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Electrostatic Field of Cube Electrodes 

Dragutin M. Veli~kovi } 1, Alenka Milovanovi} 2 

Abstract: Electric field and potential distribution in the surroundings of cube electrodes 
are numerically determined using Equivalent Electrodes Method.  
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1 Introduction 
Some time ago the first author suggested a new numerical method, so-called the 

Equivalent Electrodes Method (EEM) [1], for non-dynamic electromagnetic fields and 
other potential fields of the theoretical physics solving. The first very good results were 
obtained in [2], when the method was used for calculating of the equivalent radius of 
uniform antennas. Afterwards, the good results were obtained in the computations of the 
electrostatic fields [3-6], in the theory of low-frequency grounding systems [7], in the 
static magnetic field solving [8, 9] and for transmission lines analysis [10-16]. Also, the 
method was extended to the other potential fields: to heat flow problems [17, 19] and for 
plan-parallel fluid flow solving [18, 19]. The basic idea of the proposed theory is that an 
arbitrary shaped electrode can be replaced by a finite system of Equivalent Electrodes 
(EE). Thus it is possible to reduce a large number of complicated problems to the 
equivalent simple systems. Depending on the problem geometry, the flat or oval strips 
(for plan-parallel field) and spherical bodies (for three-dimensional fields), or toroidal 
electrodes (for systems with axial symmetry) can be commonly used. In contrast to the 
charge simulation method [20], when the fictitious sources are placed inside the elec-
trodes volume, the EE are located on the body surface. The radius of the EE is equal to 
the equivalent radius of the electrode part, which is substituted. Also the potential and 
charge of the EE and of the real electrode part are equal. So it is possible, using bound-
ary condition that the electrode is equipotential, to form a system of linear equations 
with charges of the EE as unknowns. By solving this system, the unknown charges of 
the EE can be determined and, then, the necessary calculations can be based on the 
standard procedures. It is convenient to use Green's functions for some electrode, or for 
stratified medium, in case when the system has several electrodes, or when the multi-
layer medium exists, and after that the remaining electrodes substitute by EE [21]. In the 
formal mathematical presentations, the proposed EEM is similar to the moment method 
form [22], but very important difference is in the physical fundaments and in the process 
of matrix establishments. So it is very significant to notice that in the application of the 
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EEM an integration of any kind is not necessary. In the moment method solutions the 
numerical integration is always present, which produces some problems in the numerical 
solving of nonelementer integrals having singular subintegral functions. If the charge 
simulation method is used, the potential can be also put in similar form, but the differ-
ence between EEM and charge simulation method is in the choice of the positions of the 
equivalent charges and in the choice of matching points. 

In this paper, the method will be applied for solving electrostatic electrode systems 
formed by conducting cubes, which are in one and two-layer dielectric, by conducting 
cube inside spherical cavity and spherical electrode inside cube cavity. Potential Green’s 
function of point charge placed next to the cube electrode will be determined, too. 

The obtained numerical results will be compared with existing values realised using 
other numerical methods (moment method [22, 23], method of sub areas [24] and 
estimation method [25]) and a very good agreement will be realized. Then it is necessary 
to notice that EEM gives exact solution in theoretical limit process of infinite EE num-
ber. But in real cases, when EE number is finite, existing discontinuities (six peaks and 
twelve sharp edges) in cube electrode shape produce certain errors, making smaller with 
EE number increasing. 

2  Equivalent Electrode Method Application on Cube Electrodes 
In order to the simplicity, the EEM application is presented on the isolated conduct-

ing cube of side a , placed in the homogeneous medium of permittivity ε . One of the 
walls of cube electrode with 24N  squares having sides )(= NA/A 2 , which are formed 
on the surface, is presented in Fig. 1. These strips can be replaced by small spherical EE 
of equivalent radius AA 0.368248=e  [1]. (By using moment method [22], the equiva-
lent radius is AA 373.0e = .). 

 
Fig. 1 - Forming of square strips. 

Due to existing symmetry special care should be taken about diagonal (low 
darkened) and other (higher darkened) strips in Fig. 1. Therefore, the potential of the 
cube electrode can be approximately expressed as  

 ∑
=

=ϕ
M

n
nnGq
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where ( ) 21+= NNM  is the number of EE with different charge and nG  is potential 
Green′s functions of EE charge nq , which acts as point charge located in the electrical 
middle point (barycentre) of the strip. If it determines the potential of the diagonal ele-
ments, the expression of Green’s function has 24=αn  terms having form Rπε41 , 

where ( ) ( ) ( )222
nnn zzyyxxR −+−+−=  denotes the distance between the bary-

centre ( )nnn zyx ,,  of the observed strip and the field point ( )zyx ,, . The number of 
terms in the Green′s function expression in case of no diagonal strips is two times bigger 
and is 48=αn . N  is the number of diagonal EE with different charge on each wall. 
The number of no diagonal EE is ( ) 21−NN . 

 Using boundary condition that the electrode is equipotential, the following system of 
linear equations is formed, 

 ∑
=

==ϕ
M

n
nmnGqU

1

, Mm ,...,2,1= , (2) 

where 

 nmG  is finite sum of terms having form nmRπε41 , 

 ( ) ( ) ( ) nmnmnmnmnnm azzyyxxR δ+−+−+−= 2
e

222 ,  

nmδ denotes Kronecker's symbol and nae is equivalent radius of −n th EE. 

After solving this linear equations system, the unknown charges nq  of the EE will 
be determined. The capacitance of the isolated electrode is 

           e4 aUQC πε== , (3) 

where  

 ∑
=

α=
M

n
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1

 (4) 

is total cube electrode charge and ea  is equivalent radius of cube electrode. 

The convergence with the number of EE, N , of the presented procedure, when the 
equivalent radius or capacitance of the isolated cube electrode is determined, is 
presented in the Table 1. These results agree very well with values obtained by using: 

a) Moment method [22], aa 0.6555e ≈ ; 

b) Method of sub areas [24], aa 6110.6e ≈ ; and  

c) Estimate method [25], aaa 6830.0
4

31
e ≈

+
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Table 1 
Equivalent radius of cube electrode for different number of EE, N . 

N  aae  N  aae  

1 0.661 15 20 0.662 58 
2 0.666 71 25 0.662 26 
3 0.666 63 30 0.662 04 
4 0.666 09 35 0.661 88  
5 0.665 55 40 0.661 75 

10 0.663 86 45 0.661 65 
15 0.663 05 50 0.661 56 

3  Examples 
In the following text, the method is applied to several typical examples when the 

cube electrode is placed above conducting plane or it is in two-layer dielectric. Capaci-
tance of the condenser formed by cube electrodes, by cube and spherical electrode and 
potential Green′s function of point charge next to the cube are also determined. 

3.1 Conducting cube above conducting plane 
a) Conducting cube of side a  is at height h  above conducting plane, when the cube 

base is parallel with plane surface, Fig. 2. The approximate potential can be now pre-
sented in form (1), where Green's functions are determined using plan mirror images of 
point charges above infinite conducting plane. 

 
Fig. 2 - Conducting cube above conducting plane. 

Table 2 
 Capacitance of cube electrode, aC πε4 , for ah 1.1=  and different number of EE, N .  

N  aC πε4  N  aC πε4  
1 0 .8025 6 0.8439 
2 0.8353 7 0.8435 
3 0.8426 8 0.8430 
4 0.8441 9 0.8426 
5 0.8442 10 0.8424 
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The convergence of capacitance results of conducting cube, placed above conducting 
plane, when the EE number is different, is presented in the Table 2.  

The capacitance of the conducting cube placed above conducting plane, when the 
height, where the cube is placed, is different and the number of EE is determined as 

5=N , is presented in the Table 3. 

Table 3 
 Capacitance of cube electrode, aC πε4 , when ah  is different and 5=N . 

ah  aC πε4  ah  aC πε4  

1.05 0.8517 2 0.7697 
1.1 0.8442 5 0.7098 
1.2 0.8309 10 0.6887 
1.3 0.8195 50 0.6712 
1.4 0.8096 100 0.6690 
1.5 0.8009   

3.2 Conducting cube in two-layer dielectric 
b) Conducting cube of side a  is in two-layer dielectric, when the cube base is 

parallel with boundary surface at the height h , Fig. 3. The approximate potential is pre-
sented in the form (1), where Green's functions are determined using plan mirror images 
of point charges in two layers dielectric (Fig. 4), 
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Fig. 3 - Conducting cube in  
two-layer dielectric. 

Fig. 4 - Point charge in  
two-layer dielectric. 

The capacitance of the cube electrode in two-layer dielectric when ah 5=  and 
different ratio 12 εε  is presented in Table 4. 
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Table 4 
 Capacitance of cube electrode, aC 14πε , for ah 5=  and different ratio 12 εε . 

ε ε2 1 C a4 1πε  ε ε2 1 C a4 1πε  
1 0.6668 10 0.7016 
2 0.6806 20 0.7055 
3 0.6877 50 0.7080 
4 0.6920 100 0.7089 
5 0.6949   

The capacitances of the cube electrode in two-layer dielectric, when the cube height 
is different and 12 2ε=ε  or 12 5ε=ε , are presented in Tables 5 and 6. 

Table 5 
 Capacitance of cube electrode, aC 14πε , for 12 2ε=ε  and different ratio ah . 

h a  C a4 1πε  h a  C a4 1πε  
2 0.6979 8 0.6756 
3 0.6887 9 0.6747 
4 0.6837 10 0.6739 
5 0.6806 20 0.6704 
6 0.6784 50 0.6683 
7 0.6768 100 0 .6675 

Table 6 
 Capacitance of cube electrode, aC 14πε , for 12 5ε=ε  and different ratio ah . 

h a  C a4 1πε  h a  C a4 1πε  
1.1 0.7750 2 0.7320 
1.2 0.7676 5 0.6949 
1.3 0.7610 10 0.6812 
1.4 0.7555 50 0.6698 
1.5 0.7504 100 0.6683 

3.3 Condenser of cube electrodes 

 
Fig. 5 - Condenser of cube electrodes. 
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The electrodes of cube condenser, having sides a  and b , are placed parallel as in 
Fig. 5. zyxd ˆˆˆ zyx ddd ++=  is radius vector of chosen peak of the right electrode in re-

lation to the corresponding peak of the left cube. The capacitances of parallel cube con-
densers, for different positions and electrode distances, are presented in Figs. 6 and 7. 

 
Fig. 6 - Capacitance of condenser (Fig. 5) versus the distance xd , when 0== zy dd . 

 
Fig. 7 - Capacitance of condenser (Fig. 5) versus the distance zyx ddd == . 

3.4 Cube electrode within cube hollow space 
Cube electrode within cube hollow space is shown in Fig. 8. In that case the position 

of the inner electrode peak 0′  is ( ) 2bazyx −=== . 

 
Fig. 8 - Cube electrode within cube hollow space. 
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Fig. 9 - Capacitance of condenser from Fig. 8. 

3.5 Cube electrode inside spherical cavity 
Cube electrode of side a  is arbitrary placed inside spherical conducting cavity of ra-

dius b , Fig. 10. The distance between centres of cube and sphere electrode d  is so se-
lected that contact between electrodes is not realized. Now EE are located on cube sur-
face only and the potential can be presented by formula (1), where Green's functions are 
determined using conducting sphere images of point charges (Fig. 11), 
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Fig. 10 - Cube electrode inside  

spherical cavity. 
Fig. 11 - Point charge inside  

spherical cavity. 

  
Fig. 12 - Equipotential line of cube electrode inside spherical cavity. 
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Equipotential curves of system from Fig. 10 are presented in Fig. 12. The conver-
gence of the results of capacitance of cube electrode inside spherical cavity with EE 
number is presented in the Table 7, when cube electrode centre coincides with spherical 
cavity centre and when ba 0.4= . 

Table 7 
 Capacitance of system from Fig. 9 for different EE number, N . 

EE number, N  bC πε4  
150 0.363 147 
600 0.361 884 
864 0.361 596 

1350 0.361 278 
1536 0.361 193 
1944 0.361 047 

 

3.6 Spherical electrode inside cube cavity 
Spherical electrode of radius b  is placed inside cube conducting cavity of side a , as 

in Fig. 13.  

  
Fig. 13 - Spherical electrode inside  

cube cavity. 
Fig. 14 - Equipotential lines of spherical 

electrode in cube cavity. 
The convergence of the results of capacitance of spherical electrode inside cube cav-

ity with EE number is presented in the Table 8, when cube electrode centre coincides 
with spherical cavity centre and when ba 5.2= . 

Table 8 
 Capacitance of system from Fig. 13 for different EE number, N . 

EE number, N  bC πε4  
150 8.094 084 
600 7.982 003 
864 7.952 217 

1350 7.934 268 
1536 7.927 292 
1944 7.915 462 
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3.7 Point charge next to the conducting cube 
Point charge q  is next to the conducting cube of zero potential as in Fig. 15. Induced 

charges on the walls of the conducting cube for some position of point charge are pre-
sented in Table 9. 

 

Fig. 15 - Point charge next to the conducting cube. 

Table 9 
Induced charge on the walls of conducting cube  

for different position of point charge. 
 

Q q  d ax  d ay  d az  
- 0.861 1 1 1 
- 0.386 1.5 1.5 1.5 
- 0.642 1.5 0.5 0.5 
- 0.591 1.5 0 0.5 
- 0.548 1.5 0 0 

4 Conclusion  
  EEM is applied for numerical analysis of electrostatic field of cube electrodes. 

Conducting cube in one or two-layer dielectric, cube electrode above conducting plane, 
condenser of two cube electrodes, cube electrode inside spherical cavity, spherical 
electrode inside cube cavity and point charge next to the cube electrode are observed. 
Any of these cubes, because of its shape, is rich in sharp edges and peaks, by applying 
the method gives good convergence depending of the number of used EE. The method is 
very simple and in the limit process with the number of the EE gives an exact results. It 
should be pointed out that no numerical integration is necessary and that creating 
program package for approximate numerical calculations with EEM is very simple. The 
obtained numerical results are compared with existing values realised using other 
numerical methods (moment method, method of sub areas and estimation method [25]) 
and a very good agreement are realized. 
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