
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING
Vol. 14, No. 1, February 2017, 51-66

51

Visual Software System for
Memory Interleaving Simulation

Katarina Milenković1, Žarko Stanisavljević1, Jovan Đorđević1

Abstract: This paper describes the visual software system for memory
interleaving simulation (VSMIS), implemented for the purpose of the course
Computer Architecture and Organization 1, at the School of Electrical
Engineering, University of Belgrade. The simulator enables students to expand
their knowledge through practical work in the laboratory, as well as through
independent work at home. VSMIS gives users the possibility to initialize parts
of the system and to control simulation steps. The user has the ability to monitor
simulation through graphical representation. It is possible to navigate through the
entire hierarchy of the system using simple navigation. During the simulation the
user can observe and set the values of the memory location. At any time, the user
can reset the simulation of the system and observe it for different memory states;
in addition, it is possible to save the current state of the simulation and continue
with the execution of the simulation later.

Keywords: Computer architecture and organization, Memory interleaving, Software
system, Simulation, Main memory, Random-access memory, Laboratory exercise.

1 Introduction

Computer Architecture and Organization (CAO) is an important area of
computer science, and it is essential for education of future computer science
engineers [13]. Because of this, great attention is paid to teaching CAO at
undergraduate studies at universities, both around the world and in our country.
The aim of courses dealing with this topic is to present this complex matter in a
good and systematic way, so that students can easily understand it. At the
School of Electrical Engineering, University of Belgrade (SEE-UB) these topics
are covered by six different undergraduate courses.

The main task of these courses is to introduce the basic concepts of CAO.
In addition, students are given an insight into the way in which a typical
computer system functions − its performance, characteristics, and the way it
performs operations. After completing these courses, students should be able to
design their own computer systems and develop high-performance applications,
thanks to a good knowledge of CAO.

1University of Belgrade, School of Electrical Engineering, Bulevar kralja Aleksandra 73, 11020 Belgrade,
Serbia; E-mails: katarina.milenkovic@etf.bg.ac.rs; zarko@etf.bg.ac.rs; jdjordjevic@etf.bg.ac.rs

UDC: 004.7:621.39]:004.94 DOI: 10.2298/SJEE1701051M

K. Milenković, Ž. Stanisavljević, J. Đorđević

52

Experience has shown that attending lectures and auditory exercises is
sometimes not enough to fully understand and master these areas. Students
achieve better results if, along with traditional teaching methods, they are
provided with opportunities for practical work in the laboratory. Such course
organization allows students to verify and broaden the knowledge they acquired
in traditional classes. Following a joint recommendation for computer science
course curricula of ACM and IEEE [1] associations, courses in these areas
should be accompanied by laboratory exercises in order to enable students to
develop their skills through practical work. In accordance with the
recommendation, courses that cover the topic of CAO at SEE-UB consist of
lectures, auditory exercises, and laboratory exercises. In laboratory exercises,
students use software systems [2 – 5], which are specially designed for various
topics that courses cover. This paper describes the Visual software system for
memory interleaving simulation (VSMIS), implemented for the purpose of the
course Computer Architecture and Organization 1.

The rest of the paper presents the motivation for the implementation of the
VSMIS simulator, the structure of the implemented system, the laboratory
exercise based on the simulator, its comparison with existing simulators, and the
conclusion at the end.

2 Problem Description

The course in Computer Architecture and Organization 1 at the SEE-UB is
a mandatory course in the fifth semester of the Computer Engineering
undergraduate study program, and an elective course in the fifth semester of the
Software Engineering undergraduate study program. It is also offered as an
elective course to students of other electrical engineering study programmes,
who believe the course can provide them with knowledge they will need in their
future work. The course consists of two classes of lectures, two classes of
auditory exercises and one class of laboratory exercises per week.

The aim of the course is to introduce students to the basic elements of the
memory hierarchy system and the pipeline organization of the processor, help
them understand their structures, basic principles and the way of functioning.
The first part of the course is dedicated to the memory system [6]. At the
beginning, students are introduced to the cache memory mechanism which is
used to improve the memory response time. After that, the virtual memory
technique is explained. This hardware-software technique can be used to
increase the size of the address space. Finally, the course covers a hardware
technique for accelerating memory access, called memory interleaving. The
second part of the course is dedicated to the pipeline organization of the
processor. The VSMIS simulator, described in this paper, deals with the
mechanism of memory interleaving.

Visual Software System for Memory Interleaving Simulation

53

The method for accelerating memory access using memory interleaving is
one of the advanced techniques, and is therefore more difficult to understand. In
order to understand this mechanism, it is necessary to understand how operating
memory needs to be organized, how the system bus cycles should be organized,
as well as understanding the specific communication protocols between devices
that access the memory and the memory modules. All this is much easier
through practical work. Work in the laboratory is aimed at showing the specific
behavior of computer systems and understanding their desired characteristics. In
these cases, the computer system simulators have proved to be an appropriate
substitute for complex and expensive real hardware components [7].

An important question which the authors of courses in the field of CAO
face, is which simulator is best suited for a course they teach. The ideal
simulator should cover all the topics that are taught during the course, provide
the possibility of visual presentation of simulation on multiple hierarchical
levels, and it should be easy to use and relate to the previous knowledge of
students who attend the course.

In existing literature there is a large number of software systems for
simulating computer systems which cover various topics related to CAO. Many
of them are available freely online and can be used in courses. Nevertheless, it
is not easy to find a system that covers all the topics taught in the course and
fully suits it. The existing software systems are designed for different purposes
with some specific requirements and restrictions. In literature, one can find
papers [8] which analyze, evaluate and classify some of the existing software
systems, according to the basic criteria (the area of coverage, the way and level
of displaying the implementation details, the way of simulation execution,
availability, etc.). Based on literature overview, it can be concluded that the
systems that cover the topic of memory interleaving are ISE Design Suite [9],
M5 [10], Quartus II [11] and Simics [12]. Although these simulators have been
successfully used for a long time, detailed analysis shows they are not suitable
for laboratory exercises of the course of Computer Architecture and
Organization 1 at the SEE-UB. These systems are either commercial, without
the possibility of visual presentations or simply too complicated to use and not
suitable for integration with the existing system used in the course for other
topics. Therefore, it has been decided to develop a new simulator.

3 Software System Description

The technique of memory interleaving implies execution of multiple
operations on different memory modules simultaneously. It may have different
effects in terms of speed acceleration, depending on computer system
configuration.

K. Milenković, Ž. Stanisavljević, J. Đorđević

54

In order to be able to apply the technique of memory interleaving, it is
necessary that the memory consists of several smaller modules. In case of
multiple access requests to the memory at a given time, there is a possibility that
these requests relate to memory locations from different memory modules.
Therefore, with a proper organization of memory modules and the system bus,
the requests can be processed in parallel. In this way, the duration of a single
memory access remains the same or even slightly increases, due to additional
overhead operations that have to be performed. However, the total time of
execution of multiple memory accesses can be significantly reduced. Thus, the
acceleration is achieved at the level of program execution.

In order to provide parallel access to different memory modules, the system
bus has to be organized in an appropriate way, with (non-atomic) split cycles.
With this type of system bus cycles, a device which initiates an operation on the
bus (called a master) holds the bus busy only for the amount of time needed to
exchange information that is necessary to complete the operation with a device
that should perform the operation (called a slave). The system bus is free while
the memory modules process the requests. The bus cycles that can be performed
on this type of bus are: the initiation of a write request, the initiation of a read
request, and the response to a read request.

A typical computer system consists of a processor, memory and a few I/O
devices, which are all connected by the system bus. During the cycle of
initiation of a write request or the cycle of initiation of a read request, a master
device can be a processor or a direct memory access (DMA) controller, and a
slave device is a memory module. During the cycle of the response to a read
request, a master device is a memory module, and a slave device can be a
processor or a DMA controller.

VSMIS is a simulator of a fixed computer system, with a system bus
(SYSTEM BUS), arbitrator (ARBITRATOR), 16 I/O devices (DEVICES) and
16 memory modules (MODULES). The devices can be with single or burst
memory access and can generate requests for accessing memory. Memory
modules have a capacity of 220 bytes each, and an addressable unit is byte. The
way in which the addresses are arranged per memory modules is determined by
special microswitches that are common to all modules. The system bus connects
all I/O devices and memory modules. It consists of 24 address lines
(ABUS23…0), 8 lines of data (DBUS7…0) and four control lines (WRBUS,
RDBUS, DABUS and ACKBUS). The arbitrator determines which of the
devices or memory modules can realize the next cycle on the bus. It uses a
parallel scheme for arbitration. The arbitrator receives requests for the use of the
bus from the I/O devices or the memory modules through the line BRQ, and
sends back a grant for the use of the bus to the I/O devices and the memory
modules through the line BG. All I/O devices, memory modules and the

Visual Software System for Memory Interleaving Simulation

55

arbitrator operate synchronously to a common clock signal Tclk. The structure
of the implemented system is given in Fig. 1, followed by a description of the
structure of some specific parts of a computer system.

arbitrator

j

17

31

16

15

14

i

0

j

17

31

16

15

14

i

0

module module module module

device device device device

. . .
. . .

. . .
.

 .
. .

 .
. .

 .
. .

 .

.

.
BRQ BG BRQ BG BRQ BG BRQ BG

BRQ BG BRQ BG BRQ BG BRQ BG

ABUS

DBUS

WRBUS

RDBUS

DABUS

ACKBUS

23..0

7..0

MODULES

DEVICES

S
Y

S
T

E
M

 B
U

S

ARBITRATOR

Fig. 1 – Computer system structure.

3.1 Arbitrator

In the previously described computer system, the arbitrator (shown in Fig.
2) determines which of the I/O devices or memory modules can perform the
next cycle on the bus, using a parallel scheme for arbitration. The requests for
the use of the bus in the arbitrator come through lines BRQ31…0. Through the
lines BRQ31…16, the arbitrator receives requests from the memory modules
and through the lines BRQ15…0 it receives requests from the I/O devices. The
arbitrator’s entrance priorities are fixed. The input 31 has the highest and the
input 0 the lowest priority. The arbitrator sends back grants for the use of the
bus through the lines BG31…0. Through the lines BG31…16, the arbitrator
sends back grants to the memory modules and through lines BG15…0 grants to
the I/O devices. This way of connecting input lines to the arbitrator ensures that
requests for the use of the bus coming from memory modules have higher
priority than requests coming from the I/O devices. All request signals and

K. Milenković, Ž. Stanisavljević, J. Đorđević

56

grants are generated simultaneously to a common clock signal Tclk. The grant
signal is given for only one period of the signal Tclk.

PCOD DEC BGR

16

16

16

16

16

16

5

31

16

15

0

. .
 .

. .
 .

4

0

. . .

4

0
. .

 .

31

16

15

0

. .
 .

. .
 .

31

16

15

0

. . .
. . .

31

16

15

0

. . .
. . .

W E

LD CLK
ENABLE

1

MR
mr

BRQ31..16 BG31..16

BRQ15..0 BG15..0

MODULES

DEVICES

MODULES

DEVICES

Fig. 2 – Arbitrator.

3.2 System Bus

In the computer system described in Section 3, the system bus was
implemented with (non-atomic) split cycles. This type of bus supports the cycle
of sending a request to write byte of data, the cycle of sending a request to read
byte of data, and the cycle of sending a request to fetch byte of data. The
operation of writing into memory module is implemented with the cycle of
sending a request to write byte of data, and the operation of reading from
memory module is implemented with the cycle of sending a request to read byte
of data and the cycle of sending a request to fetch byte of data. Before the
initialization of any cycle on the bus, the arbitration must be performed to
determine which of the I/O devices or memory modules can perform the cycle
on the bus. Through values one and zero of the BRQ line, the I/O device or
memory module places and withdraws request for the use of the bus,
respectively. Through values one and zero of the BG line, the I/O device or
memory module obtains and loses permission for the use of the bus,
respectively. When it gets value one, the signal BRQ will hold that value until a
grant is obtained. When it gets value one, the signal BG will hold that value for
only one period of the clock signal Tclk during which I/O device or memory
module which got the grant to use the bus performs a cycle on the bus and sets
the value of signal BRQ back to zero. Fig. 3 shows the cycle of sending a write
request in case of a device with single memory access and burst memory access.

Visual Software System for Memory Interleaving Simulation

57

���

���

��

	�
�

��
�

���
�

��
�

�	�
�

	���
�

���

���

��

	�
�

��
�

���
�

��
�

�	�
�

	���
�

Fig. 3 – Cycle of sending a write request in case of a device with
single memory access (left) and burst memory access (right).

3.3 I/O Devices

Devices in the computer system described in Section 3, consist of two
parts: the working part and the interface. These two parts exchange information
through the corresponding lines. The interface connects the working part to the
system bus. The working part of the device is part whose structure and
functionality vary from device to device. The working part can turn to the
interface with a request to carry out an operation. The working part, before
initiating any operation, must ensure that the registries relevant to connection to
the interface contain all the necessary values for the operation. I/O devices can
be with single memory access and burst memory access.

3.3 Memory Modules

Memory modules in the computer system described in Section 3, consist of
two parts: the working part and the interface. These two parts exchange
information through the corresponding lines. The interface connects the
working part to the system bus. The working part of the memory module is the
part whose functionality is the same for each module, regardless of how it is
implemented. Working parts of different memory modules connect with
interfaces in the same way.

This computer system gives the possibility of forming five different
configurations of memory modules, more precisely five different ways of
forming module numbers and scheduling addresses per modules: the adjacent
addresses in the same module, the adjacent addresses in adjacent modules, and
three different variants of mixed arrangements of addresses (combination of the
previous two ways).

VSMIS has a visual interpretation: it displays details of implementation
from the block level to the register transfer level (RTL), it has the ability to
manage simulation process, and it is interactive. On the one hand, this system is

K. Milenković, Ž. Stanisavljević, J. Đorđević

58

complex enough to represent the desired topic, and yet it is well adapted to the
level of students’ knowledge.

4 Laboratory Exercise Based on the VSMIS Simulator

This section describes the laboratory exercise on the course Computer
Architecture and Organization 1 at SEE-UB, based on the use of VSMIS
simulator, and it provides an example of the system use case.

4.1 Description of Laboratory exercise

The laboratory part of the course Computer Architecture and Organization
1 at SEE-UB is carried out through five laboratory exercises which accompany
the materials covered in classes of lectures and auditory exercises. VSMIS
simulator covers the fourth laboratory exercise, for which the topic is memory
interleaving.

In the context of prepared material for this laboratory exercise, students
receive a few different computer system configurations that support memory
interleaving as well as explanations of the scenarios according to which
operations and request for access to memory are performed in these simulations.
VSMIS enables teachers to predefine the desired system configuration, save it
in a separate file (with the extension .mmi) and make prepared files available to
students. Based on some typical computer systems configurations that support
memory interleaving, there are a few different cases:

 A computer system with a single I/O device with burst memory access.

 A computer system with multiple I/O devices with a single memory
access.

 A computer system with multiple I/O devices with a single memory
access and a single device with burst memory access.

The student’s task is to trigger the execution of simulation clock by clock,
watch the events of the proper part of the system, and respond to the questions
regarding the execution of the simulation.

VSMIS simulator is available to students for independent work at home.
With this option students have the ability to define an arbitrary computer system
configuration and observe the execution of a simulation.

4.2 Use Case Example

The VSMIS system will be described using the case of a computer system
with multiple I/O devices with a single memory access and a single device with
burst memory access.

After starting VSMIS, the user will see the initial system window (shown in
Fig. 4). This window provides the option to choose the way to start or to exit the

Visual Software System for Memory Interleaving Simulation

59

system. Users are given two options for getting started: Set simulation
parameters and Load simulation. In laboratory exercises, when students receive
a prepared configuration file, they should select the option Load simulation,
then choose the appropriate file and configure the system. In this section the
manual configuration of the system will be explained and the option Set
simulation parameters will be selected.

Fig. 4 – Initial window.

The first step in the simulation is to configure the computer system. In
VSMIS, it is done in two separate dialogues. In the first dialogue (shown in
Fig. 5), memory configuration is set. It is possible to select the desired schedule
of addresses per memory module, and change the parameters of the memory
modules. Each module can be set with an identifier and the time of access.

In the second dialogue (shown in Fig. 6), the I/O device configuration is
performed. It is possible to change the parameters of devices separately. Each
device can be set with an identifier and one of the two types (burst or single
memory access). If a particular device generates a request for memory access, it
is necessary to define the parameters of that access. All relevant information,
necessary to perform appropriate access (the clock when access starts, the type
of operation and other) should be entered into the corresponding dialogue,
shown in Fig. 7. The I/O devices that do not define the parameters of access do
not generate requests for memory access.

K. Milenković, Ž. Stanisavljević, J. Đorđević

60

Fig. 5 – Dialogue for computer system configuration (1).

Fig. 6 – Dialogue for computer system configuration (2).

Fig. 7 – Dialogue for setting memory access parameters
for single memory access device.

Visual Software System for Memory Interleaving Simulation

61

After completing the configuration process, the user will be shown the
main window, with the structural scheme of the system (shown in Fig. 8).
Structural schemes in the system are displayed from the highest level of
abstraction (block level), down to the lowest RTL level. In the main window, it
is possible to move through the entire hierarchy of the system and to observe the
desired part of the system at a given time. Returning to a higher authority
(parental view) is possible by selecting UP option from the panel with the
information about the current view on the system.

Fig. 8 – Main window.

At the beginning, the panel for showing the structural schemes displays the
structural scheme of the entire system, located at the highest level of the
hierarchy view. The signals in the system are displayed as lines. Depending on
the value of the signal, it is displayed in one of the following four colors: blue
(value 0), red (value 1), green (high Z) or black (value for group of lines
different than high Z). All signals that consist of more than one bit are
associated with a text label which represents signal value. The values in text
labels can be displayed in one of the binary, octal, decimal, or hexadecimal
numeral system.

K. Milenković, Ž. Stanisavljević, J. Đorđević

62

The simulation can be controlled by options CLOCK++ and RESET.
Option CLOCK++ allows running the simulation in advance for one clock. The
value of the label Tclk shows which clock signal is obtained in the execution of
the simulation. Option RESET brings the simulation to its initial state.

Besides the panel for displaying structural schemes, the main window
contains the panel for displaying information about the microprogram (shown in
Fig. 9). It shows the current step of the algorithm which generates control
signals for the control unit of the system component, which is displayed in the
view.

Fig. 9 – Panel with information about a microprogram step.

Fig. 8 – Dialogue showing memory content.

At any time during the execution of the simulation, it is possible to choose
one of the options from the main window. The option NEW SIMULATION
allows the new initialization of the system. It causes the opening of a dialogue
for system initialization. The option SAVE is used to save the current state of
the simulation. It allows the user to terminate its work, but to preserve the

Visual Software System for Memory Interleaving Simulation

63

current state of the simulation in order to make it possible to continue with the
execution of the simulation later on. Files with the simulation state are saved
with the extension .mmi. The option LOAD is used to initialize the system by
restoring an old simulation, which was previously saved. If the user wants to
view or set the values of memory locations, they have to choose the option
MEMORY CONTENT in the main window. That will open a new dialogue,
shown in Fig. 10, which provides the user with the aforementioned features.
The option HELP provides some basic information about the application. The
option EXIT enables the user to exit the system.

5 Comparison with Existing Simulators

In this section VSMIS is compared to the existing simulators that cover the
topic of memory interleaving. A thorough analysis of different simulators for
teaching computer architecture and organization can be found in [8]. Only those
which address the issue of memory interleaving are analyzed.

The main categorization of existing software systems can be made based on
the manner of their implementation. Based on this criterion, software systems
can be divided into two groups: fixed computer systems simulators and
configurable computer systems simulators. The first group gives less flexibility,
but is suitable for giving users an insight into the architecture of the system, its
behavior in different situations, and performance analysis. The second group
provides greater flexibility, but it is hardly appropriate for complex computer
system educational needs. As the objective of the course of Computer
Architecture and Organization 1 at the SEE-UB is to introduce students to the
basic elements of the memory hierarchy system (their structures, basics of
functioning, etc.), the simulators of fixed computer systems perfectly meet its
needs. Among the aforementioned software systems that cover the topic of
memory interleaving, Simics [12] belongs to the group of simulators of fixed
computer systems, and Quartus II [11], M5 [10] and ISE Design Suite [9] to the
group of simulators of configurable computer systems. The created software
system VSMIS belongs to the group of simulators of fixed computer systems
and therefore provides some limitation.

Another important feature of the software system is the existence of
graphical presentation. For the purposes of the course, graphical presentation is
very important because it greatly facilitates the understanding of complex
matter. Among the aforementioned software systems that cover the topic of
memory interleaving, Simics [12] and M5 [10] do not have graphical
presentation. Quartus II [11] and ISE Design Suite [9] have graphical
presentation and they display the implementation details up to the RTL level.
VSMIS has graphical presentation and it also displays the implementation
details up to the RTL level.

K. Milenković, Ž. Stanisavljević, J. Đorđević

64

The important thing when observing a computer system is the way of
simulation execution. Some software systems allow the execution of simulation
on clock level, some allow the execution on instruction level, and some allow
the execution on program level. For the purposes of the course and complete
understanding of how the system functions, it is important to have the
possibility to execute simulation on clock level. Among the aforementioned
software systems that cover the topic of memory interleaving, Quartus II [11],
M5 [10], and ISE Design Suite [9] allow the execution of simulation on clock
level, and Simics [12] allows the execution of simulation on instruction level.
VSMIS allows the execution of simulation on clock level.

Table 1
Comparison of VSMIS with existing simulators.

 Implementation Graphics Execution

Simics fixed No instruction level

M5 configurable No clock level

Quartus II configurable Yes, RTL clock level

ISE Design Suite configurable Yes, RTL clock level

VSMIS fixed Yes, RTL clock level

The previously analyzed software systems were developed to meet very
specific requirements and none of them had memory interleaving in focus.
These software systems only partially fulfill the need at the Computer
Architecture and Organization 1 course, since some of them allow memory
interleaving to be simulated, but none of them makes it possible to cover all of
the desired situations. Therefore with the VSMIS we aimed to close the gap
between the available software systems and the needs of the Computer
Architecture and Organization 1 course.

6 Conclusion

This paper presents the software system that provides a visual simulation of
computer systems with memory interleaving. VSMIS was created for the
laboratory exercises at the course Computer Architecture and Organization 1 at
SEE-UB. The implemented system provides a simple user interface for
configuration, initialization and execution of simulations. All the options are
quite intuitive, thus getting familiar with system does not require much time. It
is sufficient that the user has some basic knowledge of the memory system
architecture and organization. Visual representation of simulation flow is
implemented in a way that enables the user to gain an insight into all parts of the
computer system and to provide the necessary information for simulation

Visual Software System for Memory Interleaving Simulation

65

monitoring. Special attention was given to the simplicity of the visual display. It
is clear and unencumbered by superfluous information. VSMIS is beneficial for
students because it allows them to learn course materials in an easier and a more
interesting way, as well as for teachers who have the opportunity to demonstrate
the functioning of many different computer systems thanks to VSMIS.

Various simulators have already been developed for the laboratory
exercises at the course Computer Architecture and Organization 1 at SEE-UB,
such as software systems for simulation of cache memory and virtual memory,
which were developed a few years ago. The simulator described in this paper,
along with the previously mentioned simulators for cache memory and virtual
memory, completely covers the area of the memory hierarchy system taught in
the course.

It is possible to upgrade the VSMIS system in the future in order to make
the execution of the simulation flexible. In addition to the already existing
options, it is possible to add the option of returning the simulation flow for one
clock backwards or positioning it to the desired clock during the simulation.
The introduction of an automatic review and assessment of student work is also
considered.

The system is in use in the course in the current school year (2016/2017)
and the analysis of students’ results and their satisfaction with the system will
be carried out at the end of school year.

7 Acknowledgment

This paper was partially supported by the Ministry of Education, Science
and Technological Development of Republic of Serbia, project number
III44009. Special thanks to Dunja Živanović for proofreading.

8 References

[1] Computer Science Curricula 2013, Association for Computing Machinery and IEEE
Computer Society, Dec.2013.
Available at: https://www.acm.org/education/CS2013-final-report.pdf

[2] N. Grbanovic, J. Djordjevic, B. Nikolic: Software Package for an Educational Computer
System, International Journal of Electrical Engineering Education, Vol. 40, No. 4, 2003, pp.
270 – 284.

[3] J. Djordjevic, B. Nikolic, A. Milenkovic: Flexible Web-based Educational System for
Teaching Computer Architecture and Organization, IEEE Transactions on Education, Vol.
48, No. 2, May 2005, pp. 264 – 273.

[4] J. Djordjevic, B. Nikolic, T. Borozan, A. Milenkovic: CAL2: Computer Aided Learning in
Computer Architecture Laboratory, Computer Applications in Engineering Education, Vol.
16, No. 3, 2008, pp. 172 – 188.

K. Milenković, Ž. Stanisavljević, J. Đorđević

66

[5] Z. Stanisavljevic, V. Pavlovic, B. Nikolic, J. Djordjevic: SDLDS—System for Digital Logic
Design and Simulation, IEEE Transactions on Education, Vol. 56, No. 2, May 2013, pp.
235 – 245.

[6] J. Djordjevic: Computers Architecture and Organization, Academic Mind, Belgrade, Serbia,
2015. (In Serbian).

[7] G.S. Wolffe, W. Yurcik, H. Osborne, M.A. Holliday: Teaching Computer Organiza-
tion/Architecture with Limited Resources using Simulators, 33rd SIGCSE Technical
Symposium on Computer Science Education, Cincinnati, OH, USA, 27 Feb-03 March 2002,
pp. 176 – 180.

[8] B. Nikolic, Z. Radivojevic, J. Djordjevic, V. Milutinovic: A Survey and Evaluation of
Simulators Suitable for Teaching Courses in Computer Architecture and Organization, IEEE
Transactions on Education, Vol. 52, No. 4, Nov. 2009, pp. 449 – 458.

[9] ISE Design Suite, Xilinx.
Available at: http://www.xilinx.com/products/design-tools/ise-design-suite.html.

[10] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, S.K. Reinhardt: The M5
Simulator: Modeling Networked Systems, IEEE Micro, Vol. 26, No. 4, July/Aug. 2006, pp.
52 – 60.

[11] QUARTUS II Software, Altera.
Available at:
https://www.altera.com/products/design-software/fpga-design/quartus-ii/overview.html.

[12] Simics User Guide for Unix, Version 3.0, Virtutech, 2005.
Available at:
http://www.ece.cmu.edu/~protoflex/lib/exe/fetch.php?media=documentation:simics-user-
guide-unix.pdf.

[13] Computer Science Curricula 2016, Association for Computing Machinery and IEEE
Computer Society, Dec. 2016.
Available at:
http://www.acm.org/binaries/content/assets/education/ce2016-final-report.pdf.

