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Inductance of Cylindrical Coil 

G. A. Cividjian1, A. Dolan2, N. Păduraru3 

Abstract: The cylindrical coreless and bar core coils are used in instrument trans-
formers and many other electromagnetic devices. In the paper, using the separa-
tion of variables an analytical formula for the leakage inductance of thin cylindri-
cal coil with unsaturated core is deduced, assuming a simplified path for the fron-
tal flux. The results are compared with well-known experimental data and data 
resulting from FEM models. 

Keywords: Cylindrical coil. Inductance. Separation of variables. Bar core trans-
former. 

1 Coreless cylindrical solenoid 

The first result is the R. Küchler experimentally obtained formula (8), which con-
sider the corresponding equivalent air gap for a thin solenoid with the diameter ad 2=  
and the length, bl 2= given by the formula [1], 
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The exact theoretical solution for this case is given by the equation [2] 
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Here K and E are the elliptic integrals of first and second kind with the module k 
(annex 1): 
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The exact value of inductance of the coreless cylindrical solenoid is 
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The dependence of the coefficient c on the solenoid dimensions ratio, calculated 
with (2) is given in Fig. 1 and agrees with the Küchler experimental result in the speci-
fied in [1] domain of α. 

 
Fig. 1 - Coefficient c for equivalent gap. 

The limits of c for α equal to 0 and infinity can be obtained from (2). For small k 
the following development of the elliptic integrals are available [3]: 
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Considering only two terms in series, for ∞→α we have the limits 
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For 0→α  [2] 
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Küchler [1] proposes to calculate the inductance of bar core cylindrical coil, con-
sidering the solenoid length equal to zero and the equivalent air gap dc≈δ  and intro-
duces the correction coefficients k1 and k2, which take into consideration the core length 

hl 2e =  and core diameter ed . For ee )3...2( dll ∈−  the factor 
d
d

k e
2 ≈ . This means 

that, in this case, in the next formula (8) the coil diameter can be simple substitute by 
core diameter ed  
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Here d is the coil diameter and de is the core diameter. 

 
Fig. 2 - Magnetic field pattern: a), c) - calculated wit FEM; b) calculated with (18). 

2 Leakage inductance of bar core solenoid 

2.1 Field problem 
We will consider a symmetrical thin solenoid closely fitting to cylindrical steel 

core. 
The vector magnetic potential in D = ]0[][ hzar <<×>  will satisfy the equation: 
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The magnetic flux line issuing from the core edge will be considered a horizontal 
straight line (dashed line in Fig. 2) and, consequently, we can approximate the boundary 
conditions as follows:  
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Here w is the coil number of turns and 0≈η  the ratio of the internal to external 
tangential magnetic field on coil surface. 

Using the separation of variables method and considering )()(),( zZrRzrA =  we 
will obtain the equations: 
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Here K1 and I1 are the modified Bessel functions of first order. 
Taking into account the boundary conditions for  z = 0  and  r = ∞  which give  

C2 = C4 = 0, we will seek for the solution of the above problem in the following form, 
which satisfy the boundary condition for  z = h, 
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Using known equation for Bessel functions [3], 
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The boundary condition for r = a determines the Ai coefficients. Equating  (9) and (13) 
for ∞≈η we obtain: 
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Multiplying the last equation by )cos( ziλ  and integrating between 0 and h, it re-
sults 
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2.2 Frontal flux 
We will approximate the magnetic field pattern for hz >  with the current lines in 

point contact. Under such assumptions the magnetic flux passing through the end of the 
2a diameter cylindrical core and the corresponding inductance, can be evaluated as in [4] 
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This assumption determines the value of the vector magnetic potential A(a, h) and 
the constant C: 
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For r > a, the vector magnetic potential will be 
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The equations of magnetic flux lines are .const),( =zrAr  In Fig. 2 b) and c) we 
can see the enough good similarity of the thus calculated field patterns with the obtained 
by FEM. 

2.3 Lateral flux 
The magnetic flux emergent from the cylindrical part of the core above the coil and 

the corresponding inductance will be 
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and 
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The interlinkage through the coil and corresponding inductance will be: 
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2.4 Total inductance 
The total inductance of cylindrical coil closely fitting to cylindrical core will be 
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Fig. 3 - Coefficient k1 from formula (8), calculated with (24). 

The Küchler coefficient k1 from (8) defined as ratio of the core coil inductance (22) 
to the zero length coreless coil inductance is now 
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Taking into account the equations (12) and (15) we obtain for k1 coefficient the 
equations: 
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The values of k1, calculated with ten terms (Rn < 0.007, for hb 2.0> ) in series (24), 
are given in Fig. 3 (annex 2). 

3 Comparison with experimental and FEM results 

The comparison with Küchler’s formula (8) and the results obtained by FEM, con-

sidering asymptotic boundary conditions 0=+
∂
∂

r
A

r
A  on the outer radius of the region 

1.00 =r  m, for 1=a cm, is given in Fig. 4. 

A better agreement of theoretical results than of given in [1], with obtained by FEM 
can be observed in Fig. 4, especially for short solenoid and long core. 

 
Fig. 4 - Comparison of the calculated with (24)  k1 values with the  given in [1]   

and determined using FEM. 

4 Conclusion 
1. The inductance of coreless cylindrical coil can be always calculated with for-

mula (4) with the coefficient c calculated with (2) or given in Fig. 1 for wide 
range of α. 
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2. The inductance of cylindrical coil can be calculated for small diameters, using 
the Küchler’s experimental formula (8) and the given in [1] curves for k1. For 
large diameters the given in [5] curves also can be used. 

3. For all the diameters and for long or short core, the inductance of thin cylindri-
cal coil, closely fitting to cylindrical unsaturated steel core, can by evaluated us-
ing the proposed formula (22) or the Küchler’s experimental formula (8) and 
the curves from Fig. 3 for k1. 

4. The inductances obtained with the proposed formula (22) or with Küchler’s 
formula (8) with k1 from Fig. 3 are in better agreement with the FEM results, 
with asymptotic boundary conditions. 
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Annex 1 
Elliptic int m = k2 
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Annex 2 

For 01.0>=
h
ax  exists the following inequality: 
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Replacing in (24) we obtain: 
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From which results the rest evaluation given in (24). 
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