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Inductance of Cylindrical Coil

G. A. Cividjian', A. Dolan? N. Piduraru’

Abstract: The cylindrical coreless and bar core coils are used in instrument trans-
formers and many other electromagnetic devices. In the paper, using the separa-
tion of variables an analytical formula for the leakage inductance of thin cylindri-
cal coil with unsaturated core is deduced, assuming a simplified path for the fron-
tal flux. The results are compared with well-known experimental data and data
resulting from FEM models.
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1 Coreless cylindrical solenoid

The first result is the R. Kiichler experimentally obtained formula (8), which con-
sider the corresponding equivalent air gap for a thin solenoid with the diameter d =2a

and the length, / = 25 given by the formula [1],

5:1(1+CJ; a=L—-2c(02,20) = c~044. (1)
o d a
The exact theoretical solution for this case is given by the equation [2]
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Here K and E are the elliptic integrals of first and second kind with the module &
(annex 1):
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The exact value of inductance of the coreless cylindrical solenoid is
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The dependence of the coefficient ¢ on the solenoid dimensions ratio, calculated
with (2) is given in Fig. 1 and agrees with the Kiichler experimental result in the speci-
fied in [1] domain of a.
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Fig. 1 - Coefficient c for equivalent gap.

The limits of ¢ for o equal to 0 and infinity can be obtained from (2). For small &
the following development of the elliptic integrals are available [3]:

2 2
i{(?.n—l)!!} w2 | and E(k)=§ 1_%{(2%1)!!} e |
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(k) 5
Considering only two terms in series, for o, — oo we have the limits
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For o — 0 [2]

2 4 2 4
D(a) =27 1+ _E lni—l+a—+a—+... -0, (7

8 64 a 2 32 9

Kiichler [1] proposes to calculate the inductance of bar core cylindrical coil, con-
sidering the solenoid length equal to zero and the equivalent air gap § ~ cd and intro-

duces the correction coefficients k; and k,, which take into consideration the core length

lo =2h and core diameter 4. For [, —]e(2..3)d, the factor t, ~ e This means
d

that, in this case, in the next formula (8) the coil diameter can be simple substitute by
core diameter d,
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Here d is the coil diameter and d, is the core diameter.

9

Fig. 2 - Magnetic field pattern: a), c) - calculated wit FEM; b) calculated with (18).

2 Leakage inductance of bar core solenoid

2.1 Field problem

We will consider a symmetrical thin solenoid closely fitting to cylindrical steel
core.

The vector magnetic potential in D = [r > a]x[0 < z < h] will satisfy the equation:
divA=0 = rotrotA=-AA=p,J

and

Z‘Sh

)

82A+16A 4 %4 [-npdd(r—a,z),
ot ror g2 ot

0 r>a

The magnetic flux line issuing from the core edge will be considered a horizontal
straight line (dashed line in Fig. 2) and, consequently, we can approximate the boundary
conditions as follows:
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wl
_=12b(+m)’
0, ‘Z‘>b

z‘ <b
B.| ,=0; B and 4 =0. (10)

=0, H

r z

z=h

Here w is the coil number of turns and n ~ 0 the ratio of the internal to external
tangential magnetic field on coil surface.

Using the separation of variables method and considering A(r,z) = R(r) Z(z) we
will obtain the equations:

R" 1R 1 z"
—+ —_ ==

7»% x=\r=

R rR 2 Z
2
a7]3"1‘16]3 (1"1‘12)]{:0 :>R(X)ZC1K1(X)+C211()C),
X

ox2  x Ox

7 .o .

> +A:Z2=0 = Z(z)=C5cos(h; z)+ Cysin(A; z).  (11)
zZ

Here K and /; are the modified Bessel functions of first order.

Taking into account the boundary conditions for z =0 and r = oo which give
C, = C4 = 0, we will seek for the solution of the above problem in the following form,
which satisfy the boundary condition for z = 4,
(1

A(r,z) =puowl Y A; K{(h; r)cos(h,; z)+£; Aj= h(2+i]. (12)
i r

Using known equation for Bessel functions [3],
’ 1 !
Ki(x)+ LK (x) ==Ky (x) and Ko(x) ==K, (x)
the components of flux density will be:
04 - .
B, (r2) = —— =ty wI D 14, K (0 r)sin(h; 2)
z

i=0

and

o4 _ o wID A A4; Ko(h; r)cos(h,; z) - (13)

B =242
reor i=0

The boundary condition for » = a determines the 4; coefficients. Equating (9) and (13)
for 1 ~ oo we obtain:

© WI, z‘<b
=0 0, |{>b
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Multiplying the last equation by cos();z) and integrating between 0 and 4, it re-

sults

h . '
[eos>(h; )z =2 = g = S0iD)
0

. (15)
2 " 2bhKy(\, a)

2.2 Frontal flux
We will approximate the magnetic field pattern for ‘ Z‘ > h with the current lines in

point contact. Under such assumptions the magnetic flux passing through the end of the
2a diameter cylindrical core and the corresponding inductance, can be evaluated as in [4]

@
@, =2pwla :LI:%=2uow2a. (16)

This assumption determines the value of the vector magnetic potential A(a, /#) and
the constant C:

®, =2nad(a,h)=21C =C="0yja. (17)
T

For r > a, the vector magnetic potential will be
A(r,z) = ng wl{a+ > A; Ky (h; r)cos(r; z)} r>a, ‘z‘ <h. (18)
roi=0

The equations of magnetic flux lines are r A(r,z) = const. In Fig. 2 b) and c) we

can see the enough good similarity of the thus calculated field patterns with the obtained
by FEM.

2.3 Lateral flux

The magnetic flux emergent from the cylindrical part of the core above the coil and
the corresponding inductance will be

®, =2na[A(a,b) - A(a,h)|=2npy wla foA,. K, (L;a)cos(); b)
i=
and
L, =2npgwla ioAi K, (L;a)cos(h; b). (19)
i=
The interlinkage through the coil and corresponding inductance will be:

0 0 b
Y5 :2na%IzBr(a,z)dz:2nuo w21%ZAI- Ki(Lja)\; [zsin(h; z)dz (20)
b i=0 0
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and

Ly =2mp, w?a 2 4; Ky (h;a)
i=0

sin(A; b)
Ab

i

—cos(; b)} . 21

2.4 Total inductance
The total inductance of cylindrical coil closely fitting to cylindrical core will be

1 = in(A; b
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Fig. 3 - Coefficient k; from formula (8), calculated with (24).

The Kiichler coefficient k; from (8) defined as ratio of the core coil inductance (22)
to the zero length coreless coil inductance is now

L 7-(;2 1 [} s1n(7»b)
k= =4 —o | = , )2 0)
YL, (@(a) “J[HIZOAI Koy —= } (23)

1
Taking into account the equations (12) and (15) we obtain for k; coefficient the
equations:
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2 .
b () =4 —— -2 {I+ZTI}; x=%;y=é; j=i+l
y T

. ; R = ZT <
Ko(mjx) (th)3y2 n‘x>o,01 = 2m

. Y w 21+——
TA:KL(TC]X) sin (TE]}/). 13(hj n+1. (24)

The values of k;, calculated with ten terms (R, < 0.007, for » > 0.2 4 ) in series (24),
are given in Fig. 3 (annex 2).

3 Comparison with experimental and FEM results

The comparison with Kiichler’s formula (8) and the results obtained by FEM, con-

sidering asymptotic boundary conditions o4 + 4 = ( on the outer radius of the region

or r
rp =0.1 m, for g =1cm, is given in Fig. 4.

A better agreement of theoretical results than of given in [1], with obtained by FEM
can be observed in Fig. 4, especially for short solenoid and long core.
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Fig. 4 - Comparison of the calculated with (24) k; values with the given in [1]
and determined using FEM.

4 Conclusion

1. The inductance of coreless cylindrical coil can be always calculated with for-
mula (4) with the coefficient ¢ calculated with (2) or given in Fig. 1 for wide
range of .
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2. The inductance of cylindrical coil can be calculated for small diameters, using
the Kiichler’s experimental formula (8) and the given in [1] curves for k. For
large diameters the given in [5] curves also can be used.

3. For all the diameters and for long or short core, the inductance of thin cylindri-
cal coil, closely fitting to cylindrical unsaturated steel core, can by evaluated us-
ing the proposed formula (22) or the Kiichler’s experimental formula (8) and
the curves from Fig. 3 for k.

4. The inductances obtained with the proposed formula (22) or with Kiichler’s
formula (8) with k&, from Fig. 3 are in better agreement with the FEM results,
with asymptotic boundary conditions.
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Annex 1
Elliptic int m = k*

2 2
{H (2i- 1)} {H (2i - 1)}
T & i=1 2n |>» T < i=1 kzn >
Ko(k):E I+ ==k Eo(k):E 1->

n=1 2 I’l! n=1 2;1 l’l! 21’1 — l

K, (m) =(1.3862944+ 0.1119723m +0.0725296m> )~ (0.5+0.1213478m+0.0288729m” Jin(m) .
E,(m) = (1+0.4630151m +0.1077812m° )~ (0.2452727m + 0.0412496m° )in(m)
M =099, K(m)=iflm<M, K m), Ko\T=m)), Em)=itln<m, £ m), E,(T=m)).
Annex 2

For x :% > 0.01 exists the following inequality:

K(n@i+05)x) 15

. (A2.1)
Ko(m(@i+05)x) i+1
Replacing in (24) we obtain:
1+ 15 2
® ® 1 1 (h 15 )% dx
R =371 <ty z(j (1+ ] & (A22)
”‘x>0.01 = Byt S+05° 2P\ n+l xi,,x3

From which results the rest evaluation given in (24).
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