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Exact Traveling Wave Solutions for
Nonlinear PDEs in Mathematical Physics
using the Generalized Kudryashov Method

El-Sayed Mohamed El-Sayed Zayed', Abdul-Ghani Al-Nowehy?

Abstract: The generalized Kudryashov method is applied in this article for
finding the exact solutions of nonlinear partial differential equations (PDEs) in
mathematical physics. Solitons and other solutions are given. To illustrate the
validity of this method, we apply it to three nonlinear PDEs, namely, the
diffusive predator-prey system, the nonlinear Bogoyavlenskii equations and the
nonlinear telegraph equation. These equations are related to signal analysis for
transmission and propagation of electrical signals. As a result, many analytical
exact solutions of these equations are obtained including symmetrical Fibonacci
function solutions and hyperbolic function solutions. Physical explanations for
some solutions of the given three nonlinear PDEs are obtained. Comparison our
new results with the well-known results are given.

Keywords: Nonlinear PDEs, Generalized Kudryashov method, Symmetrical
hyperbolic Fibonacci function, Exact solutions, The diffusive predator-prey
system, The nonlinear Bogoyavlenskii equations, The nonlinear telegraph
equation.

1 Introduction

Many important phenomena and dynamic processes in physics, mechanics,
chemistry and biology can be represented by nonlinear partial differential
equations. The study of exact solutions of nonlinear evolution equations plays
an important role in the soliton theory. The explicit formulas of nonlinear partial
differential equations play an essential role in the nonlinear science. These
explicit formulas may provide physical information and help us to understand
the mechanism of related physical models. In recent years, many kinds of
powerful methods have been presented to find the exact solutions of nonlinear
partial differential equations, such as the homogeneous balance method [1], the
Hirota's bilinear transformation method [2, 3], the tanh-function method [4, 5],
the (G'/G)-expansion method [6— 8], the exp-function method [9, 10], the
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multiple exp-function method [11 — 13], the symmetry method [14, 15], the
modified simple equation method [16— 18], the Jacobi elliptic function
expansion [19], the Bicklund transform [20, 21], the modified extended Fan
sub-equation method [22], the auxiliary equation method [23, 24], the first
integral method [25], the generalized Kudryashov method [26 — 30], the soliton
ansatz method [31 — 57] and so on.

The objective of this paper is to construct the exact solutions of the
diffusive predator-prey system [58, 59], the nonlinear Bogoyavlenskii equations
[59] and the nonlinear telegraph equation [58] by using the generalized
Kudryashov method [30].

The rest of this article can be organized as follows: In Section 2, we give
the description of the generalized Kudryashov method. In Section 3, we use this
method to solve the diffusive predator-prey system, the nonlinear
Bogoyavlenskii equations, and the nonlinear telegraph equation. In Section 4,
physical explanations of some results are presented. In Section 5, some
conclusions are given.

2 Description of the Generalized Kudryashov Method

Suppose that a nonlinear PDE has the following from:
FQuu,u u,u,u._..)=0, (1
where u =u(x,t) is an unknown function, F is a polynomial in « =u(x,?) and
its partial derivatives, in which the highest order derivatives and highest

nonlinear terms are involved. The main steps of the generalized Kudryashov
method are described as follows:

Step 1. First of all, we use the wave transformation:
u(x,t)=U(), C=hkxt\t, 2)
where k& and A are arbitrary constants with k,A # 0, to reduce the equation (1)
into the following nonlinear ordinary differential equation (ODE):
HU, U\ U",U",..)=0, 3)
where H is a polynomial in U({) and its total derivatives U",U",U",... such
that U'=dU/d¢, U"=d*U/d¢* and so on.

Step 2. We assume that the formal solution of the ODE (3) can be written in the
following rational form:

U(C)z ;ain (C) _ A[Q(C)],
iijj(C) B[Q(Q)]

“)
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where:
0-1/1ta*, A[0©)]=Y a0 ©), dU/dtand B[OQ)]-mY 5,0'(©).

The function Q is the solution of the equation

0'=0(0-1)In(a), O<a#l. (5)
Taking into consideration (4), we obtain
U'(C)=Q(Q—1){ﬂ+”}ln(a), ©)
0©=0(0-1)20-1| “2 2w+
+Q2(Q_1)2{3(A B—AB)—;ABB+2A(B) }lnz(a), o

U"(©)=0(Q-1)’In*(a)x
{(A”’B ~AB"-34"B'-3A4'B")B+6B'(4'B'+ AB") 6A(B')’ } .\

B’ B
307 (0-1) (ZQ_D[(A B— AB —2;133 )B +2A(B') }ln3(a)+
+000-1160" -6+ L2 (@) ®)

and similar for higher order differentiation terms.

Step 3. Under the terms of the given method, we suppose that the solution of (3)
can be written in the following form:

a, +a1Q+a2Q2 +:+a,Q"

Q)= b, +b0+b,Q* +--+b,0"

©)

To calculate the values m and » in (9) that is the pole order for the general
solution of (3), we progress conformably as in the classical Kudryashov method
on balancing the highest order nonlinear terms and the highest order derivatives
of U(E) in (3) and we can determine a formula ofmandn. We can receive

some values of m and .
Step 4. We substitute (4) into (3) to get a polynomial R(Q) and equate all the

coefficients of Q', (i =0,1,2,...) to zero, to yield a system of algebraic equations
for a, (i=0,1,..,n) and b, (j=0,1,...,m).
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Step 5. We solve the algebraic equations obtained in Step 4 using Mathematica
or Maple, to getk, A and the coefficients of a, (i=0,l,..,n) and bj

(j=0,1,...,m). In this way, we attain the exact solutions to (3).

The obtained solutions depend on the symmetrical hyperbolic Fibonacci
functions given in [60]. The symmetrical Fibonacci sine, cosine, tangent, and
cotangent functions are respectively, defined as:

X —X X —-X

Fo(x) 24 —4 Fo(x) 2 &t
sFs(x) NG cFs(x) N w0
tan Fs(x) = ai — a:‘i , cot Fs(x) = ai il a: ,
a +a” a' —a”
sFs(x)= %Sh(xln(a)), cFs(x)= %ch(x In(a)), (0
tan Fs(x) = tanh(xIn(a)), cot Fs(x) = coth(xIn(a)).

3 Applications

In this section, we construct the exact solutions in terms of the symmetrical
hyperbolic Fibonacci functions of the following three nonlinear PDEs using the
generalized Kudryashov method described in Section 2:

3.1 Example 1. The diffusive predator-prey system
This equation is well-known [58, 59] and can be written in the form:

u, =u_ —Bu+1+Pu’ —u’ —uv,
v, =v,_ +hkuv—my-3°,

(12)

where k,0,m and P represent positive parameters, subscripts x and ¢ denote

partial derivatives. The biological meaning of each term of (12) has been
discussed in [61, 62]. Recently, Zayed et al. [59] used the modified simple
equation method to solve (12). In order to investigate the dynamics of the
diffusive predator-prey system, the relations between the parameters, namely
m=p and k+ 1/ Js= B+1, have been defined in [61]. Under this relation, (12)

can be written in the form:

{u,=uxx—Bu+(k+1/\/g)u2—u3—uv, (13)

v, =v_ +kuv—Bv -5,

We proceed by considering the traveling wave transformation:
u(x,t)=U(), v(x,t)=V(), C=Ik—wt, (14)
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where / and w are constants with /,w# 0, to reduce the nonlinear PDEs (13)
into the following nonlinear ODEs:

PU"+wU' =BU + (k +1//8)U* =U? UV =0, 15)
PV"+wV'+kUV =BV =38V =0.
In order to solve (15), let us consider the following transformation
1
V=—U. (16)
Js
Substituting the transformation (16) into (15), we get
PU"+wU' -BU +kU* -U’ =0. (17)
Balancing U”and U’ in (17), we have the following relation:
n—-m+2=3(n—-m)=>n=m+1. (18)

If we choose m=1 and n=2, then the formal solution of (17) has the
form:

a, +a,0+ a2Q2

v =" 15O

(19)
Consequently,

(a, +2a,0)(b, +b0)—b,(a, +a,0+ azQz)
(b, +5,0)°

U"(6)=0(Q-1)20-1)-
.|:(a1 + ZazQ)(bo + le) — bl (2a0 + alQ + LZZQZ):|1H2 (a) + Q2 (Q B 1)2 ln; (a) .
(b, +b,0) (b, +b0)
[ 2a, (B, + b QY —2b,(a, +2a,0)(b, + 5,0) +2b] (a, + 4,0+ a,0") |.

Substituting (19) — (21) into (17), collecting the coefficients of each power
of Q' (i=0,1,...,6) and setting each of the coefficients to zero, we obtain the

U'©)=0(0- 1)[ }111(51), (20)

e2y)

following system of algebraic equations:
Q° :—a) +2I’a,b’ In*(a) =0,
O’ : 6I’a,b,b, In’(a) +wa,b] In(a) —3I’a,b} In’(a) + ka;b, —3a,a; =0,
Q" : kajb, —wa,b] In(a)—Ba,b’ +6/>a’b; In’(a) +*a,b] In*(a)
+3wa,b,b, In(a) - 3a0a§ + 2ka,a,b, - 912a2b0b1 In? (a)— 3alza2 =0,
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Q’ :-2bab, In*(a) +wa,b,b, In(a) + 2ka,a,b, + ka_b,
+Pabb In’(a)—a’ +3a,bb, In’(a)+ 2 ab; In’(a)
+2ka,a,b, +2wa,b; In(a) - 3wa,b,b, In(a) — wh’a, In(a)
—Ba,b} =101’ a,b; In*(a)—1°b a, In*(a) - 6a,a,a, — 2Pa,b,b, =0,

Q* : 2kaya,b, +3I°bayb, In*(a)—31°a,b; In*(a) + wba, In(a)
—wh,ayb, In(a) —3a,a, — Bbla, + ka}b, — 2Ba,b,b, — I’ a,b,b, In*(a)
—2wa,b; In(a) + 2ka,a,b, —Ba,b; +I°b}a, In’ (a) + wa,b; In(a)
—wa,b,b, In(a) +41*a,b} In*(a) —3a,a =0,

Q' : IPab; In*(a) - 2Bbayb, + wh,a,b, In(a) —I’ba,b, In* (a)
+2ka,a,b, — wa,b; In(a) + ka;b, —Ba,b; —3a;a, =0,

Q" :—a; —Ba,b} +ka)b, =0.

Solving the system of algebraic equations (22) by Maple or Mathematica,
we obtain the following set of solutions:

(22)

Set 1:
/= a, e ka, _ bk’ — a3
J2bIn(a)’ 2bIn(a)’ 4p>
4y = b,(kb, — a,) - kb’ —ba, +2a,b, ’ (23)
2h, 2b,
a,=a,,by=b,,b,=b,k=k.
Substituting (23) into (19), we get the following solution:
¢ —
U) = k_aax)) ) (24)
2 2b(a°=*1)

With the help of (10) and (11), the exact solutions of (12) have the forms:

u(x,t)= % ~ % tanF {a—z(ﬁx - kt)}

2h, 4b, In(a)
(25)
1 a, a,
= E{k —b—ltanh(4—bl(\/§x — kt)ﬂ,
1 a, a,
V(x,t) = m{k - b—]tanh (4_1;1(@‘ - kt)ﬂ, (26)

or
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1 a a
) =—k——2cotF. 2 (2x—kt
T {41)1 ln(a)( ¥ )}
(27)
1 a, a
=—|k—=2coth| 2 (~/2x—kt) ||,
- o g
1 a a
) =——| k—2coth| —2(~2x—kt) ||. 28
V05t) 2\/5{ b, (41)1( x )H (28)
Set 2:
w=—I(3lIn(a) F~2k), B =—IIn(a)(2lIn(a) F~2k), a, = +21b, In(a), 29)
=321(b, — b)) In(a), a, =F21b, In(a), b, =b,, b, =b,, [ =1, k =k.
For this set, we have the exact solutions of (12) in the forms:
u(x, ) = + 11000 (1+tanhn), (30)
[In(a)
v(x,t)== 1+ tanhn), (31)
or
I1n(a)
u(x,t)== 1+ cothn), 32
(x,1) 7 ( n) (32)
. !In(a)
v(x,t)== 1+ cothn), (33)
=)
where
! ln(")[ + (3lIn(a) T2 k)t]
Set 3
—3bk _3KPb(4by—b) ., 3k’b(b +2b,)
T 2V2(b, + 26 )ln(a) U 8(by+2b)’In(a)’ 4(b,+2b) 34)
_ 2
3kb,b, S3kbiby=b) 3y, bbbk =k

ay = s 4 = 2 = > Dy
2(b, +2b) 2(b, +2b) 2(b, +2b)

For this set, we have the exact solutions of (12) in the forms:

u(x,t)= %(I-Hanhn) (35)
3kb,
V(X, t) m(l + tanh T]) (36)
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u(x,t)zi(l-#cothn),
4(b, +2b,)
3kb
v(x,t) =——=—"——(1+cothn),
4J8(b0+2b1)( )
where
—3kb,
=— 0 12J2(b, +2b)x + k(4b, — b))t |.
i 16(b0+2b1)2[ (b + 20 )0+ k8, —b)
Set 4
272 42
/= a, L w= kaz B= b] k 2402 , a, 21(2612 —kbl),
\2b,In(a) 2b, In(a) 4b; 4

a, =_71(2a2—kb1), b, =_71b], a,=a,, b=b, k=k.

For this set, the exact solutions of (12) have the forms:

1 a a
) =—k ——2coth| —=(~2x —kt) |,
u(x,t) > . co [Zb]( X )}

1

1 a, B
v(x,t) = %—Jg{kbl —2a, coth [Ta(ﬁx kt)ﬂ.

Set 5:

w=—I(31In(a) F~2k),p = —1(2/In(a) F~/2k) In(a),a, = +/21b, In(a),

a, = F2Ib, In(a),a, =0,b, =b,,b, =b,,k =k, =1.
For this set, we have the exact solutions of (12) in the forms:

u(r) =+ \/Elbo ln(a)[l + tanh n]
2b, + b, [1 - tanhn]

V(x,t):i\/g lboln(a)[1+tanhn] |
S\ 2b, + b, [1—tanhn]

- \21b, In(a)[1+ cothn]
2b, + b [1-cothn]

P \E 1, In(a)[1+ cothn] |
0| 2b, +b, [1 —COthn]
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where
n= é[x +3lIn(a) T ﬁk)z]ln(a).
Set 6:
_ a,b, —ab, e —2(a,b, + a,b, + ab,)(a,b, —ab,) _
\2b, (b, +b,)In(a)” 2b,2(b, +b,)* In(a)
B a,(a, +a1)’ _ a,b, +a,(2b, +b1)’ 4y =ay, by, by, a = a, b =b,
by (b, + b)) by(b, + b))

or

For this set, we have the exact solutions of (12) in the forms:

u(x,t)=

1

v(x,t)=—=

N

u(x,t)=

1

v(x,t)=—4=

N

where

w2
[¢)
-

_ x/z(aob1 —ab,) 4 (2a,b, + a,b, + a,b, )(ayb, — a,b,) :

2a, + a,[1-tanhn]
2b, + b, [1 —tanh n] ’

(2(10 +a, [l—tanhn]]

2b, + b, [1 —tanh n]

2a, +a,[1-cothn]
2b, +b,[1-cothn]’

(2(10 +a, [l—cothn]J

2b, + b, [1-cothn]

2

4by(by +by)

=

w=I13/In(a) F \/Ek), B=-I(2/In(a)F \/Ek) In(a), a,=0,

a, = +\21(b, + b)) In(a), a,=0, b, =b,, b=b,, k=k, 1=1.
For this set, we have the exact solutions of (12) in the forms:
\/El(bo +b,)In(a)[1-tanhn]

u(x,t)y==

4b; (b, + b))’

2b, + b, [1 — tanh n]
I(b, +b,)In(a)[1 - tanhn]

2
v(x,t) = J_r\/g(

2b, + b, [1 —tanh n]
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(50)
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2i(b, +b,) In(a)[1 - cothn]
2b, + b, [1-cothn]

v(x t)—+\ﬁ 1(b, +b,)In(a)[1-cothn]
VTGS 2B, +b[1—cothn] )

u(x,t)y==

b

where

n= é[x —(3ln(a) ¥ ﬁk)z]ln(a).

9]
a

-
o0

_kaE-ap [k_2+k K —4p 3B
4

22In(@) = In(a)

provided that &> — 48 > 0.
Substituting (57) into (19), we get the following solution:

U(C)=%(’€¢M)[ ! ]

a®+1

(55)

(56)

+ 2 ) ], a, =0,
(57)

a,=0, a, =%(ki«/k2 —4[3), b, =0, b =b, k=k.

(58)

With the help of (10) and (11), the exact solutions of (12) have the forms:

u(x,t) =%(k +k’ —4B)[1—tanhn],
W(x,1) =%(kim/k2 —4[3)[1—tanhn],

u(x,t) =%(ki«/k2 —4B)[1—coth1‘|],
1 ;
v(x,t)zm(kiw/k —4B)[1—cothn],

where

0 =$(ki\/k2 —4B)x—%(k2 + kK 4B — 6.

w2
aQ

-
\O
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k*—4 kk* -4
l:i————E,w:i—————E,q:i%Jﬁ—4B
V2 In(a)

21In(a)
— (63)
+ 2 _4 2 _
= kyk _ (K —6B) ,a,=0,b,=b,, b=0, k=k,
k£3k* —4p
provided that &> — 48 > 0.
Substituting (63) into (19), we get the following solution:

thyk* — k> -6

e i L, Sl L DN e [ : j (64)

k+3 k2 -4B t1

With the help of (10) and (11), the exact solutions of (1) have the forms:

u(x,t)_+k"k2_4 (k2_6B) «/ 4B[1- tanhn], (65)

k+3Jk* —4B

v(x,t)=— ! {Jrk“kZ B (k- 66) \/ - B(l—tanhn)}, (66)

N TN/ T
or
u(x,t)_‘ka2_4 (k2_6B) w/ —4B[1-cothn], (67)
k 3k — 4B
+hk® — 4B (k2—6[3)
J h
v(x,t) = \/g{ 3l B B(l cot n)} (68)
where

n:i%/kz —4p[V2x -kt .

On comparing our results (30) — (33), with the results (26) — (29) obtained
in [59], we deduce that they are equivalent in the special case with
=1, a=e, c=w while our results (25)—(28), (35) —(38), (40), (41), (43) -
(46), (48) —(51), (53)— (56), (59)—(62) and (65)— (68) are new, and not
discussed elsewhere.

3.2 Example 2. The nonlinear Bogoyavlenskii equations

In this subsection, we apply the given method to solve the following
nonlinear Bogoyavlenskii equations [59, 63 — 65]:
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Qu, +u,, —4ulu, —du v =0,

” S (69)
uu, =v,.

In [65], the Lax pair and a nonisospectral condition for the spectral
parameter are presented. Equations (69) were again derived by Kudryashov and
Pickering [66] as a member of a (2+1) Schwarzian breaking soliton hierarchy,
and rational solutions of it were obtained. Equations (69) also appeared in [67]
as one of the equations associated with nonisospectral scattering problems. The

Painleve property of (69) is checked by Estevez et al. [68]. Recently, Zayed et
al. [59] used the modified simple equation method to solve (69).

This equation can be considered as the modified version of the breaking
soliton equation 4u, +8uu  +4uu +u =0, which describes the (2+1)-

x7xy y7xx xxxy
dimensional interaction of a Riemann wave propagating along the y-axis with a
long wave along the x-axis [65].

It is well-known that the solutions and its dynamics of the nonlinear PDEs
can make researchers deeply understand the described physical process. To this
aim, we use the wave transformation

u(x’yst):U(C.s)a V(X,y,t)zV(C)s C_>:x+y_0ta (70)
where ¢ is an arbitrary constant with ¢ =0, to reduce (69) to the following
nonlinear system of ODEs:

—4cU'+U"-4UU'-4U"V =0,

71
Lvroy, 7h
2

Substituting the second equation of (71) into the first one, and integrating
the resultant equation with respect to { and vanishing the constant of

integration, we obtain
U"-2U° —4cU =0. (72)

By balancing U" with U?, we have n=m+1. If we choose m=1 and n=2,
then (72) has the same formal solutions (19).

Substituting (19) and (21) into (72), and equating all the coefficients of
O' (i=0,1,...,6) to zero, we obtain the following system of algebraic equations:

Q°:-2a; +2a,b! In*(a) =0,
Q’ :—6a,a; —3a,b’ In*(a) + 6a,b,b, In*(a) =0,

0*:—6a’a, —4ca,b} + a,b In*(a) —9a,bb, In’ (a) + 6a,b; In*(a) — 6a,a; =0

214



Exact Traveling Wave Solutions for Nonlinear PDEs in Mathematical Physics...
Q* :-10a,b; In*(a)—b}a, In*(a) - 2a; —12a,a,a, + 2a,b; In*(a) — 4cab]
—2bayb, In’(a) — 8ca,b,b, + a,bb, In*(a) +3a,b,b, In*(a) =0,

Q* :b’a,In’(a)—4ca,b} —3ab; In’(a)—4ca,b; +3bayb, In*(a)—6a;a,
+4a,b} In’(a) - 8ca,b,b, — a,b,b, In*(a) — 6a,a] =0,

Q' :—8ca,b,b, — 4ca,b; +a,b; In*(a) - 6a;a, —ba,b, In’(a) =0, (73)
Q" :-2a; —4cayb; =0.

On solving the above set of algebraic equations (73) with the aid of Maple
or Mathematica, we get the following cases:

Case 1:
1 _ a, 1.,
a, =0, qa, =—Ea2, b, =0, b, :+1n(a)’ c=—§ln (a), a, =a,. (74)
With the help of (10) and (11), the exact solutions of (69) are in the forms:
u(x,y,t)= i(%ln(a)j tanhn, (75)
v(x, y,t) = (%ln2 (a)j tanh” 1, (76)
or
u(x, y,t)= i[%ln(a)j cothm, 77
v(x,y,t)= (%lnz (a)jcoth2 m, (78)
where
_1L X+ y+ (lln2 (a)jt In(a)
R T '
Case 2:
a a 1
:07 = — ’b :i—ljbz_—l,cz—lnza,QZCl. 79
4 a, a, by 21n(a) | +ln(a) 4 (a), a, =q (79)
With the help of (10) and (11), the exact solutions of (69) are in the forms:
u(x, y,t) =+(In(a))cschn, (80)
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v(x, y,t) = (%lnz (a)jcsch2 n, (81)
where
n= {x +y- [%lnz(a)jt} In(a).
Case 3:
— 2a, 1,
a, =a,, a, =¥(b/In(a) t 4a,), by=t——, b, =b,, c=—=In"(a), a, =0.(82)
In(a) 8
With the help of (10) and (11), the exact solutions of (69) are in the forms:
u(x,y ) =+ —b, In(a) + k, tanhm In(a). 83)
2(k, — b, In(a) tanhm)
2
V(x.y.f) = llnz(a) —b, In(a) + k, tanhm , (84)
8 k, — b, In(a)tanhn
or
u(x,p.0) =+ —b, In(a) + k, cothn In(a). (85)
2(k, — b, In(a)cothn)
2
V(s ) = llnz (@) —b, In(a) + k, cothn ’ (86)
8 k, — b, In(a) cothm
where

k, =b/In(a)*4a,, n= %{x +y+ [%lnz (a)jl}ln(a).

3.3 Example 3. The nonlinear telegraph equation

Here we apply the method described in Section 2 to construct new exact
solutions of the nonlinear telegraph equation [58, 69]:

u, —u, +u, +ou+pu’ =0, (87)

Equation (87) is referred to as second-order hyperbolic telegraph equation
with constant coefficients which models a mixture between diffusion and wave
propagation by introducing a term that accounts for effects of finite velocity to
standard heat or mass transport equation [70]. But (87) is commonly used in the
signal analysis for transmission and propagation of electrical signals [70].
Equations of this kind arise in the study of heat transfer, transmission lines,

216



Exact Traveling Wave Solutions for Nonlinear PDEs in Mathematical Physics...

chemical kinetics, biological population dispersal, random walks (see [70, and
references therein]).

We use the wave transformation
u(x, )=UC), §=b—wt, (88)

where / and w are arbitrary constants with /,w#0, to reduce (87) to the
following nonlinear ODE:

W —=1HU"-wU'+alU +BU’ =0. (89)

By balancing U" with U? we have n=m+1. If we choose m=1 and n=2, then
(89) has the same formal solutions (19).

Substituting (19) — (21) into (89), and equating all the coefficients of
0O' (i=0,1,...,6) to zero, we obtain the following system of algebraic equations:

Q°:2%a,b} In*(a) - Ba; —2w’a,b] In*(a) =0,

Q’ :6I’a,bb, In*(a)-3Ba,a; +3w’a,b’ In’(a) - 3*a,b} In’(a)

+wa,b In(a) — 6w’ a,b,b, In*(a) =0,

Q' :-3Ba’a, +1’a,b’ In*(a)—wa,b In(a) —9/*a,b,b, In*(a)
—6w’a,b; In*(a) + 9w’ a,b,b, In*(a) — aa,b’ +6/*a,b; In*(a)

+3wa,byb, In(a) - 3Ba,a; —w’a,b’ In*(a) =0,

Q’ :-2I’ha,b, In*(a)—3w’a,b,b, In’(a) + 2w’b,a,b, In’ (a) + 2wa,b; In(a)
—10%a,b; In*(a) + 2I*a,b; In’ (a) + 10w’ a,b; In*(a) - I’b}a, In*(a)
+0%a,b,b, In*(a) —w’a,b,b, In*(a)—Ba;, —aa,b’ +31%a,b,b, In*(a)
—3wa,b,b, In(a) — wh}a, In(a) — 2w’a,b; In* (a) + wa,b,b, In(a)

—6Ba,a,a, + w'bla, In*(a) — 20a,bb, =0,

QO :4l’a,b; In*(a)-1*a,b,b, In*(a)— aba, — Wb a, In* (a) — aa,b;
—wh,a,b, In(a) —3*a,b; In*(a) — wa,b,b, In(a) —3Pa,a;
—2wa,b; In(a) +3w’ab; In*(a) + wha, In(a) + wa,b; In(a) (90)
—2aa,b,b, —3w’ba,b, In*(a) +3’ba,b, In*(a)

—4w’a,b} In*(a) + w’a,b,b, In*(a)—3Baa, +I’bla, In* (a) =0,

Q' :—wab} In(a) +w’b,a,b, In*(a) —wab; In*(a)—3Ba;a, — 2ab,ab,

+wh,ayb, In(a) - ’ba,b, In’ (a) — aa,b; +1*a,b; In*(a) =0,
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0’ :Ba; +aab; =0.

Solving the above algebraic equations (90) with the aid of Maple or
Mathematica, the following cases of solutions are obtained:

Case 1:
— __bO’ 1__+ _— bO_bl ,az - Zl’
F , a x , B( ) \f B (91)

V9o’ - 2a e 3o

bozboa blzblal:i » W= 5
2In(a) 2In(a)

provided that 9a.” — 20 > 0,af < 0.

For this case, we have the exact solutions:

u(x,t)zi%\/%[l+tanhn], (92)

or
ur) =74 =% [1+cothn], (93)
2\ B
where
n= i%\/%cz —20x —%oct.
Case 2:

e f bo > & =+, f bo > Ay = =by, 04)

9oc -2 3a

by=b, =+ , w=
21In(a) 2In(a)’

provided that 9o’ —2a > 0,0 < 0.

For this case, we have the exact solutions:

F[l + tanh n]
(95)

O = = tanhm]

or
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\/?[1 +cothn]

where

Case 3:

provided that 9a> — 20 > 0, < 0.

u(x,t)=

2b +b[1-

cothn]’

n= i%\/%cz —20cx—%oct.

b =b, i\/9oc _2a,w= =3a ’
2In(a) 21n(a)

For this case, we have the exact solutions:

or

where

Case 4:

provided that 9a.”
Substituting (100) into (19), we get the following solution:

u(x,t)y==

u(x,t)y==

\/?(bo +b,)[1-tanhn]

2b, +b[1-

\/f(bo +b,)[1-cothn]

tanh n]

2b, +b[1-

cothn]

1
n= iZ\/9oc2 —20cx+%0tt.

e

b =b,l=%

90c -2

i/ b, b, =

3o

—2a>0,aB<0.

21n(a)
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a —a 1
Uuil)=+ + [— | — | 101
© = s (agil) (101)
B
Consequently, we have the exact solutions:

u(x,t)y==% Oia i%\/%[l—tanhn], (102)
o[

or

u(x,t) ==+ Oia i%\/%[l—cothn], (103)
N

where
n= i%\/%tz —-2ox —%oct.

On comparing our result (101), with the result (31) obtained in [58], we
deduce that they are equivalent in the special case with a=e, while our results
(92), (93), (95), (96), (98), (99), (102) and (103) are new, and not discussed
elsewhere.

4 Physical Explanations for Some of Our Solutions

In this section, we will illustrate the application of the results established
above. Exact solutions of the results describe different nonlinear waves. For the
established exact kink and anti-kink solutions with symmetrical hyperbolic
Fibonacci functions are special kinds of solitary waves. Kink and anti-kink
solutions have a remarkable property that keeps its identity upon interacting
with other. Kink and anti-kink solutions have particle-like structures, for
example, magnetic monopoles, and extended structures, like, domain walls and
cosmic strings, that have implications for the cosmology of the early universe.

Let us now examine Figs. 1 —3 as it illustrates some of our results
obtained in this article. To this end, we select some special values of the
parameters obtained, for example, in some of the kink and anti-kink
solutions (30) to (33) of the diffusive predator-prey system whit —10<x,
<10, solutions (80) and (81) of the nonlinear Bogoyavlenskii equations with
—10<x, <10, solutions (95) and (96) of the nonlinear telegraph equation
with —10<x, <10, respectively.
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Fig. 1 — Symmetrical Fibonacci hyperbolic function solutions of the diffusive
predator-prey system when [ = ﬁ,a =e,0=4,k=7/2,p=3.
(a) Plot kink solution (30); (b) Plot kink solution (31).
(c) Plot anti-kink solution (32), (d) Plot anti-kink solution (33).
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Fig. 2 — Symmetrical Fibonacci hyperbolic function solutions
of the nonlinear Bogoyavlenskii equations when a=e,y =0.

(a) Plot solution (80), (b) Plot solution (81).

(a) (b)

Fig. 3 — Symmetrical Fibonacci hyperbolic function solutions
of the nonlinear telegraph equation when a,=b =a=1,p=—-1.

(a) Plot solution (95), (b) Plot solution (96).
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5 Conclusion

In this paper, we have shown that the symmetrical hyperbolic Fibonacci
function solutions can be obtained by the general Exp, - function by using

generalized Kudryashov method.We have extended successfully the generalized
Kudryashov method to solve three nonlinear partial differential equations. As
applications, abundant we have obtained many new symmetrical hyperbolic
Fibonacci function solutions for the diffusive predator-prey system, the
nonlinear Bogoyavlenskii equations, and the nonlinear telegraph equation. As
one can see, that the generalized Kudryashov method is powerful, effective and
convenient for solving nonlinear PDEs, the physical explanation of some
solutions of these equations have been presented in Section 4. Finally, the
generalized Kudryashov method provides a powerful mathematical tool to
obtain more general exact analytical solutions of many nonlinear PDEs in
mathematical physics. Finally, our solutions in this article have been checked
using the Maple by putting them back into the original equations.
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