 References

[1] D.G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints, International

Journal of Computer Vision, Vol. 60, No. 2, Nov. 2004, pp. 91 – 110.

[2] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool: Speeded-Up Robust Features (SURF),

Computer Vision and Image Understanding, Vol. 110, No. 3, June 2008, pp. 346 – 359.

[3] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary

Features, 11th European Conference on Computer Vision, Heraklion, Greece, 05- 11 Sept.

2010, Part IV, pp. 778 – 792.

[4] J. Matas, O. Chum, M. Urban, T. Pajdla: Robust Wide-Baseline Stereo from Maximally

Stable Extremal Regions, Image and Vision Computing, Vol. 22, No. 10, Sept. 2004,

pp. 761 – 767..

[5] C. Arteta, V. Lemptisky, J.A. Noble, A. Zisserman: Learning to Detect Cells using Non-

Overlapping Extremal Regions, 15th International Conference on Medical Image Computing

and Computer-Assisted Intervention, Nice, France, 01-05 Oct. 2012, pp. 348 – 356.

[6] D. Martinec, T. Pajdla: Consistent Multi-View Reconstruction from Epipolar Geometries

with Outliers, 13th Scandinavian Conference on Image Analysis, Halmstad, Sweden, 29

Jun-02 July 2003, pp. 493 – 500.

[7] R. Kimmel, C. Zhang, A.M. Bronstein, M.M. Bronstein: Are MSER Features Really

Interesting?, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33,

No. 11, Nov. 2011, pp. 2316 – 2320.

[8] S. Varah, N. Grujić: Target Detection and Tracking using a Parallel Implementation of

Maximally Stable Extremal Region, NVIDIA GPU Technology Conference, San Jose, CA,

USA, 19 March 2013.

[9] F. Kristensen, W.J. MacLean: Real-Time Extraction of Maximally Stable Extremal Regions

on an FPGA, IEEE International Symposium on Circuits and Systems, New Orleans, LA,

USA, 27-30 May 2007, pp. 165 – 168.

[10] E. Salahat, H. Saleh, A. Sluzek, M. Al-Qutayri, B. Mohammad, M. Ismail: A Maximally

Stable Extremal Regions System-on-Chip for Real-Time Visual Surveillance, 41st Annual

Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 09-12 Nov. 2015,

pp. 2812 – 2815.

[11] V. Petrović, J. Popović-Bozović: Towards Real-Time Blob Detection in Large Images with

Reduced Memory Cost, 3rd International Conference on Electrical, Electronic and

Computing Engineering, Zlatibor, Serbia, 13-16 June 2016, pp. EKI2.2 1 – 6.

[12] R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley Professional, Upper Saddle River,

NJ, USA, 2011.

[13] R. Szeliski: Image Alignment and Stitching: A Tutorial, Foundations and Trends® in

Computer Graphics and Vision, Vol. 2, No. 1, Jan. 2006, pp. 1 – 104.

[14] P.H.S. Torr, A. Zisserman: MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry, Computer Vision and Image Understanding, Vol. 78, No. 1,

Apr. 2000, pp. 138 – 156.

