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Abstract: In this paper a design methodology of a magnetohydrodynamic pump 

is proposed. The methodology is based on direct interpretation of the design 

problem as an optimization problem. The simulated annealing method is used for 

an optimal design of a DC MHD pump. The optimization procedure uses an 

objective function which can be the minimum of the mass. The constraints are 

both of geometrics and electromagnetic in type. The obtained results are reported. 
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1 Introduction  

Magnetohydrodynamics (MHD) is the theory of interaction of electrically 

conducting fluids and electromagnetic fields. Applications arise in astronomy 

and geophysics as well as in numerous engineering problems, such as liquid 

metal cooling of nuclear reactors, electromagnetic casting of metals, MHD 

power generation and propulsion [1, 2].  

Applications of MHD are numerous and used in many domains, such as 

metallurgical industry, the transport or pumping of liquid metals in fusion and 

marine propulsion [3, 4]. 

The interaction of moving conducting fluids with electric and magnetic 

fields provides a rich variety of phenomena associated with electro-fluid-

mechanical energy conversion [5]. 

The pumping of liquid metal may require an electromagnetic device which 

induces currents, and their associated magnetic field generates the Lorentz force 

whose effect ensures the pumping of the liquid metal [6, 7]. 

The determination of geometry and electrical configuration of an MHD 

device gives rise to an optimization problem. When the requirements of the 

design are defined, this problem can be solved by optimization technique. 

The objective function of the optimization problem is derived from the 
main design requirement. The other design requirements can be taken into 
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account by the constraints. The optimal solution to the problem corresponds to 
the minimum (or maximum) of the functional cost.  

Many studies pertaining to the optimal design of MHD devices have been 

done, with different techniques employed. The finite element technique was 

considered to solve constrained optimal control problem in the design of a 

MHD pump as described in [8, 9]. The successive quadratic programming 

method is used to solve optimal design of a superconducting MHD saddle 

magnet. The global evolution strategy technique (GES) was used as global 

minimization algorithm for the optimal design of a liquid metal induction pump. 

In [10], the determination of geometry and electrical configuration of an MHD 

device yields to the inverse magnetohydrodynamic field problem. Stochastic 

optimization procedures for design problems in electrical engineering have 

received considerable attention over the past few years because they are rather 

simple to implement, stable in convergence and able to find the desired region 

with quite a good probability. 

Simulated annealing is a higher level heuristic algorithm for solving 
optimization problems. It is an iterative improvement procedure that starts from 
any initial solution and attempts to determine a better solution. It has now 
become an established optimization approach that is rapidly spreading to many 
new fields. With the other heuristic search algorithms, such as Genetic 
algorithm, simulated annealing has been singled out as ‘extremely promising’ 
for the future treatment of practical applications. 

The presented approach has potential to find the global optimum and it 
does not need any additional information than the dynamic model itself. The 
developed method incorporates penalty methods for constraint handling, which 
ensures reliability in the worst case performance. 

In this paper, simulated annealing method (SA) is used for optimization of 
the liquid metal conduction pump. In order to complete this task, the pump’s 
mass is adopted as the cost function. The magnetic induction and the current 
density are used as constraints. 

The paper is organized as follows: Section 2 provides the description of the 
MHD pump. The optimization problem formulation is described in Section 3. 
Simulated annealing as well as the control parameter are introduced in Section 4, 
while Section 5 presents the optimization results. 

2 Description of the Conduction MHD Pump 

Figs. 1 and 2 show schematic view and geometry of the considered DC 
electromagnetic pump in torus shape with two coils, four electrodes and a 
channel.  
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Fig. 1 – Schematic view of the DC pump. 
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Fig. 2 – Model of the conduction MHD pump. 

 

3 Optimization Problem Formulation 

The optimization model is based on the solution of a nonlinear constrained 

optimization problem stated as follows: 

 

Min ( ),
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( ) 0, 1, ,
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where ( )f x  is the cost function, ( )jp x  and ( )ig x  are equalities and 

inequalities constraint functions. The vector x  contains the unknowns of the 

problem which are the geometrical parameters defining the structure of the 

pump, while lowerx and upperx are the thrusts fixing the acceptable field. 

To formulate the optimization problems requires defining an objective 

function to be optimized. In this case, we have considered the mass of a DC 

MHD pump where a function of external penalty is used [11], according to 

which the function to be minimized becomes equal to: 

 
2

1( ) ( ) max 1, ( )m

i jW x f x r g x
        , (2) 

where ( )f x  is the objective function without constraints, ( )jg x  represents the 

constraints function and r is penalty coefficient. 

In this case, the optimization problem is resumed as follows: 

( )f x Minmass  subject to the inequalities constraints: 
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Fig. 3 – Optimization procedure for the design problem. 
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Modeling is important to achieve the design, therefore we have used the 

electromagnetic model of the DC pump obtained by the finite volume method. 

Fig. 3 shows the adopted optimization procedure [12]. 

4 Simulated Annealing Method 

The simulated annealing method was proposed in 1983 by Kirkpatrick, 

Gelatt and Vecchi and originates in thermodynamics [13]. This method is based 

on slow cooling of a material at state fusion, which leads it to a solid state with 

low energy. 

The same basic principle can be used in an optimization algorithm. The 

objective function to be minimized can be considered as the system energy, 

while different combinations of the optimization are the configurations of the 

system given its degrees of freedom. 

4.1 Simulated annealing and physical system analogy 

The analogy between a physical system made up of several particles and an 

optimization problem is based on the equivalences summarized in Table 1. 

Table 1 

Physique and optimization problem (simulated) analogy. 

Physical system Optimization Problem 

Free energy Objective function 

Coordinated particles The problem Parameters 

State of low energy Optimal configuration 

Temperature (T) Control Parameter 

Physical system Optimization Problem 

 

4.2 Simulated Annealing (SA) algorithm 

SA’s major advantage over other methods is an ability to avoid becoming 

trapped in local minimum. The algorithm employs a random search which not 

only accepts changes that decrease the objective function )(xf  (assuming a 

minimization problem), but also some changes that increase it. The latter are 

accepted with a probability: 

 /e E TP  , (4) 

where E  is the increase in f and T is a control parameter which by analogy 

with the original application is known as the system ‘temperature’ irrespective 

of the objective function involved. The implementation of the basic SA 

algorithm is simple.  

The algorithm for the general procedure for implementing SA is presented 

in the following steps [13]: 
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� Step1: Select an initial temperature 0 0T  ; 

� Step2: Select an initial solution 0S and make it the current solution S  

and the current best solution *S ; 

� Step3: repeat; 

� Step4: set repetition counter 1n  ; 

� Step5: repeat; 

� Step6: generates solution nS  in the neighborhood of *S ; 

� Step7: calculate *( ) ( )nE f S f s   ; 

� Step8: if 0E   then *

nS s ; 

� Step9: else *

nS s  with the probability of ( / )E TP e  ; 

� Step10: if *( ) ( )nf S f s  then *

nS s ; 

� Step11: 1n n  ; 

� Step12: until n   number of repetitions allowed at each temperature 

level (L); 

� Step13: reduce the temperature T  until the stop criterion becomes true. 
 

The principle underlying the choice of a suitable annealing schedule is 

easily stated: the initial temperature should be high enough to ‘melt’ the system 

completely and should be reduced towards its ‘freezing point’ as the search 

progresses. 

Therefore, the following parameters should be specified: 

̶  an initial temperature 0T , 

̶  a final temperature fT  or a stopping criterion, 

̶  a rule for decrementing the temperature. 

4.2.1 Initial temperature determination 

For the determination of the initial temperature, several methods are 

proposed in literature. The method used in this paper involves generating a 

certain number of random configurations X, for which the objective function is 

evaluated and their average value M calculated. This average value divides the 

distribution into two parts of equal probability of 0.5. Finally, the initial 

temperature is deduced from the criterion of Métropolis given by [14]: 

 0 0.5

M

T
P e



  , (5) 
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M
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T
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 0
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so 

 0 1.44T M . (8) 

4.2.2 Final temperature 

In some simple implementations of the SA algorithm the final temperature 

is determined by fixing: 

 the number of temperature values to be used, or 

 the total number of solutions to be generated. 

Alternatively, the search can be halted when it ceases to make progress. 

4.2.3 Decrementing the temperature 

The simplest and most common temperature decrement rule is: 

1k kT T    (9) 

where kT  is the current temperature, 1kT   is the new temperature and   is 

reduction factor ( 0 1   ). 

Reduction factor   is a constant close to, but smaller than 1. This 

exponential cooling scheme was first proposed with α = 0.95 in which T is 

reduced after every L trials. In general, the final value of f is improved with 

slower cooling rates at the expense of greater computational effort. 

SA has been applied to such problems as the well-known travelling 

salesman problem and optimization of wiring on computer [15 – 17]. 

4.3 Comparison with other methods 

Any efficient optimization algorithm necessitates two techniques to find the 

global maximum or minimum, i.e. exploration, to investigate new and unknown 

areas in the search space and exploitation of the knowledge found at previous 

points to help find better ones. These two requirements are contradictory and a 

good search algorithm is needed for a compromise between the two. 

4.3.1 Genetic algorithm 

Genetic algorithms can be a powerful tool for solving problems and 

simulation of natural systems in a wide range of scientific fields [18]. Genetic 

Algorithms are not only efficient in their search strategy but also are also 

statistically guaranteed to find the function optima. They have been 

demonstrated to be competitive with other standard Boltzmann-type simulated 

annealing techniques [19]. 

4.3.2 Random search 

The random method does not require the calculation of derivatives. They 

are simpler and applicable to the optimization of non differentiable function [20]. 



K. Bouali, F.Z. Kadid, R. Abdessemed 

346 

4.3.3 Gradient methods 

In order to use a gradient method for optimization procedure, we need to 

know the information about the gradient of the objective function. If the 

derivative of the function cannot be computed due to its discontinuousness, for 

example, these methods are often unsuccessful. They are efficient for unimodal 

functions. However, for the multimodal functions they can not reach the top of a 

local maximum. 

4.4 Effects of the reduction factors α on 

the convergence of optimal design method 

Table 2 shows the effect of the reduction factor on the objective function. 

The initial temperature 0T  is calculated by the criterion of Métropolis (4). The 

objective function (Pump’s mass [kg]) may not reach the value of the global 

minimum if the reduction factor is small. The table suggests that 0.99 
 
may 

be suitable. 
Table 2 

Pump’s Performances. 

α 0.7 0.8 0.9 0.99 

Pump’s mass [kg] 11.69 11.49 11.16 10.91 

 

5 Optimization Results 

Table 3 shows the dimensions of the pump obtained by the simulated 

annealing method. 
Table 3 

Optimal dimensions of the pump. 

parameter 
simulated annealing 

α = 0.99 

channel’s length [m] 0.1799 

channel’s radius [m] 0.0294  

electrode’s length [m] 0.0094 

electrode’s width [m] 0.1000 

inductor’s length [m] 0.1000 

inductor’s radius [m] 0.0703 

coil’s length [m] 0.0200 

coil’s radius [m] 0.0300 

pump’s mass [kg] 10.91 

In order to verify the efficiency of the method, the obtained vector 

dimension is used in finite volume method as a dimension of the pump and the 

results are illustrated in Figs. 4 – 7. 
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Fig. 4 – The equipotential lines in the MHD pump. 
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Fig. 5 – The magnetic vector potential in the MHD pump. 
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Fig. 6 – The magnetic induction in the MHD pump. 
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Fig. 7 – The electromagnetic force in the channel. 
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6 Conclusion 

The calculation of the optimal dimension of a DC pump via global 

optimization is presented by using the simulated annealing algorithm. The 

stochastic optimization method is suitable as it does not depend on any initial 

conditions on the objective function, such as the derivability and the convexity. 

In addition, it gives preference to global minima.  

The proposed method represents a means to obtain satisfactory pump 

design geometry. Also, it strictly fulfills the design requirements where 

constraints are satisfied regarding the obtained optimal mass. 

It is important to highlight that the simulated annealing results depend 

effectively on the control parameters. The best one is obtained with initial 

temperature 0 100T   and 0.99  . 
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