
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING 

Vol. 13, No. 2, June 2016, 203-227 

203 

Exact Traveling Wave Solutions for 

Nonlinear PDEs in Mathematical Physics 

using the Generalized Kudryashov Method 

El-Sayed Mohamed El-Sayed Zayed
1
, Abdul-Ghani Al-Nowehy

2
 

Abstract: The generalized Kudryashov method is applied in this article for 

finding the exact solutions of nonlinear partial differential equations (PDEs) in 

mathematical physics. Solitons and other solutions are given. To illustrate the 

validity of this method, we apply it to three nonlinear PDEs, namely, the 

diffusive predator-prey system, the nonlinear Bogoyavlenskii equations and the 

nonlinear telegraph equation. These equations are related to signal analysis for 

transmission and propagation of electrical signals. As a result, many analytical 

exact solutions of these equations are obtained including symmetrical Fibonacci 

function solutions and hyperbolic function solutions. Physical explanations for 

some solutions of the given three nonlinear PDEs are obtained. Comparison our 

new results with the well-known results are given. 

Keywords: Nonlinear PDEs, Generalized Kudryashov method, Symmetrical 

hyperbolic Fibonacci function, Exact solutions, The diffusive predator-prey 

system, The nonlinear Bogoyavlenskii equations, The nonlinear telegraph 

equation. 

1 Introduction 

Many important phenomena and dynamic processes in physics, mechanics, 

chemistry and biology can be represented by nonlinear partial differential 

equations. The study of exact solutions of nonlinear evolution equations plays 

an important role in the soliton theory. The explicit formulas of nonlinear partial 

differential equations play an essential role in the nonlinear science. These 

explicit formulas may provide physical information and help us to understand 

the mechanism of related physical models. In recent years, many kinds of 

powerful methods have been presented to find the exact solutions of nonlinear 

partial differential equations, such as the homogeneous balance method [1], the 

Hirota's bilinear transformation method [2, 3], the tanh-function method [4, 5], 

the (G′/G)-expansion method [6 – 8], the exp-function method [9, 10], the 
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multiple exp-function method [11 – 13], the symmetry method [14, 15], the 

modified simple equation method [16 – 18], the Jacobi elliptic function 

expansion [19], the Bäcklund transform [20, 21], the modified extended Fan 

sub-equation method [22], the auxiliary equation method [23, 24], the first 

integral method [25], the generalized Kudryashov method [26 – 30], the soliton 

ansatz method [31 – 57] and so on. 

The objective of this paper is to construct the exact solutions of the 

diffusive predator-prey system [58, 59], the nonlinear Bogoyavlenskii equations 

[59] and the nonlinear telegraph equation [58] by using the generalized 

Kudryashov method [30]. 

The rest of this article can be organized as follows: In Section 2, we give 

the description of the generalized Kudryashov method. In Section 3, we use this 

method to solve the diffusive predator-prey system, the nonlinear 

Bogoyavlenskii equations, and the nonlinear telegraph equation. In Section 4, 

physical explanations of some results are presented. In Section 5, some 

conclusions are given. 

2 Description of the Generalized Kudryashov Method 

Suppose that a nonlinear PDE has the following from: 

 ( , , , , , ,...) 0,t x tt xt xxF u u u u u u   (1) 

where ( , )u u x t  is an unknown function, F is a polynomial in ( , )u u x t  and 

its partial derivatives, in which the highest order derivatives and highest  

nonlinear terms are involved. The main steps of the generalized Kudryashov 

method are described as follows: 

Step 1. First of all, we use the wave transformation: 

 ( , ) ( ),     ,u x t U kx t       (2) 

where k  and   are arbitrary constants with , 0k   , to reduce the equation (1) 

into the following nonlinear ordinary differential equation (ODE): 

 ( , , , ,...) 0,H U U U U     (3) 

where H  is a polynomial in  ( )U    and its total derivatives  , , ,...U U U    such 

that  d d ,U U     2 2d dU U     and so on. 

Step 2. We assume that the formal solution of the ODE (3) can be written in the 

following rational form: 
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where: 

1 1Q a  ,  
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   ,  d dU  and   
0

( ) ( )j

j
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B Q m b Q


   . 

The function Q  is the solution of the equation 

  1 ln( ),        0 1.Q Q Q a a      (5) 

Taking into consideration (4), we obtain 
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and similar for higher order differentiation terms. 

Step 3. Under the terms of the given method, we suppose that the solution of (3) 

can be written in the following form: 

 
2

0 1 2
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( ) .

···

n
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U

b b Q b Q b Q

   
 

   
 (9) 

To calculate the values m  and n  in (9) that is the pole order for the general 

solution of (3), we progress conformably as in the classical Kudryashov method 

on balancing the highest order nonlinear terms and the highest order derivatives 

of ( )U   in (3) and we can determine a formula of m and n . We can receive 

some values of m  and n . 

Step 4. We substitute (4) into (3) to get a polynomial ( )R Q  and equate all the 

coefficients of iQ , ( 0,1,2,...)i   to zero, to yield a system of algebraic equations 

for  ia ( 0,1,..., )i n   and  jb ( 0,1,..., ).j m  
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Step 5. We solve the algebraic equations obtained in Step 4 using Mathematica 

or Maple, to get k ,   and the coefficients of ia ( 0,1,..., )i n  and jb  

( 0,1,..., ).j m   In this way, we attain the exact solutions to (3). 

The obtained solutions depend on the symmetrical hyperbolic Fibonacci 

functions given in [60]. The symmetrical Fibonacci sine, cosine, tangent, and 

cotangent functions are respectively, defined as: 

 

( ) ,                 ( ) ,
5 5

tan ( ) ,             cot ( ) ,

x x x x

x x x x

x x x x

a a a a
sFs x cFs x

a a a a
Fs x Fs x

a a a a
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2 2
( ) ( ln( )),        ( ) ( ln( )),

5 5

tan ( ) tanh( ln( )),            cot ( ) coth( ln( )).

sFs x sh x a cFs x ch x a

Fs x x a Fs x x a

 

 
 (11) 

3 Applications 

In this section, we construct the exact solutions in terms of the symmetrical 

hyperbolic Fibonacci functions of the following three nonlinear PDEs using the 

generalized Kudryashov method described in Section 2: 

3.1 Example 1. The diffusive predator-prey system 

This equation is well-known [58, 59] and can be written in the form: 

 
2 3

3

(1 ) ,

,

t xx

t xx

u u u u u uv

v v kuv mv v

      


    
 (12) 

where , ,k m  and   represent positive parameters, subscripts x  and t  denote 

partial derivatives. The biological meaning of each term of (12) has been 

discussed in [61, 62]. Recently, Zayed et al. [59] used the modified simple 

equation method to solve (12). In order to investigate the dynamics of the 

diffusive predator-prey system, the relations between the parameters, namely 

m    and 1 1k      , have been defined in [61]. Under this relation, (12) 

can be written in the form: 

 
2 3

3

( 1 ) ,

.

t xx
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v v kuv v v

       


    
 (13) 

We proceed by considering the traveling wave transformation: 

 ( , ) ( ),      ( , ) ( ),     ,u x t U v x t V lx wt        (14) 
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where l  and w  are constants with , 0l w  , to reduce the nonlinear PDEs (13) 

into the following nonlinear ODEs: 

 
2 2 3

2 3

( 1 ) 0,

0.

l U wU U k U U UV

l V wV kUV V V

         


      
 (15) 

In order to solve (15), let us consider the following transformation 

 
1

.V U


 (16) 

Substituting the transformation (16) into (15), we get 

 2 2 3 0.l U wU U kU U       (17) 

Balancing U  and 3U  in (17), we have the following relation: 

 2 3( ) 1.n m n m n m        (18) 

If we choose 1m   and 2,n   then the formal solution of (17) has the 

form: 

 
2

0 1 2

0 1

( ) .
a a Q a Q

U
b b Q

 
 


 (19) 

Consequently, 

        
2
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 (21) 

Substituting (19) – (21) into (17), collecting the coefficients of each power 

of  iQ  ( 0,1,...,6)i   and setting each of the coefficients to zero, we obtain the 

following system of algebraic equations: 
 

6 3 2 2 2

2 2 1: 2 ln ( ) 0,Q a l a b a    
5 2 2 2 2 2 2 2 2

2 0 1 2 1 2 1 2 1 1 2: 6 ln ( ) ln( ) 3 ln ( ) 3 0,Q l a b b a wa b a l a b a ka b a a      

4 2 2 2 2 2 2 2 2 2 2

2 0 2 1 2 1 0 2 1

2 2 2 2

2 0 1 0 2 1 2 1 2 0 1 1 2

: ln( ) 6 ln ( ) ln ( )

3 ln( ) 3 2 9 ln ( ) 3 0,
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3 2 2 2

1 0 0 1 0 1 0 2 1 1 1

2 2 3 2 2 2 2 2

1 0 1 1 2 0 1 1 0

2 2

1 2 0 2 0 2 0 1 1 0

2 2 2 2 2 2 2

1 1 2 0 1 0 0 1 2 2 0 1
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      0,

     (22) 

2 2 2 2 2 2 2

0 2 0 1 0 0 1 0 1 0

2 2 2 2 2

1 0 0 0 2 1 0 1 0 1 0 1 1 0 1

2 2 2 2 2 2

2 0 0 1 1 2 0 1 0 1 0
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1 0 1 2 0 0
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ln( ) 3 2 ln ( )

2 ln( ) 2 ln ( ) ln( )

ln( ) 4 ln ( ) 3
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wb a b a a a b a ka b a b b l a b b a

wa b a ka a b a b l b a a wa b a

wa b b a l a b a a a

  

      

    

   2

1 0,  
1 2 2 2 2 2

1 0 1 0 0 1 0 0 1 0 0

2 2 2 2

0 1 0 1 0 0 1 1 0 0 1

: ln ( ) 2 ln( ) ln ( )

2 ln( ) 3 0,

Q l a b a b a b wb a b a l b a b a

ka a b wa b a ka b a b a a

   

     
 

0 3 2 2

0 0 0 0 0: 0.Q a a b ka b       

Solving the system of algebraic equations (22) by Maple or Mathematica, 

we obtain the following set of solutions: 

Set 1: 

 

2 2 2

2 2 1 2
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 (23) 

Substituting (23) into (19), we get the following solution: 

 2

1

( 1)
( ) .

2 2 ( 1)

a ak
U

b a





 
    


 (24) 

With the help of (10) and (11), the exact solutions of (12) have the forms: 
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or  
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  2 2
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1
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 (28) 

Set 2: 

 
0 0

1 0 1 2 1 0 0 1 1

(3 ln( ) 2 ), ln( )(2 ln( ) 2 ), 2 ln( ),

2 ( ) ln( ), 2 ln( ), , , , .

w l l a k l a l a k a lb a

a l b b a a lb a b b b b l l k k

      

      

 

 
 (29) 

For this set, we have the exact solutions of (12) in the forms: 

  ln( )
( , ) 1 tanh ,

2

l a
u x t      (30) 

  ln( )
( , ) 1 tanh ,

2

l a
v x t    


 (31) 

or 

  ln( )
( , ) 1 coth ,

2

l a
u x t      (32) 

  ln( )
( , ) 1 coth ,

2

l a
v x t    


 (33) 

where 

 
ln( )

(3 ln( ) 2 ) .
2
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(34) 

For this set, we have the exact solutions of (12) in the forms: 
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or 

  1
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 (38) 

where  

 1
0 1 0 12

0 1

3
2 2( 2 ) (4 ) .

16( 2 )
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b b x k b b t

b b
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 (39) 

For this set, the exact solutions of (12) have the forms:  
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For this set, we have the exact solutions of (12) in the forms: 
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where 

 (3 ln( ) 2 ) ln( ).
2

l
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 (47) 

For this set, we have the exact solutions of (12) in the forms: 

 
 
 

0 1

0 1

2 1 tanh
( , ) ,

2 1 tanh

a a
u x t

b b

  


  
 (48) 

 
 
 

0 1

0 1

2 1 tanh1
( , ) ,

2 1 tanh

a a
v x t

b b

   
       

 (49) 
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 (52) 

For this set, we have the exact solutions of (12) in the forms: 
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0 1
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where 

 (3 ln( ) 2 ) ln( ).
2
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2 22
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4 41 3
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ln( ) 4 4 22 2 ln( )
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2
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 (57) 

provided that 2 4 0.k     

Substituting (57) into (19), we get the following solution: 

  21 1
( ) 4 .

2 1
U k k

a

         
 (58) 

With the help of (10) and (11), the exact solutions of (12) have the forms: 

   21
( , ) 4 1 tanh ,

4
u x t k k       (59) 

   21
( , ) 4 1 tanh ,

4
v x t k k     


 (60) 

or 

   21
( , ) 4 1 coth ,

4
u x t k k       (61) 

   21
( , ) 4 1 coth ,

4
v x t k k     


 (62) 

where 

    2 2 21 1
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Set 9: 
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2 2
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 (63) 

provided that 2 4 0.k      

Substituting (63) into (19), we get the following solution: 
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2

2
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 (64) 

With the help of (10) and (11), the exact solutions of (1) have the forms: 
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2

2
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2

2
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or 
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2

2

4 ( 6 )1 1
( , ) 4 1 coth ,

23 4

k k k
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  (68) 

where 

 21
4 2 .

4
k x kt         

On comparing our results (30) – (33), with the results (26) – (29) obtained 

in [59], we deduce that they are equivalent in the special case with 

1, ,l a e c w    while our results (25) – (28), (35) – (38), (40), (41), (43) –

 (46), (48) – (51), (53) – (56), (59) – (62) and (65) – (68) are new, and not 

discussed elsewhere. 

3.2 Example 2. The nonlinear Bogoyavlenskii equations 

In this subsection, we apply the given method to solve the following 

nonlinear Bogoyavlenskii equations [59, 63 – 65]: 
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24 4 4 0,

.

t xxy y x

y x

u u u u u v

uu v

    
 

 (69) 

In [65], the Lax pair and a nonisospectral condition for the spectral 

parameter are presented. Equations (69) were again derived by Kudryashov and 

Pickering [66] as a member of a (2+1) Schwarzian breaking soliton hierarchy, 

and rational solutions of it were obtained. Equations (69) also appeared in [67] 

as one of the equations associated with nonisospectral scattering problems. The 

Painleve property of (69) is checked by Estevez et al. [68]. Recently, Zayed et 

al. [59] used the modified simple equation method to solve (69). 

This equation can be considered as the modified version of the breaking 

soliton equation 4 8 4 0,xt x xy y xx xxxyu u u u u u     which describes the (2+1)-

dimensional interaction of a Riemann wave propagating along the y-axis with a 

long wave along the x-axis [65]. 

It is well-known that the solutions and its dynamics of the nonlinear PDEs 

can make researchers deeply understand the described physical process. To this 

aim, we use the wave transformation 

 ( , , ) ( ), ( , , ) ( ),        ,   u x y t U v x y t V x y ct         (70) 

where c is an arbitrary constant with 0,c   to reduce (69) to the following 

nonlinear system of ODEs: 

 

2

2

4 4 4 0,

1
.

2

cU U U U U V

U V

       





 (71) 

Substituting the second equation of (71) into the first one, and integrating 

the resultant equation with respect to   and vanishing the constant of 

integration, we obtain 

 32 4 0.U U cU     (72) 

By balancing U′′ with U³, we have n=m+1. If we choose m=1 and n=2, 

then (72) has the same formal solutions (19). 

Substituting (19) and (21) into (72), and equating all the coefficients of 
iQ ( 0,1,...,6)i   to zero, we obtain the following system of algebraic equations: 

 6 3 2 2

2 2 1: 2 2 ln ( ) 0,Q a a b a    

 5 2 2 2 2

1 2 2 1 2 0 1: 6 3 ln ( ) 6 ln ( ) 0,Q a a a b a a b b a     

4 2 2 2 2 2 2 2 2

1 2 2 1 2 1 2 0 1 2 0 0 2: 6 4 ln ( ) 9 ln ( ) 6 ln ( ) 6 0Q a a ca b a b a a b b a a b a a a      
 



Exact Traveling Wave Solutions for Nonlinear PDEs in Mathematical Physics… 

215 

3 2 2 2 2 3 2 2 2

2 0 1 0 1 0 1 2 1 0 1 1

2 2 2

1 0 0 2 0 1 1 0 1 2 0 1

: 10 ln ( ) ln ( ) 2 12 2 ln ( ) 4

2 ln ( ) 8 ln ( ) 3 ln ( ) 0,

Q a b a b a a a a a a a b a ca b

b a b a ca b b a b b a a b b a

     

    
 

2 2 2 2 2 2 2 2 2

1 0 0 1 1 0 2 0 1 0 0 0 2

2 2 2 2

2 0 1 0 1 1 0 1 0 1

: ln ( ) 4 3 ln ( ) 4 3 ln ( ) 6

4 ln ( ) 8 ln ( ) 6 0,

Q b a a ca b a b a ca b b a b a a a

a b a ca b b a b b a a a

    

    
  

1 2 2 2 2 2

0 0 1 1 0 1 0 0 1 1 0 0: 8 4 ln ( ) 6 ln ( ) 0,Q ca b b ca b a b a a a b a b a            (73) 

0 3 2

0 0 0: 2 4 0.Q a ca b      

On solving the above set of algebraic equations (73) with the aid of Maple 

or Mathematica, we get the following cases: 

Case 1: 

 22
0 1 2 0 1 2 2

1 1
0, , 0, , ln ( ), .

2 ln( ) 8

a
a a a b b c a a a

a
         (74) 

With the help of (10) and (11), the exact solutions of (69) are in the forms: 

 
1

( , , ) ln( ) tanh ,
2

u x y t a
    
 

 (75) 

 2 21
( , , ) ln ( ) tanh ,

8
v x y t a

   
 

 (76) 

or 

 
1

( , , ) ln( ) coth ,
2

u x y t a
    
 

 (77) 

 2 21
( , , ) ln ( ) coth ,

8
v x y t a

   
 

 (78) 

where 

 21 1
ln ( ) ln( ).

2 8
x y a t a
          

 

 

Case 2: 

 21 1
0 2 1 0 1 1 1

1
0, , , , ln ( ), .

2ln( ) ln( ) 4

a a
a a a b b c a a a

a a
         (79) 

With the help of (10) and (11), the exact solutions of (69) are in the forms: 

  ( , , ) ln( ) csch ,u x y t a    (80) 
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 2 21
( , , ) ln ( ) csch ,

2
v x y t a

   
 

 (81) 

where 

 21
ln ( ) ln( ).

4
x y a t a
          

 

Case 3: 

 20
0 0 1 1 0 0 1 1 2

2 1
, ( ln( ) 4 ), , , ln ( ), 0.

ln( ) 8

a
a a a b a a b b b c a a

a
         (82) 

With the help of (10) and (11), the exact solutions of (69) are in the forms: 

 
 

1 1

1 1

ln( ) tanh
( , , ) ln( ),

2 ln( ) tanh

b a k
u x y t a

k b a

   
   

   
 (83) 

 

2

2 1 1

1 1

ln( ) tanh1
( , , ) ln ( ) ,

8 ln( ) tanh

b a k
v x y t a

k b a

   
    

 (84) 

or 

 
 

1 1

1 1

ln( ) coth
( , , ) ln( ),

2 ln( )coth

b a k
u x y t a

k b a

   
   

   
 (85) 

 

2

2 1 1

1 1

ln( ) coth1
( , , ) ln ( ) ,

8 ln( )coth

b a k
v x y t a

k b a

   
    

 (86) 

where 

 1 1 0ln( ) 4 ,k b a a   21 1
ln ( ) ln( ).

2 8
x y a t a
          

 

3.3 Example 3. The nonlinear telegraph equation 

Here we apply the method described in Section 2 to construct new exact 

solutions of the nonlinear telegraph equation [58, 69]: 

 3 0.tt xx tu u u u u       (87) 

Equation (87) is referred to as second-order hyperbolic telegraph equation 

with constant coefficients which models a mixture between diffusion and wave 

propagation by introducing a term that accounts for effects of finite velocity to 

standard heat or mass transport equation [70]. But (87) is commonly used in the 

signal analysis for transmission and propagation of electrical signals [70]. 

Equations of this kind arise in the study of heat transfer, transmission lines, 
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chemical kinetics, biological population dispersal, random walks (see [70, and 

references therein]). 

We use the wave transformation 

 ( , ) ( ),     ,   u x t U lx wt      (88) 

where l  and w are arbitrary constants with , 0,l w   to reduce (87) to the 

following nonlinear ODE: 

 2 2 3( ) 0.w l U wU U U        (89) 

By balancing U′′ with U³, we have n=m+1. If we choose m=1 and n=2, then 

(89) has the same formal solutions (19). 

Substituting (19) − (21) into (89), and equating all the coefficients of 
iQ ( 0,1,...,6)i   to zero, we obtain the following system of algebraic equations: 

 6 2 2 2 3 2 2 2

2 1 2 2 1: 2 ln ( ) 2 ln ( ) 0,Q l a b a a w a b a    

 

5 2 2 2 2 2 2 2 2 2

2 0 1 1 2 2 1 2 1

2 2 2

2 1 2 0 1

: 6 ln ( ) 3 3 ln ( ) 3 ln ( )

ln( ) 6 ln ( ) 0,

Q l a b b a a a w a b a l a b a

wa b a w a b b a

   

  
  

 

4 2 2 2 2 2 2 2

1 2 2 1 2 1 2 0 1

2 2 2 2 2 2 2 2 2

2 0 2 0 1 2 1 2 0

2 2 2 2

2 0 1 0 2 2 1

: 3 ln ( ) ln( ) 9 ln ( )

6 ln ( ) 9 ln ( ) 6 ln ( )

3 ln( ) 3 ln ( ) 0,

Q a a l a b a wa b a l a b b a

w a b a w a b b a a b l a b a

wa b b a a a w a b a

    

   

    

  

 

3 2 2 2 2 2 2 2

1 0 0 2 0 1 1 0 0 2 0

2 2 2 2 2 2 2 2 2 2 2 2

2 0 1 0 2 0 1 0

2 2 2 2 3 2 2 2

1 0 1 1 0 1 1 1 1 2 0 1

2 0 1

: 2 ln ( ) 3 ln ( ) 2 ln ( ) 2 ln( )

10 ln ( ) 2 ln ( ) 10 ln ( ) ln ( )

ln ( ) ln ( ) 3 ln ( )

3 ln( )

Q l b a b a w a b b a w b a b a wa b a

l a b a l a b a w a b a l b a a

l a b b a w a b b a a a b l a b b a

wa b b a wb

   

   

    

  2 2 2 2

1 0 1 0 1 0 1

2 2 2

0 1 2 1 0 2 0 1

ln( ) 2 ln ( ) ln( )

6 ln ( ) 2 0,

a a w a b a wa b b a

a a a w b a a a b b

 

     

  

 

2 2 2 2 2 2 2 2 2 2 2

2 0 1 0 1 1 0 1 0 2 0

2 2 2 2

1 0 0 1 0 1 0 1 0 1

2 2 2 2 2 2

2 0 1 0 1 0 1 0

2 2 2 2

1 0 1 1 0 0 1 0 0

: 4 ln ( ) ln ( ) ln ( )

ln( ) 3 ln ( ) ln( ) 3

2 ln( ) 3 ln ( ) ln( ) ln( )

2 3 ln ( ) 3 ln (

Q l a b a l a b b a b a w b a a a b

wb a b a l a b a wa b b a a a

wa b a w a b a wb a a wa b a

a b b w b a b a l b a b

   

    

   

   
2 2 2 2 2 2 2 2 2

2 0 1 0 1 0 2 1 0

)

4 ln ( ) ln ( ) 3 ln ( ) 0,

a

w a b a w a b b a a a l b a a     

 (90)  

 

1 2 2 2 2 2 2 2

1 0 1 0 0 1 0 0 1 1 0 0

2 2 2 2 2 2

1 0 0 1 0 0 1 0 1 0

: ln( ) ln ( ) ln ( ) 3 2

ln( ) ln ( ) ln ( ) 0,

Q wa b a w b a b a w a b a a a b a b

wb a b a l b a b a a b l a b a
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0 3 2

0 0 0: 0.Q a a b       

Solving the above algebraic equations (90) with the aid of Maple or 

Mathematica, the following cases of solutions are obtained: 

Case 1: 

 
0 0 1 0 1 2 1

2

0 0 1 1

, ( ), ,

9 2 3
, , , ,

2ln( ) 2ln( )

a b a b b a b

b b b b l w
a a

  
        

  

   
    


 (91) 

provided that 29 2 0, 0.       

For this case, we have the exact solutions: 

  1
( , ) 1 tanh ,

2
u x t


  


  (92) 

or 

  1
( , ) 1 coth ,

2
u x t


  


  (93) 

where 

 21 3
9 2 .

4 4
x t         

Case 2: 

 
0 0 1 0 2 0 0

2

1 1

, , 0, ,

9 2 3
, , ,

2ln( ) 2ln( )

a b a b a b b

b b l w
a a

 
    

 

   
   


 (94) 

provided that  29 2 0, 0.       

For this case, we have the exact solutions: 

 

 

 
0

0 1

1 tanh

( , ) ,
2 1 tanh

b

u x t
b b


 


 

  
 (95) 

or 
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0

0 1

1 coth

( , ) ,
2 1 coth

b

u x t
b b


 


 

  
 (96) 

where 

 21 3
9 2 .

4 4
x t         

Case 3: 

 

0 1 0 1 2 0 0

2

1 1

0, ( ), 0, ,

9 2 3
, , ,

2ln( ) 2ln( )

a a b b a b b

b b l w
a a


     



    
   

 (97) 

provided that 29 2 0, 0.       

For this case, we have the exact solutions: 

 

 

 
0 1

0 1

( ) 1 tanh

( , ) ,
2 1 tanh

b b

u x t
b b


  


 

  
 (98) 

or 

 

 

 
0 1

0 1

( ) 1 coth

( , ) ,
2 1 coth

b b

u x t
b b


  


 

  
 (99) 

where  

 21 3
9 2 .

4 4
x t         

Case 4: 

 

1
0 1 2 1 0

2

1 1

0, , , 0,

9 2 3
, , ,

2ln( ) 2ln( )

b
a a a b b

b b l w
a a

 
     






   
   

 (100) 

provided that 29 2 0, 0.       

Substituting (100) into (19), we get the following solution: 



E.M.E. Zayed, Abdul-Ghani Al-Nowehy 

220 

 
1

( ) .
1

U
a

           


 (101) 

Consequently, we have the exact solutions: 

  1
( , ) 1 tanh ,

2
u x t

 
    






 (102) 

or 

  1
( , ) 1 coth ,

2
u x t

 
    






 (103) 

where 

 21 3
9 2 .

4 4
x t         

On comparing our result (101), with the result (31) obtained in [58], we 

deduce that they are equivalent in the special case with a=e, while our results 

(92), (93), (95), (96), (98), (99), (102) and (103) are new, and not discussed 

elsewhere.  

4 Physical Explanations for Some of Our Solutions 

In this section, we will illustrate the application of the results established 

above. Exact solutions of the results describe different nonlinear waves. For the 

established exact kink and anti-kink solutions with symmetrical hyperbolic 

Fibonacci functions are special kinds of solitary waves. Kink and anti-kink 

solutions have a remarkable property that keeps its identity upon interacting 

with other. Kink and anti-kink solutions have particle-like structures, for 

example, magnetic monopoles, and extended structures, like, domain walls and 

cosmic strings, that have implications for the cosmology of the early universe. 

Let us now examine Figs. 1 – 3 as it illustrates some of our results 

obtained in this article. To this end, we select some special values of the 

parameters obtained, for example, in some of the kink and anti-kink 

solutions (30) to (33) of the diffusive predator-prey system whit –10<x, 

t<10, solutions (80) and (81) of the nonlinear Bogoyavlenskii equations with 

–10<x, t<10, solutions (95) and (96) of the nonlinear telegraph equation 

with –10<x, t<10, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 1 – Symmetrical Fibonacci hyperbolic function solutions of the diffusive 

predator-prey system when 2, , 4, 7 2, 3.l a e k        

(a) Plot kink solution (30); (b) Plot kink solution (31). 

(c) Plot anti-kink solution (32); (d) Plot anti-kink solution (33). 
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(a) 

 

(b) 

Fig. 2 – Symmetrical Fibonacci hyperbolic function solutions  

of the nonlinear Bogoyavlenskii equations when , 0.a e y    

(a) Plot solution (80); (b) Plot solution (81). 

 

 

(a) 

 

(b) 

Fig. 3 – Symmetrical Fibonacci hyperbolic function solutions  

of the nonlinear telegraph equation when 
0 1 1, 1.a b        

(a) Plot solution (95); (b) Plot solution (96). 
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5 Conclusion 

In this paper, we have shown that the symmetrical hyperbolic Fibonacci 

function solutions can be obtained by the general aExp - function by using 

generalized Kudryashov method.We have extended successfully the generalized 

Kudryashov method to solve three nonlinear partial differential equations. As 

applications, abundant we have obtained many new symmetrical hyperbolic 

Fibonacci function solutions for the diffusive predator-prey system, the 

nonlinear Bogoyavlenskii equations, and the nonlinear telegraph equation. As 

one can see, that the generalized Kudryashov method is powerful, effective and 

convenient for solving nonlinear PDEs, the physical explanation of some 

solutions of these equations have been presented in Section 4. Finally, the 

generalized Kudryashov method provides a powerful mathematical tool to 

obtain more general exact analytical solutions of many nonlinear PDEs in 

mathematical physics. Finally, our solutions in this article have been checked 

using the Maple by putting them back into the original equations. 
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