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Application of the Multi-Peaked 
Analytically Extended Function to Representation 

of Some Measured Lightning Currents 

Karl Lundengård1, Milica Rančić1, Vesna Javor2, Sergei Silvestrov1 

Abstract: A multi-peaked form of the analytically extended function (AEF) is 
used for approximation of lightning current waveforms in this paper. The AEF 
function’s parameters are estimated using the Marquardt least-squares method 
(MLSM), and the general procedure for fitting the p-peaked AEF function to a 
waveform with an arbitrary (finite) number of peaks is briefly described. This 
framework is used for obtaining parameters of 2-peaked waveforms typically pre-
sent when measuring first negative stroke currents. Advantages, disadvantages and 
possible improvements of the approach are also discussed. 

Keywords: Analytically extended function, Lightning discharge, Marquardt 
least-squares method. 

1 Introduction 

Many different types of systems, objects and equipment are susceptible to 
damage from lightning discharge. Lightning effects are usually analysed using 
lightning discharge models. Most of these models imply channel-base current 
functions. Various single and multi-peaked functions have been proposed in the 
literature, e.g. [4 – 10, 14,15]. For engineering and electromagnetic models, a 
general function that would be able to reproduce desired waveshapes is needed, 
such that analytical solutions for its derivatives, integrals, and integral transfor-
mations exist. A multi-peaked channel-base current function has been proposed 
in [8] as a generalization of the so-called TRF (two-rise front) function from [9], 
which possesses such properties. 

In this paper we explore the fitting of the proposed multi-peaked function 
[14, 15], the so-called p-peaked analytically extended function (AEF), to either 
measured data, or other proposed functions [4, 6] able to produce a double-
peaked waveshape. Explicit expressions for a number of basic AEF properties, 
such as derivatives and integrals, are given in [14, 15]. 
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Section 3 discusses fitting of the p-peaked AEF applying a general scheme 
that employs the Marquardt least-squares method (MLSM) [16]. Application of 
this framework to five different 2-peaked waveforms is illustrated in Section 4 
through a number of numerical experiments. For validation, obtained wave-
forms are compared to either measured data [2, 3, 17], or that simulated by 
other previously proposed functions [4, 6]. 

Finally, some findings of performed analysis, and possible paths of future 
work are discussed in the conclusion. 

2 The p-Peaked AEF 

The elementary function used to construct the p-peaked AEF is given by 

  1( ; ) e , 0 ,tx t t t
    (1) 

and is in [15] referred to as the power exponential function. Qualitatively, it is 
similar to desired waveshapes in the sense that its rising initial part is steep, and 
is followed by a very slowly decaying part. The β-parameter in (1) determines 
the steepness of both the rising and decaying part, which is illustrated in Fig. 1. 

 

Fig. 1 – Steepness dependence of the power exponential function on the β-parameter. 
 

In order to get a function with multiple peaks and where the steepness of 
the rise between each peak as well as the slope of the decaying part is not de-
pendent on each other, we define the analytically extended function (AEF) as a 
function that consist of piecewise linear combinations of the power exponential 
functions that have been scaled and translated so that the resulting function is 
continuous. Then, the p-peaked AEF current function is given by 
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where: 

 
1 2
, ,...,

pm m mI I I  - the difference in height between each pair of peaks,  

 
1
,mt 2

,mt …
pmt - the times corresponding to these peaks,  

 0qn   - the number of terms in each interval; larger number gives more 

possible shapes but also adds parameters that need to be fitted,  

 ,q k  - real values s.t. the sum over ,q k  for 1 qk n   is equal to unity, 

 , ( )q kx t  - power exponential functions defined by ,q k  parameters in the 

following way: 
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The previous formulation of the p-peaked AEF function can be written 
more compactly as 
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where we introduce the following vectors: 
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It this paper, we are exploring the application of the 2-peaked AEF function 
(p = 2 in (4)) to representation of some measured double-peaked current wave-
forms. Illustration of a 2-peaked AEF function is given in Fig. 2. 
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Fig. 2 – An example of a 2-peaked AEF function. 
 

3 Fitting the p-Peaked AEF to Data Using the MLSM 

In this section the fitting of the p-peaked AEF to some different current 
waveshapes is explained. The MLSM is used for estimating the β-parameters, 
and from these, the corresponding η–parameters are calculated.  

A detailed explanation of the MLSM is not given here, instead we point to 
[13] for a description of how to apply it in a similar situation. Here, just the 
parts of this method specific to the use of the p-peaked AEF are given. 

The MLSM uses a Jacobian matrix that contains the partial derivatives of 
the residuals and this matrix is denoted by J. Suppose that we want to find the 
least square fit of the p-peaked AEF to a set of data points. Then the fitting can 
be done separately between each peak (and after the final peak). The J matrix in 
this case is 
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J , (5) 

where: 
 qk  - the number of data points between the q-th and (q–1)-th peak,  

 ,q rt  - the times corresponding to these data points, and  
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The MLSM is an iterative method, and in order to find a new set of  
β-parameters in each iteration we also need to find the η-parameters. This is 
done by using the regular least square method since for fixed β-parameters the 
AEF is linear in η. 

4 Numerical Experiments 

In this section some results of fitting the 2-peaked AEF function to data 
given by expressions (6) and (7), Figs. 3 and 4, and also to experimentally ob-
tained ones, Figs. 5 and 6, are presented. For the AEF function the time and cur-
rent values for the peaks were chosen manually and the rest of the parameters 
were found using the previously described framework. The number of terms in 
each interval varies from example to example. 

4.1 Example 1 

Firstly, this method is employed to fit a 2-peaked AEF function to an as-
sumed double-peaked first negative stroke current described in [6], which is 
expressed by: 

   /max( ) (1 ) ( ) ( ) e tI
i t c X t cY t    


, (6a) 
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where function parameter values are given in [6, 9]. Fig. 3 shows comparison of 
the fitted AEF function to the one described by (6a) and (6b).  
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Fig. 3 – The 2-peaked AEF approximating the assumed first negative stroke. 
 

4.2 Examples 2 and 3 

In these examples, the measured current data for the first negative stroke, 
acquired at the Mount San Salvatore ([2]), are approximated using the 2-peaked 
AEF function adjusted by means of the MLSM method. Obtained waveshape in 
the first 40s is presented in Fig. 4a, along with the values corresponding to the 
function proposed in [4] composed of seven Heidler’s functions denoted here as 
MSS_FST#2peaks, which was the goal waveform in the fitting process. It is 
expressed as: 
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for the parameters listed in [9]. 

The next example is the approximation of the lightning data recorded at the 
Morro do Cachimbo station [19]. Again, the goal waveform was the one pro-
posed in [4] given by (7) with total of twenty-eight adjustable parameters and is 
here denoted by MCS_FST#2peaks. Illustration of this function, along with the 
fitted 2-peaked AEF one, is given in Fig. 4b.  

In Fig. 4 the quality of the fits varies between the intervals. In the first in-
terval (up to the first peak) the fit is not very good but in the second one the  
2-peaked AEF approximates waveshapes well. The AEF may also be used to 
approximate the peak in the middle of the interval without a need of specifying 
its position. Since the data points were chosen randomly for this fitting, and the 
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results varied considerably depending on chosen points, some strategy for 
choosing points should be devised. 

 
(a) 

 
(b) 

Fig. 4 – The 2-peaked AEF approximating first negative stroke currents: 
(a) MSS_FST#2peaks [2]. (b) MCS_FST#2peaks [19]. 

 

4.3 Example 4 

Let us now observe another recorded negative first current stroke adopted 
from [17]. The Heidler’s function [11], the Pulse and DEXP functions [13] were 
optimized using the MLSM in order to be used for representing this set of 
measured data. The best agreement was achieved using the fitted Heidler’s 
function, however, only in the rising part of the current waveshape. All three 
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functions more or less accurately predict peak current of the measured current, 
and the time to half-value, but relatively poorly agree with the recorded values 
in the decaying part. One reason for this probably lays in the double-peaked 
form of this part of the observed current waveshape. 

Visualization of the fitted 2-peaked AEF function is given in Fig. 5. For the 
sake of comparison, the measured data is also shown. As suggested in [15], the 
experimentation with the number of terms in each interval could improve the 
fitting, which was proven right here. This version of AEF fits the given data 
better than the one presented in [15], with a cost of increased number of terms 
in the second and third interval. 

4.4 Example 5 

The last example is taken from [3]. In [12], an attempt was made to employ 
a double exponential function optimized using the MLSM to approximate such 
current waveshape. However, due to a very steep rise of the DEXP function at 

0t  , unlike the slow rise of the recorded data, this was not achieved. Certain 
improvement in the rising part was reached using the Pulse, and even more us-
ing a single Heidler function also optimized using the MLSM in [13]. However, 
the measured waveshape also demonstrates a double-peaked shape of the wave-
front, which can only be dealt with more complex functions such as the pro-
posed 2-peaked AEF one.  

 

 

Fig. 5 – The 2-peaked AEF function approximating recorded data from [17]. 

 

Results of performed fitting of the 2-peaked AEF function to this set of re-
corded data are illustrated in Fig. 6. 
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Fig. 6 – The 2-peaked AEF function approximating recorded data from [3]. 
 

5 Conclusion 

Importance of accurate representation of the first stroke currents is essential 
in estimating voltages developed by direct strikes and induced voltages by near-
by strikes [18]. The purpose of this work was to employ the 2-peaked AEF 
function to more effectively represent double-peaked waveshapes typical for 
experimentally measured first stroke currents, adjusting the function parameters 
using the MLSM. These are some findings of performed analysis, and possible 
paths of future work: 

 The number of parameters to be optimized is much smaller in compari-
son to other functions used for this purpose in the literature [4]. For in-
stance, in Examples 2 and 3 the comparison function had 28 tunable pa-
rameters while the AEF had 11; the time and current values for the peaks 
that were chosen manually (4 of them), and total of 7 exponent values 
that were tuned using the MLSM (the three AEF intervals had in these 
examples 2, 2 and 3 terms, respectively). 

 The general AEF function (and its 2-peaked version applied here) has 
analytical expressions for the first derivative, integral, and integral of the 
square of the function, all necessary for LEMF (lightning electromag-
netic field) calculations. 

 The p-peaked AEF can be used to represent both single-, as shown in 
[14, 15], and double-peaked current waveshapes as considered here. 
However, there are some limitations to the waveshapes that can be repre-
sented, like that for a chosen (or available) number and distribution of 
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data points and chosen number of terms in the AEF function, the fitting 
might not be satisfying. This could be in some cases resolved by adding 
more terms to the linear combination. Also, since in some of the exam-
ples the sampling of the model function has been done randomly, which 
noticeably influenced the final result, a strategy for choosing data points 
should be found. The authors found that a simple, even distribution of 
points was unsatisfactory in many cases. 

 It should be noted that in all cases MLSM showed some tendencies to 
find local minima in the objective function instead of the global one, and 
therefore other methods of fitting should be explored, such as genetic al-
gorithms, trust-region methods, or more specialised methods. 

 The first derivative of the p-peaked AEF function could be possibly used 
for approximating desired current derivative waveshapes, which can be 
of interest when calculating induced effects of lightning, since in certain 
type of measurements the current derivative is the quantity being meas-
ured. This shall be further investigated. 
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