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Sensitivity Analysis of Electromagnetic Quantities  
in Time Domain by Means of Fem 

Konstanty M.Gawrylczyk1, Mateusz Kugler2 

Abstract: Sensitivity analysis belongs to the most important tools in optimization 
theory. It determines the dependence of global or local electromagnetic quantities 
on geometrical and physical parameters expressed in the form of an objective 
function. For several objective functions the sensitivity may be directly calculated 
differentiating the objective function versus one of material or geometric parame-
ters. Such approach needs large computational effort, especially while evaluating in 
time domain. 
This paper presents effective methods for computing of sensitivity of nodal po-
tentials in finite elements versus perturbations in conductivity of analyzed model 
in time domain. Derived equations are based on the method of stiffness and mass 
matrices derivative and Tellegen’s theorem known from circuit theory and have 
been expanded on field theory. 
Numerical example presented in the paper shows sensitivity of voltage induced in 
measurement coil versus variation of electrical conductivity in single finite ele-
ment as function of time. The proposed methods calculate the sensitivity versus 
all finite elements in area of analysis at once. On the basis of sensitivity informa-
tion the iterative algorithm for identification of shape and conductivity distribu-
tion of material flaws could be applied.  

1 Introduction and definitions 

When analyzing electromagnetic fields using finite element method in time domain 
the following equations system is obtained 
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with: [H] - stiffness matrix and [C] - mass matrix of finite elements. All material and 
geometrical properties of the model are contained in matrices [H] and [C], vector [I(t)] 
includes excitation nodal currents and [A(t)] is nodal magnetic potential vector. Apply-
ing time stepping method results in 
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[A(t0)] is initial condition vector. In most cases of field penetration into conducting 
region, this vector may be set to zero. Next vectors of results are calculated in iterative 
process of time stepping and buffered in computer’s memory. 

The simplest method of sensitivity calculation is differential method. It depends on 
calculating potential change ∆A(ti) with relation to conductivity’s variation ∆γ in defined 
area 
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After analysis of the original model this method demands independent analysis with 
FEM in time domain for every considered element, it means, for the model regarding 
conductivity variation inside the element. For this reason such approach seams to be not 
efficient. 

2 Method of stiffness and mass matrices derivative 

Variation of electrical conductivity of the material causes changes of magnetic 
vector potential [A(ti)] as follows 
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Neglecting high order small terms, the following equation could be obtained 
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Since the stiffness matrix and excitation remain unchanged 
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the equation can be reduced to 
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In numerical implementation the sensitivity is calculated on the basis of the equa-
tions system (7). While the time step remains constant, the matrix of this equations sys-
tem is the same as (4). 
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Using this method the sensitivity of all nodal potentials versus conductivity in one 
finite element is obtained. To obtain the sensitivity versus next element, only new matrix 
of derivatives should be created. The terms of matrix [C] are linear functions of electri-
cal conductivity γ, so the matrix of derivatives contains only constants and zeroes. 

To obtain voltage sensitivity of measurement coil, nodal sensitivity has to be inte-
grated over finite element’s area of the coil. 

3 Tellegen’s method 

Let us consider a quasi-Poynting vector of the original and adjoint (+) systems 
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The Tellegen’s method requires an additional term in Maxwell’s equations 
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L0(t) can be interpreted as a magnetic current density. It should be equal zero in 
every physical system, but the adjoint system can be non-physical. Applying the diver-
gence theorem and substituting equations (9) in (8) yields 
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and 
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Equations (10) and (11) are also valid for small perturbations of material conduc-
tivity ∆γ. Neglecting the high order small terms results in following equation 
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Above equation determines how to construct the adjoint model. The material pa-
rameters are the same, as originals. The boundary conditions should be chosen in such a 
manner, that the surface integral in (12) vanishes. For this aim the tangential components 



K. M. Gawrylczyk, M. Kugler 

 170

of E and H should be equal to zero on the boundary. Both models, original and adjoint, 
are analyzed in different times t and τ. Usually it will be assumed, that τ is opposite to t: 
τ = T - t , where T is duration time of the analysis. Integration of equation (12) leads to 
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Introducing magnetic vector potential into the equation (13) 
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and assuming that adjoint model is excited by electric current only, Tellegen’s equation 
reduces to 
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Numerical algorithm is based on the above equation. Applying time stepping 
method 
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equation (15) could be shown in matrix form, 
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where Ve is finite element’s area and γe is element conductivity versus which the sensi-
tivity is evaluated. 

Excitation of the adjoint model depends on the objective function. If the sensitivity 
is calculated for potential values in mesh nodes, the excitation should be assumed as 
numerical Dirac’s impulse, 
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Geometric position of this impulse coincides with measurement area ∆V of electro-
magnetic field. In the simplest case it may be a current introduced into the finite element 
mesh node. When the measurement proceeds with the help of a coil, the excitation cur-
rent should be distributed on the area of this coil. 

When including excitation (18) into equation (17), the sensitivity equation simpli-
fies considerably, 
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The sensitivity versus electrical conductivity will be calculated recurrently as 
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Tellegen’s method requires two analyses using FEM in time domain to determine 
nodal potentials: [A(ti)] for original system and [A+(τi)] for adjoint system, for every 
time step. Those values are used to calculate sensitivity accordingly eq. (20). Unlike to 
method of stiffness and mass matrices derivative when using Tellegen’s method, the 
sensitivity either of one nodal potential or of coil voltage versus conductivity inside 
every finite element is obtained. 

The numerical efficiency of both methods seems to be comparable, but in the case 
of the large number of measurement points (coils), the method of stiffness and mass 
matrices derivative will be prefered.  

4 Numerical example 

A differential probe for eddy-current non-destructive testing has been chosen as a 
test example. That probe is composed of two exciting coils and measurement coil in 
between (Fig. 1). The advantage of this probe is the signal equal to zero by crack ab-
sence. The calculations were carried out in 2D, so it has been assumed that coils, plate 
and material cracks are infinitely long. Natural models are three-dimensional, but, apart 
from difficulties of mathematical formulation of the problem, using three-dimensional 
model causes difficulties of numerical nature because of the computing power being to 
low, especially for analyses of vector fields. 

 
Fig. 1 - Eddy-current defectometer as two-dimensional model. 
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When modelling differential probe, the discretization error in finite elements is of 
great importance. The mesh should be fully symmetric to keep the differential signal 
nearby zero without the crack. For the test model shown in Fig. 1 a triangle mesh with 
2100 nodes and 4046 elements has been generated. 

The voltage induced in the measurement coil is proportional to the magnetic flux. 
Using magnetic vector potential, the flux is calculated as integral of A values at coil’s 
area. The differential coils are excited by rectangular impulse with duration of 50 ms 
(Fig. 2.). The voltage induced in measurement coil, further called „answer”, depends 
strongly on deep and width of the crack. 

 
Fig. 2 - Shape of excitations. 

Table 1  
 Coil voltage sensitivity values at some time steps t. 

t SD SS ST ∆DS 
[ms] ⎥⎦

⎤
⎢⎣
⎡

⋅ mS
V  

⎥⎦
⎤

⎢⎣
⎡

⋅ mS
V  

⎥⎦
⎤

⎢⎣
⎡

⋅ mS
V  

⎥⎦
⎤

⎢⎣
⎡

⋅ mS
V  

1 -1.65842E-22 -2.02295E-22 -2.02295E-22 3.64530E-23 
50 -5.75220E-14 -5.74170E-14 -5.74170E-14 -1.05000E-16 
100 -1.01710E-13 -1.01770E-13 -1.01770E-13 6.00000E-17 
150 3.02800E-14 3.02200E-14 3.02200E-14 6.00000E-17 
200 4.38200E-14 4.38200E-14 4.38200E-14 0 

δDS ∆DT δDT ∆ST δST 
[%] ⎥⎦

⎤
⎢⎣
⎡

⋅ mS
V  

[%] ⎥⎦
⎤

⎢⎣
⎡

⋅ mS
V  

[%] 

21.98% 3.64530E-23 21.98% 0 0% 
0.18% -1.05000E-16 0.18% 0 0% 
0.06% 6.00000E-17 0.06% 0 0% 
0.20% 6.00000E-17 0.20% 0 0% 

0% 0 0% 0 0% 

Sensitivity analysis allows to determine the influence of conductivity in single finite 
element on coil answer. Using two methods described above, sensitivity values in 500 
time steps for four differently placed defects (Fig. 1.) have been calculated. First, pro-
viding that finite element’s conductivity has been decreased by 5%, sensitivity SD has 
been determined by means of differential method. In comparison to methods of stiffness 
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and mass matrices derivative (SS) and Tellegen (ST), the differential is an approximate 
method. Sensitivity values have been determined with precision of 6 significant digits. 
Results obtained by stiffness and mass matrices derivative and Tellegen’s method have 
been identical and tally with results from differential method. 

Example results for defects #2 for some time steps have been shown at the Table 1 
and sensitivity values as time function for every defect in Fig. 3.  

 
Fig. 3 - Coil voltage sensitivity as function of time. 

Table 2 shows duration time of analysis on a computer with processor Pentium III-
M 850 MHz for one measurement coil. High advantage of Tellegen’s method follows the 
reason, that sensitivities are determined in one computational cycle versus conductivity 
of all elements. 

Table 2  
Duration time of analysis. 

Differential method Method of stiffness and mass 
matrices derivative Tellegen’s method 

70 [s] 67 [s] 28 [s] 

5 Conclusions 

Described methods make sensitivity analysis in time domain possible to carry out. 
Using eddy-current impulse-method, this is essential for recognition of material’s con-
ductivity distribution. Choice of method depends on number of nodes or areas, for which 
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the sensitivity should be determined and on the number of finite elements with varying 
conductivity, versus which it is calculated. While number of elements is higher 
Tellegen’s method is more optimal, otherwise method of stiffness and mass matrices 
derivative is useful. 

Further research will consist in using gradient algorithm for processing of inverse 
job on the basis of sensitivity data. 
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