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Abstract: A new method applying the biogeography-based optimization (BBO) 

technique is presented for the optimization of high voltage electrode surfaces. 

The aim is to obtain the optimization of the electrode shape in order to achieve a 

uniform field distribution along the surface of the electrode and maintain 

maximum field stress at minimum value. The principle of the developed 

optimization technique is described with an axi-symmetric single-phase GIS bus 

terminal electrode considered as a quarter-ellipse. In this scheme different 

aspects of the optimization technique are compared by means of semi-infinite 

line charges and ring charges to compute the electric field with the charge 

simulation method (CSM). The new Biogeography Based optimized approach 

helps in achieving a uniform field distribution with a minimum electric stress on 

the electrode surface and a minimum deviation angle for the otherwise normal 

stress vector, holding the assignment factor within the assigned range. The 

deviation angle is the more sensitive indicator of the simulation accuracy .The 

assignment factor has an impact on simulation accuracy. The combined 

BBO/CSM algorithm is capable of finding a better-quality solution, better 

accuracy, better convergence characteristics and computational efficiency. 

Keywords: Biogeography-based optimization, Charge simulation method, Semi-

infinite line charges, Ring charges, Deviation angle, Assignment factor. 

1 Introduction 

The optimization of the electrode contour in the high voltage field can be 

done by various techniques. Each has its own merits and limitations. Proper 

design of high voltage electrodes or any high voltage device requires a 

comprehensive knowledge of the electric field distribution. The field 

distribution along the contour should preferably be uniform and the maximum 

field stress along the contour should be within a set value. Various electric field 

computing methods have been used previously to optimize the electrode 

surface. Takuma and Kawamoto [1] proposed a method based on sequential 

quadratic programming that corresponds to an extended quasi-Newton method. 
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The electric field was calculated using CSM together with spline-function 

smoothing, whereby priority was given to uniform field distribution. 

S.Chakravorti et al. [2] presented a new technique based on a neural network for 

optimization of electrode contours. P.K.Mukherjee et al. [3] employed an 

artificial neural network, the so-called resilient propagation algorithm. Here also 

CSM was used for preparation of the training sets as well as for checking the 

test outputs from the network. H.Okubo et al. [4], too, calculated an optimum 

contour with an electric field optimization method based on a neural network. 

Neural network-based applications, however, impose a huge computational 

burden and a certain amount of training is required to achieve the desired 

accuracy. A.Chatterjee et al. [5] developed a self-organizing fuzzy interface 

system for electrode optimization, but there was less uniformity in the electric 

field stress. Abdel Salam et al. [6] presented a genetic algorithm for 

optimization of high voltage electrode surfaces where different fitness functions 

were proposed and tested. Statistical analysis of the different solutions were 

carried out which revealed that the computed standard deviation was more. 

In most of the previous work, a statistical approach is considered for the 

sake of simulation accuracy. Yet if the same analysis controls the deviation 

angle and assignment factor the result is more authentic. When CSM is used to 

compute the electric field then, at a selected number of contour points, fictitious 

charges are placed in such a way that there effect is required to satisfy the 

boundary conditions. In such cases, for better simulation, measurement of the 

deviation angle between the normal and the computed stress vector on the 

electrode surface is more effective than the statistical analysis [13]. The 

deviation angle is defined as the angular deviation of the electric stress vector at 

the control point on the electrode surface from the direction of the normal to its 

surface at that point. This deviation angle is the main indicator of simulation 

accuracy. The simulation accuracy in the CSM depends upon the type and 

number of fictitious charges as well as the locations of fictitious charges and 

contour points. These different parameters are co-related by the ‘assignment 

factor’. The assignment factor is defined as the ratio of the distance between 

two successive contour points to the distance between a contour point and the 

corresponding charge. The deviation angle is a sensitive indicator which is 

applied when ring charges are used for simulation. By keeping the deviation 

angle to a minimum and the assignment factor in the set range, simulation 

accuracy is far better and more accurate than the statistical approach. 

As some methods do not meet both of these requirements, it is therefore 

necessary to employ the most effective optimization method by simplifying the 

formulation and implementation of the problem. The present paper describes a 

new method based on the biogeography-based optimization (BBO) technique 

for the optimization of high voltage electrode surfaces. 
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2 Biogeography-Based Optimization 

A BBO algorithm has certain unique features which overcome several 

demerits of the conventional methods [7, 14]. In the engineering field 

biogeography is used similarly to genetic algorithms, neural networks, fuzzy 

logic, particle swarm optimization, evolutionary algorithms and other types of 

computer intelligence. 

Biogeography is the study of the geographical distribution of biological 

organisms and is represented by mathematical models. Mathematical models of 

biogeography help to reveal the migration of species from one habitat to 

another. These models also describe how new species arise and how species 

become extinct. A habitat is any island (area) that is geographically isolated 

from other islands [7]. The more generic term ‘habitat’ is used rather than the 

term ‘island’. High habitat suitability index (HSI) areas make good residences 

for biological species. HIS variables are dependent variables. Factors such as 

rainfall, diversity of vegetation, diversity of topographic features, land area and 

temperature are the features which correlate with the HSI. The variables that 

characterize habitability are called suitability index variables (SIVs) [7]. SIVs 

are independent variables of habitat. 

High HSI habitats are more static in their species distribution than low HSI 

habitats [7] because they have a low species immigration rate and are saturated 

with species. High species emigration rate habitats offer species many chances 

to emigrate to adjacent habitats. Low HSI habitats have a low species 

emigration rate but because of their sparse population have a high immigration 

species rate. This immigration of new species improves low HSI habitats, 

because its biological diversity is relative to the suitability of a habitat. Low HSI 

habitats are more active in their species dispersion than high HSI habitats. Poor 

solutions can evolve into better solutions by accepting new features. At the 

same time high HSI solutions tend to share their features with low HSI 

solutions. Because of this sharing feature the quality of low HSI solutions 

improves and this new approach to problem-solving is known as biogeography-

based optimization. 

The immigration rate λ and the emigration rate μ are functions of the 

number of species in the habitat [7]. Fig. 1 shows the species model of a single 

habitat based on the theory of biogeography where straight line curves are 

considered. In Fig. 1, with regard to the immigration curve, the maximum 

possible immigration rate I occurs when there are zero species in the habitat. As 

the number of species increases, some species are able to benefit from 

immigration to the habitat and thus the immigration rate decreases. 

Habitat can support Smax maximum number of species, whereby the 

immigration rate becomes zero. On the other hand, the emigration rate is zero 

when there are no species in the habitat. As the number of species increases, the 
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habitat becomes crowded; some species are able to explore other possible 

habitats, and thus the emigration rate increases. When the habitat supports the 

largest possible number of species, the emigration rate E becomes maximal. The 

point S₀ has an equal number of species for which the rates λ and μ are equal. 

I

E

Rate

Immigration 

(?)

Emigration 

(µ)

S0 

Number of Species

Smax

 

Fig. 1 – Species model of a single habitat. 
 

If sP is the probability for S species in a habitat then for the small change in 

the interval we have the following equation: 

 1 1 1 1( ) ( )(1 )s s s s s s s sP t t P t t t P t P t                 . (1) 

In (1) s  and s  are the immigration and emigration rates for S species in 

the habitat. To keep S species at time ( )t t  one of the following conditions 

must obtain: 

1. there were S species at time t, and no immigration or emigration 

occurred between t and ( )t t  ; 

2. there were (S – 1) species at time t, and one species immigrated; 

3. there were (S + 1) species at time t, and one species emigrated. 

Assuming t  is very small and taking the limit of (1) as 0t   gives [7]: 
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For convenience, Ps equations can be formatted into the single matrix 

equation 

 P AP , (3) 

where matrix A is given (for 0, ,S n  ) as [7]: 
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For the straight-line curves shown in Fig. 1, the immigration and 

emigration rates are defined as [7]: 

 max,k
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E
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In some special cases (for k k E    ), (5) and (6) can be modified to 

compute the λ and μ so that in (4) the elements of the matrix change [15]. With 

the help of Observation1 and Conjecture1 [7], an eigenvalue equation can be 

used to find the unknown vector v. Such eigenvalues are used to compute the 

steady-state value for the probability of each species. This probability is given 

by [7]: 
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where 

 
( 1) / 2,  or

ceil(( 1) / 2).

n
i

n

    
 

In mathematical models, each individual solution is a vector of integers 

(discrete version) which is initialized randomly and is applied to the problem's 

dependent functions. BBO algorithms have been successfully implemented to 

solve various problems. BBO is mainly based on two concepts: migration and 

mutation. 
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2.1 Migration 

Migration can occur between any two habitats depending upon the 

emigration and immigration rates. Each integer in the solution vector is 

considered to be a suitability index variable (SIV). There is a method of 

assessing the goodness of the solutions. Good solutions have high HSI and poor 

solutions have low HSI. HSI is analogous with ‘fitness’ in other population-

based optimization algorithms. High HSI solutions represent habitats with many 

species, and low HSI solutions represent habitats with few species. The use of 

emigration and immigration rates helps each solution to probabilistically share 

information between habitats. If a given solution is selected to be modified, then 

we use its immigration rate to probabilistically decide whether or not to modify 

each suitability index variable in that solution. If a given SIV in a given solution 

is selected to be modified, then we use the emigration rates of the other 

solutions to probabilistically decide which of the solutions should migrate a 

randomly selected SIV to that solution [7]. The difference in the global 

recombination approach of evolutionary strategies and the migration of BBO is 

that the former approach is used to create a new solution whereas the latter 

approach is used to change the existing solution.  

2.2 Mutation 

In BBO, when the change in habitat’s HSI occurs suddenly the event is 

represented by the mutation of the SIV, and species count probabilities are used 

to determine mutation rates. The species count probability can be calculated. 

Each population member has an associated probability which indicates the 

likelihood that it exists as a solution for a given problem. If the probability of a 

given solution is very low, then that solution is likely to mutate to some other 

solution. Similarly, if the probability of some other solution is high, then that 

solution has very little chance to mutate [7]. Therefore, very high HSI solutions 

and very low HSI solutions are equally improbable in terms of mutation; i.e., 

they have fewer chances to produce more improved SIVs in the later stage. But 

Medium HSI solutions, however, have better chances to create much better 

solutions after mutation. The mutation rate of each set of solutions can be 

calculated in terms of species count probability. The mutation rate m is defined 

as [7]: 

 max

max

1
( ) sP

m s m
P

 
 
 
  
 


 . (9) 

Here mmax is a user-defined parameter. This mutation scheme tends to 

increase diversity among populations. Without this modification, the highly 

probable solutions tend to be more dominant in the population. This mutation 

approach makes both low and high HSI solutions likely to mutate, which means 

both types of solution improve on their earlier values. An elitism approach is 
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used to save the features of the habitat that has the best solution in the BBO 

process, so even if mutation ruins its HSI, it has been saved it and can be 

retrieved if needed [7]. Therefore, the mutation operation is a high-risk process. 

It is normally applied to both poor and good solutions. Since medium-quality 

solutions are in the improvement stage, it is better not to apply mutation to 

them. The implemented mutation mechanism is problem-dependent. In the 

present work mutation of a selected solution is performed simply by replacing it 

with a randomly generated new solution set. 

2.3 BBO algorithm 

The BBO algorithm involves the following steps in sequence. 

1. Initialize a set of solutions to a problem. 

2. Compute the fitness (HSI) of each solution. 

3. Compute the number of species, and the immigration and emigration 

rates of each solution. 

4. Modify habitats (migration) based on immigration and emigration rates. 

5. Compute mutation based on probability. 

6. If necessary, implement elitism. 

7. Repeat steps 2 to 6 for a number of iterations. 

Feasibility as a problem solution should be verified after each habitat 

modification. The objective of the present work is to use a BBO algorithm for 

the optimization of electric field distribution along a high voltage electrode 

surface. For flexibility, the electrode contour selected is a quarter-ellipse. A 

practical example of a single-phase GIS bus with an axi-symmetric system is 

presented [6]. A BBO algorithm model is developed to determine the 

parameters which define the shape of the electrode contour through the 

maximization of the relevant fitness function. The fitness function employed in 

the present work is the square root of the accumulated squared field deviations 

from a pre-specified maximum field value [6]. The proposed method offers 

effectiveness and accuracy with better convergence characteristics and 

computational efficiency. 

3 Preparations and Simulation Technique 

Fig. 2 shows a typical GIS bus termination. It is an axi-symmetric system 

[6]. The radii r and R of the HV conductor and the grounded external cylinder 

are fixed. The height H is also specified. The major part of contour G to be 

optimized is a quarter-ellipse, and semi-axes x1 and x2 and x3 = 1 – x2 can be 

computed. The contour between the central axis and the beginning of the 

quarter ellipse is taken as a disc of radius x2 which is perpendicular to the 
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central axis, R = 2.75, r = 1 and H = 1.5 units. The voltage of the conductor is 

assumed to be unity. N is a Neumann plane on which the normal component of 

the flux density is zero and equipotential lines are all perpendicular to N. 

H

X1

X3

X2

r

R

N

G

S

 

Fig. 2 – Axi-symmetric single-phase GIS bus termination. 

 

Under favourable conditions the charge simulation method (CSM) [8 – 10] 

is used for field computation. This method has many features, such as high 

calculation accuracy, applicability to electrodes with round surfaces, easy 

setting of boundary conditions, reduced number of input data and feasibility in 

analysis. The CSM is an integral equation technique which makes use of 

mathematical linearity and expresses the Laplace equation as a summation of a 

particular solution owed to a set of known discrete fictitious charges. The basic 

principle of the charge simulation method is very simple. According to the 

superposition principle 

 
1

n

i ij j

j

P Q


  , (10) 

where ijP  are the ‘potential’ coefficients which can be evaluated analytically 

for many types of charges by solving Laplace or Poisson equations. 

For field estimation proper selection of suitable types of simulation charges 

[8 – 10] and their appropriate arrangement is a very important aspect of CSM 

[11, 12]. The inherent ability of CSM to simulate curved and rounded surfaces 

of electrodes or interfaces of different dielectric materials in a rather simple 

fashion makes it a very appropriate method. In CSM fictitious charges are 

required to satisfy the boundary conditions only at a selected number of contour 
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points. To determine the simulation accuracy different criteria can be used. The 

potential error which is the difference between the known potential of the 

electrode and the computed potential at the control point should be minimal. 

This potential error is usually in the order of 310 [10]. The error in the electric 

stress is usually higher than the potential error. This error in the electric stress is 

effectively measured by the deviation angle which is the most sensitive 

indicator of simulation accuracy, and is used when ring charges are used for the 

simulation. If the deviation angle is in the range of  3 degrees, then there is a 

very small difference between the mean value of electric stress and the 

maximum electric stress which results in more uniform field distribution along 

the electrode surface. The assignment factor considerably affects the simulation 

accuracy. H. Singer et al. suggested that the assignment factor should lie 

between 1.0 and 2.0 [8]. Other researchers have suggested that this factor gives 

satisfactory results when it lies between 0.7 and 1.5. 

In order to simulate the GIS electrode, field computations are analysed with 

two types of charges separately: first, semi-infinite line charges and, second, 

ring charges. The former charges are arranged along the central axis [6]. Two 

parameters t1 and t2 are used to determine both the initial location and the axial 

distribution of the charges in order to obtain accurate potentials on the 

boundaries by using a suitable error function. The first parameter t1 determines 

the location of the first charge which is usually located close to the centre of the 

ellipse. The axial distribution of the charges in an exponential manner is 

controlled by the parameter t2. 

An exponential function given by (11) is used [6] 

  ( ) ( 1) 3 2exp , 2:i i
ie e t t i n
n   , (11) 

where e(i) is the axial location of the ith charge, and e(1) is the axial location of 

the first charge which is equal to t1. The parameter t2 is a real value equal to or 

greater than zero. The parameter t3 is the adjustment factor for the location of 

any other charge. Appropriate values of t1 and t2 are found when the fitness 

function reaches a set value. The location of the Neumann plane N is taken to 

equal approximately 3H so that the value of the fitness function is within the 

assigned value [6]. 

In the second case when ring charges are used for field computation, more 

prominent simulation takes place. These types of charges are more suitable for 

the present electrode geometry [11, 12]. The ring charges are uniformly located 

along the central axis. The radius of any ring charge is determined by: 
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where fa  = a/b, j is the number of contour points on the electrode surface, a and 

b are the major and minor axis of the ellipse respectively, D is the distance 

between the point charge and contour along central axis, g is the distance 

between the ground and contour along central axis, z is the location of ring 

charges, H is the height and r1 is the co-ordinate of the first charge. The location 

of the Neumann plane N is the same as in the first case. The first charge is 

considered as a point charge and the rest of the charges are ring charges. If the 

proper values of fa are selected, the fitness function will satisfy the required 

objective of controlling the measuring indicators well within the range. 

Because of the different stress distributions for the GIS bus termination, the 

field distribution along the electrode surface is generally non-uniform and may 

contain more than one peak. The BBO technique is proposed for the solution of 

such problems. The parameters x1 and x2 are the habitats and the BBO algorithm 

searches for their optimum values through a properly designed fitness function 

to achieve uniform field distribution along the electrode contour and to maintain 

the maximum field stress at a minimum value. In the present work, the proposed 

BBO/CSM algorithm requires the following steps. 

1. Using a few CSM trials determine the domain for the optimum 

dimensions of x1 and x2 for semi-infinite line charges and ring charges 

separately. 

2. Enter these ranges in the BBO algorithm as inputs to generate initial 

random values of x1 and x2 in each case separately. 

3. For each call to the CSM routine by BBO algorithm, for a given value 

of x1 and x2, unknown charges are determined: 

(a) First, for the appropriate values of t1 and t2, semi-infinite line 

charges are determined locally within the CSM routine and,  

(b) Second, for the appropriate ratio of fa ring charges are determined 

locally within the CSM routine.  

4 The CSM will then produce the field distribution along the electrode 

surface using both charges separately under these conditions: 

(a) minimum standard deviation using semi-infinite line charges and  

(b) minimum deviation angle and the assigned assignment factor using 

ring charges. 

5 Determine the best solution with minimum error during this iteration in 

each case separately. 

6 Update the location of each solution (location of its simulation charges) 

depending on the location of the best solution. 

7 The BBO algorithm will evaluate a fitness function and modify x1 and 

x2 accordingly in both types of charges separately. 
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8 Repeat steps 3 to 7 for a set number of generations in each case. 

The expression for the proposed fitness function [6] is: 

 
 1

1

1 a

U
U




, (13) 

where Ua is given by 
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where Ej is the electric field at point j on the elliptic part of the electrode, m1 is 

the number of check points on that part, and E1 is the minimum value of the 

maximum electric field. The value of E1, within the domain of x1 and x2, is 

determined by the BBO algorithm. The same algorithm procedures as those 

described are used, with an alternate fitness function Ub, which takes the form: 

 
 max

1

1
bU

E



, (15) 

where, for a given x1 and x2, Emax is the maximum electric field value on the 

contour part of the electrode surface. The minimum value is the required field 

stress E1 in (14) and is computed by applying the BBO algorithm to (15). The 

problem is now to determine the optimum values of the parameters x1 and x2 

subject to the satisfaction of the fitness function given by (13). In the execution 

process, first compute E1 and then determine the optimum values of x1 and x2. 

4 Simulation Results 

As shown in Fig. 2 an axi-symmetric single-phase GIS bus termination is 

considered [6]. In the first case where the semi-infinite line charges are used the 

number of simulating charges is 11. The first is a point charge and the 

remaining 10 are semi-infinite line charges. The habitat modification probability 

Pm is 1.0 and the mutation rate is 0.5. The number of generations, Ng, used in 

the BBO pattern is 50 and the population size Np is 10. The parameters x1 and 

x2 are randomly generated well within the domain. The parameter x1 is selected 

to lie between 0.6 and 0.75, whereas x2 varies between 0.01and 0.2. The CSM 

parameters, t1 and t2, are selected to vary between –0.1 and +0.1 and 1.0 to 3.0, 

respectively. The fitness function to be maximized is given by (13). The 

minimum value of the maximum field stress, 1E , within the considered domain 

is found to be 1.70, 0.5 less than in the previous result [6]. 

In the second case simulation is run by using 20 ring charges. The first is a 

point charge and the remaining 19 are ring charges which are located along the 

central axis. The parameter fa is selected to lie between 1.2 and 1.8. The 
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minimum value of the maximum field stress E1 within the considered domain is 

found to be 1.35. This is a considerable change in value. The remaining 

parameters and conditions required for ring charges are the same as those 

considered in semi-infinite line charges. To know the details of the analysis 

various fitness functions are tested [6]. Eq. (13) was the first and the second 

fitness function is based on the average of the electric field values, Ea, at the 

contour points and stated as: 

 
 2

1

1

abs a

U
E E




. (16) 

The third fitness function verified is given by: 
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1

1

abs / 2h l

U
E E E


    

, (17) 

where Eh is the highest field value of the distribution and El is its lowest value. 

The results for the electric field distribution along the electrode contour for 

the various fitness functions are shown in Fig. 3 by semi-infinite line charges. It 

can be seen that field distribution obtained using (13) is more uniform than that 

of (16) and (17). In order to demonstrate the generality of the method, values of 

the maximum stress E1, other than its minimum value on the electrode contour, 

are considered. For this purpose, three arbitrary values of E1 are tested and their 

field distribution is shown in Fig. 4. 

 

Fig. 3 – Field distribution for different fitness functions using semi-infinite line charges. 
 

For each value of E1 the algorithm is required to produce a uniform field 

distribution along the electrode surface while keeping the maximum field stress 

of the distribution at the required assigned value. Fig. 5 shows that for semi-

infinite line charges, as the number of generations increases, the field 

distribution becomes more and more uniform and its mean value approaches the 

required maximum stress E1. 
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Fig. 4 – Field distribution for different values of E1 using semi-infinite line charges. 

 

Fig. 5 – Convergence of the field distribution at different 

numbers of generations for semi-infinite line charges. 

 
Fig. 6 – Convergence of the fitness functions for different 

values of Np and Pm using semi-infinite line charges. 
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In Fig. 6 the effect of the various parameters of BBO such as population 

size Np and the modification probability Pm are analysed. When Np = 10 and 

Pm = 1, the fitness function reaches its highest value and convergence occurs at 

below 50 generations. 

Table 1 expresses the statistical data for the different fitness functions and 

for different values of the required maximum stress E1 for semi-infinite line 

charges. This shows that the fitness function of (13) is better at realizing the 

required objectives than the other two functions. The standard deviation which 

is a measure of uniformity is well within 10% for the considered cases. 

Compared with previous results [6] the present results are better, with a 

decrease in maximum field stress from 1.75 to 1.70 and consequently more 

uniform distribution of the electric field. For each fitness function the maximum 

stress as well as the standard deviation is considerably reduced. This shows that 

the present technique offers greater accuracy and requires fewer than 50 

generations for better convergence. 

Table 1 
Results for different fitness functions and for different values 

of the required maximum stress E1 for semi-infinite line charges. 

Description 

Maximum 

Stress 

[p.u.] 

Mean 

Stress 

[p.u.] 

Standard 

Deviation 

[%] 

x1 x2 

Eq. (4) 1.7521 1.6780 6.1 0.6902 0.0224 

Eq. (7) 1.9109 1.6606 12.71 0.7222 0.1058 
Fitness 

Function 
Eq. (8) 1.9272 1.7021 11.55 0.7247 0.0653 

1.70 1.7052 1.6251 6.14 0.7195 0.0146 

1.74 1.7423 1.6261 7.99 0.7125 0.0176 

Required 

Stress E1 

[p.u.] 1.78 1.7521 1.6780 9.23 0.6539 0.0640 

 

When semi-infinite line charges are used for simulation it is very difficult 

to keep the assignment factor and deviation angle in the correct range to 

maintain the symmetry about the central axis. Assignment factor and deviation 

angle are the main indicators which measure the accuracy of electric stress. The 

required goal of keeping the field at minimum value and distributing it 

uniformly is achieved by the BBO algorithm with better convergence and with 

more accuracy using semi-infinite line charges than other methods [6]. 

In our second case, semi-infinite line charges are replaced by ring charges 

to optimize the electrode surface. The field distribution for different fitness 

functions is shown in Fig. 7. The value E1 within the considered domain is 

considerably reduced from 1.70 in the case of semi-infinite line charges to 1.35 

in the case of ring charges. For all three fitness functions the field distribution 

along the electrode contour is uniform but it is more pronounced in (13). The 
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variation of E1 which is helpful for the design of high voltage electrode surfaces 

is shown in Fig. 8. 

 

Fig. 7 – Field distribution for different fitness functions using ring charges. 

 

Fig. 8 – Field distribution for different values of E1 using ring charges. 

 

Fig. 9 – Convergence of the field distribution at different 

numbers of generations, Ng, for ring charges. 
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Fig. 9 indicates that for ring charges, as the number of generations 

increases, the field distribution becomes more uniform and its mean value 

approaches E1. 

The effect of the various parameters of BBO such as the population size Np 

and the modification probability Pm is analysed and shown in Fig. 10 for ring 

charges. When Np = 10 and Pm = 1 the fitness function reaches its highest value 

and convergence occurs at fewer than 50 generations. 

 

Fig. 10 – Convergence of the fitness functions for different 

values of Np and Pm using ring charges. 

 

Table 2 

Results for different fitness functions and for different values 

of the required maximum stress E1 for ring charges. 

Description 

Max. 

Stress

[p.u.] 

Mean 

Stress

[p.u.] 

Standard 

Deviation

[%] 

Max. 

Deviation 

Angle 

[deg.] 

x1 x2 

Eq. (4) 1.3754 1.2504 8.67 2.8887 0.7123 0.0593 

Eq. (7) 1.4272 1.2683 10.74 3.0120 0.6334 0.0199 
Fitness 

Function 

Eq. (8) 1.4591 1.2949 10.88 -3.0603 0.7186 0.0924 

1.35 1.3592 1.2707 7.06 2.9682 0.7188 0.1585 

1.40 1.4080 1.2824 9.40 -3.0870 0.7183 0.1593 
Required 

Stress E1 

[p.u.] 

1.43 1.4351 1.3088 9.69 -3.1133 0.7210 0.1489 
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Table 2 presents the results for the different fitness functions and for 

different values of the required maximum stress E1 using ring charges. The 

maximum deviation angle for field distribution using (13) is smaller than that of 

(16) and (17) and helps to obtain more uniform field distribution along the 

contour. For (13) the maximum deviation angle 2.8887 is well below the 

assigned value and leads with a very smooth curve, as shown in Fig. 7. The field 

distribution for different values of E1 is more linear in the case of ring charges, 

as shown in Fig. 8. Comparison shows that results obtained using ring charges 

are far better than those obtained for semi-infinite line charges.  

The BBO method encourages the overall optimization of the GIS bus 

termination by using both types of charges: first semi-infinite lines charges and 

then ring charges. This is achieved by the determination of the optimum 

dimensions of x1, x2, and H. For semi-infinite line charges the electrode 

configuration, the domain for the parameters x1, x2, the value of E1 = 1.7 and the 

fitness function given by (13) are the same as before. The value of H is assumed 

to lie between 1.4 and 1.5. The rest of the BBO parameters remain same. After 

analysis the maximum, mean and standard deviations of the field distribution 

are 1.8043, 1.7011 and 6.03% respectively. The deviation of the maximum 

stress from the obtained value is 6.135%. The optimized parameters x1, x2, and 

H are 0.6336, 0.1861 and 1.46 respectively for semi-infinite line charges. 

Fig. 11 shows the overall optimized field distribution along the electrode 

contour for semi-infinite line charges. 

 

Fig. 11 – An overall optimized field distribution along 

the electrode contour for semi-infinite line charges. 

 

In the second case, for ring charges the electrode configuration, the domain 

for the parameters x1, x2, the value of E1 = 1.35 and the fitness function given by 

(13) are the same as before. The value of H is assumed to lie between 1.45 and 

1.5. The BBO parameters are same as before. After analysis the maximum, 



P.N. Padghan, A. Mukherjee 

230 

mean and standard deviations of the field distribution are 1.4120, 1.3421 and 

5.27% respectively. The deviation of the maximum stress from the required 

value is 4.593% and the optimized parameters x1, x2, and H are 0.7188, 0.1585 

and 1.49 respectively. The maximum deviation angle is 2.7853. Fig. 12 shows 

the overall optimized field distribution along the electrode contour for ring 

charges, which is more uniform than for semi-infinite line charges. 

 

Fig. 12 – An overall optimized field distribution along 

the electrode contour for ring charges. 
 

5 Conclusion 

A new biogeography-based optimization technique is presented for the 

optimization of high voltage electrode surfaces. The main goal of keeping 

uniform field distribution along the contour and maintaining maximum field 

stress at minimum value is achieved. Compared with previous results [6] the 

minimum value of the maximum field stress, E1, within the considered domain 

is reduced from 1.75 to 1.70 when semi-infinite line charges are used. 

Observations show that the standard deviation reduces considerably keeping the 

uniform field along the surface of the electrode. Convergence of the fitness 

function occurs at fewer than 50 generations. 

What transpires from the present work is that, for typical electrode 

geometry, if ring charges are used for the simulation the results are much better 

as compare to the previous results in all respects. The minimum value of the 

highest field stress 1E  anywhere on the electrode surface is reduced from 1.75 to 

1.35. The assignment factor lies between 0.9 and 1.8. The deviation angle is in 

the range of  3 degrees. This shows that the simulation accuracy is near to its 

best possible level. Convergence of all the three fitness functions occurs at 

fewer than 50 generations. The method is used to demonstrate the overall 

optimization of the GIS bus terminus using both semi-infinite line charges and 

ring charges. It is found that for electrode configuration, applying BBO to 
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optimize the surface of the electrode and simulation by ring charges is a very 

effective option. The accuracy measures of electric stress, like deviation angle 

and assignment factor are within assigned values and the overall optimized field 

distribution along the electrode contour is much uniform. 
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