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Performance of Models Based on a 
Linear Regression and Neural Networks 

Pero Radonja1 

Abstract: In this paper the comparison of models based on a linear regression 
and neural networks is presented. The analyzed models are the generalized 
profile function models, GPFM. The GPFM provides approximations of the 
individual models (individual stem profile models) of the objects using only two 
basic measurements. The performances of the obtained GPFM, by using the 
linear regression relations and neural networks are compared by a test platform 
in MATLAB with a simple graphic user interface. It is shown that application of 
both linear regression and neural networks provides the efficient and robust 
generalized model with very good performances. 

Keywords: Neural networks, Linear regression, Profile function, Generalized 
profile function models. 

1 Introduction 

This paper presents the comparison of the generalized profile function 
models based on linear regression and neural networks. The generalized profile 
function models, GPFM, provides approximations of individual models 
(individual stem profile models) of any object (spruce tree) in the region 
without detailed measurements on the every object. Development of the 
nonlinear generalized models, is given in [1 – 3] and linear in [4 – 6]. A 
derivation of the GPFM based on neural networks is described in [7 – 11]. For 
the purpose of comparison and testing of the both proposed approach, a test 
platform in MATLAB with a simple graphic user interface is created, [12]. 

Note that a region can contain thousands of individual objects with 
individual profile model. Since the complete (detailed) measurements on all 
objects are practically impossible, we shall try to find GPFM that enables 
obtaining any individual model only by using the basic measured values D and 
H, that is, the sets of values, data pairs, (1.3, D) and (H, 0), where D is the 
diameter of a tree at breast height, 1.3 m and H is the total height of a tree. 
Generally speaking, the values of data pairs (h, r) denote the tree radius r at the 
height h. 
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The GPFM enables to obtain a hight accuracy of the computed volume of 
standing trees. This is very important for sustainable management of the 
observed ecological system. 

2 Input Data 

A total 42 objects, [13], are considered in this paper. On each object a total 
of 13 diameters are measured and 1092 data (546 data pairs) was used to 
generate and validate the models. The Total dataset was divided into two 
subsets: the Basic (model) and the Validation datasets, so that the Basic dataset 
contains the first half of the Total dataset.  

The basic statistical properties of all three input datasets, average values, 
medians, standard deviation (SD), minimum and maximum values, are 
summarized in the Table 1. 

 

Table 1 
Summary statistics of the input datasets. 

 
D [cm] 
H[m] 

Aver. Med. SD Min. Max. 

D 27.57 28.25 10.58 6.00 48.40 
Total 

Dataset 
H 24.28 24.77 7.86 5.65 36.15 

D 31.66 28.60 6.52 21.70 47.00 
Basic 

Dataset 
H 27.48 26.80 4.80 20.40 35.00 

D 23.49 18.90 12.32 6.00 48.40 
Validation 

Dataset 
H 21.08 19.80 9.07 5.65 36.15 

 

Table 1 show that the Validation dataset contains the same minimum and 
maximum values of D and H as the Total dataset. The Basic dataset contains 
bigger trees, and the averages of D and H are the biggest. Note also that Hui and 
Gadow (1997) [1] and Korol and Gadow (2003) [2] use only one dataset. 
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3 Models Used 

Two forms and types of stem profile models are reported in this paper: 

(1) the model based on the modified Brink's function, MBF, Brink and 
Gadow 1986, 14, Riemer et al. 1995, 15 and  

(2) the model based on neural networks, NN, [7 – 9, 11]. For every model 
tree (stem) the data-pairs (height-radius) were measured and the all 
available data were fitted by using the both methods. 

3.1 Application of MBF 

The application of MBF is very favorable in the process of conifer stem 
profiles modeling and other processes of this type. The canonical form of this 
function, 15 is: 

 ( ) e eph qhr h u v w   , (1) 

where: 
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As we can see, u, v and w depend on the basic measured values D and H 
and the parameters i, p and q. The original values of these parameters can be 
determined by using a standard optimization procedure, in the process of fitting 
the measured stems. Standard optimization procedures can be applied using 
standard program packages such as Curve Expert (User defined models), 
Statgraphics Plus or SPSS for Windows. Note that the Levenberg-Marquardt 
algorithm is included in all of these program packages. At the end of this 
process, parameters i, p and q are to be obtained for all the observed individual 
stems. 

The optimization procedure requires, besides the basic measured values D 
and H, minimum 3 new measured data-pairs, (h, r). The original values of the 
parameters i, p and q versus D and H are presented in Fig. 1a, 1b, 1c, 1d, 1d, 1e 
and 1f. In these figures, the intercept on y axis is a, b the slope of regression 
line, S standard error and R correlation coefficient. 
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Fig. 1a – The original values of the parameters i versus D 
(y = a + bx,   a = 0.70187, b = 0.44560). 

 

 

Fig. 1b – The original values of the parameters p versus D 
(y = a + bx,   a = 3.85462, b = –0.05493). 
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Fig. 1c – The original values of the parameters q versus D 
(y = a + bx, a = 0.10040, b = –0.00083). 

 

 

Fig. 1d – The original values of the parameters i versus H 
(y = a + bx,   a = –0.65502, b = 0.56183). 
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Fig. 1e – The original values of the parameters p versus H 
(y = a + bx;   a = 4.00437, b = –0.06853). 

 

 

Fig. 1f – The original values of the parameters q versus H 
(y = a + bx;   a = 0.09835, b = –0.00085). 
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3.2 Application of neural networks 

Generally speaking a neural network is a machine like human brain with 
properties of learning capability and generalization. The basic property of this 
network is that it enables approximation of complicated nonlinear functions, 
[16]. A typical structure of a NN is three-layer feed forward NN. The commonly 
used activation functions of neural networks include linear functions for output 
(layer) neurons, logistic sigmoid functions for hidden (layers) neurons, and 
identity functions for input (layer) neurons, [17 – 19]. The number of hidden 
layers and neuron in each layer is problem depended complexity (Obvious 
problem complexity defines NNs complexity). The number of weights determines 
the learning ability. So it is very important to choose correct number that can 
train network correctly and not entrapped into over fitness for limited data. So 
we choose a topology that balances generalization and specialization [20]. 

In modeling many different biological process NN ensure smaller modeling 
error than classical methods [21]. In this study, a three layered feed forward NN 
with back propagation algorithm and with 2 tansing neurons in the hidden layer 
were used. The tansig neurons have logistic sigmoid tangent hyperbolic transfer 
function. 

In this paper models with different heights increment but with same number 
of data pairs are used. For example, for the smallest (5.65 m) and for the largest 
(36.15 m) tree, the height increments of 5.65 mm and 36.15 mm are used 
respectively. In this way all models have 1001 data pairs. In process of 
developing of the generalized model, the normalized individual models are 
needed. Because of that all available individual models are normalized. 

Normalization along x axis was done by using the total stem height H, and 
along y axis by using the stem radius measured at the ground level, y(0). In 
other words, the normalized models show a plot of relative radiuses against 
relative heights. 

The very common form (shape) of the normalized individual model is 
presented in Fig. 2 by the dashed line. 

In the considered case, the presented normalized model corresponds to the 
53-year-old spruce. In the same figure, the normalized individual models of the 
103 and 12-year-old spruces are presented with solid and doted lines, 
respectively. The error of modeling, (i.e. the model variation from the measured 
data), of the first model, the 53-year-old spruce, is presented in Fig. 3. 
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Fig. 2 – Three characteristic normalized models. 

 

 

Fig. 3 – Error of modeling normalized by D/2. 
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4 Generalized Profile Function Model 

In this section, we shall try to find GPFM that enables obtaining 
approximations of any individual model only by using the basic measured 
values D and H. 

4.1 GPFM based on application of MBF 

In the case of the application of MBF and linear regression, the aim is to 
find a set of appropriate regression relations in order to estimate the form 
parameters i, p and q at the regional level. In other words, the aim is to 
determine the form parameters i, p and q only using linear relation of D or H, or 
of D and H.  

In Figs. 1a, 1b and 1c standard errors S are smaller than in Figs. 1d, 1e and 
1f, respectively. In addition, regarding the same figures, correlation coefficients 
R are larger in Figs. 1a, 1b and 1c, than in Figs. 1d, 1e and 1f, respectively. 
Based on Fig. 1 and on values of standard error, S and correlation coefficient R, 
it can be concluded, that if only the simple linear regression is used, it is better 
to determine the parameters i, p and q using a linear function of D than of H. In 
this way, we get Model 1. Similar approach for the corresponding data set (156 
objects) is given in 4. 

Model 1. 

 i = 0.70187304 + 0.445596080D, (5) 

 p = 3.85461520 – 0.054925113D, (6) 

 q = 0.10039749 – 0.0008251098D. (7) 

Note that standard errors, S, for parameter q, in the cases when q is 
presented by linear functions of D or H, are very similar, Figs. 1c and 1f, 0.0222 
and 0.0229, respectively. However, as q defines the performance of MBF in the 
upper part of the stem, i.e., from the inflection point to the top of the tree, it is 
logical to expect good result in the case when q is a function of H, also. Based 
on this fact, Model 2 is defined by (5), (6) and (8). 

Model 2. 

 q = 0.09835186 – 0.00085263342H. (8) 

Based on Figs. 1b and 1e, it can be concluded that there is very low 
correlation between p and D or H, R = 0.4334 and 0.4020 respectively. The 
correlation between q and D or H is even less, 0.3697 and 0.2840 respectively. 
It can be seen that there is a very large dispersion of points on Figs. 1b, 1c, 1e 
and 1f. Also, analysis show that in the cases of using polynomial functions of 2 
and 3 degree, correlation coefficients will not be significantly larger. These 
facts serve as the justification for applying linear functions instead of 
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complex nonlinear functions, used in 1 – 3. The similar example for a 
different dataset is given in [4]. It is shown in 6, by using 5 different models 
based on simple and multiple linear regressions that Model 2 represents the best 
linear model for the studied region. 

4.2 GPFM based on NN 

In the case application NN, the generalized model is obtained as mean 
(average) value of all available normalized individually profile models. 
Computation of the mean normalized model based on the adequate (sufficient) 
dataset of normalized individual profile function models (as in Fig. 2) will 
produce the GPFM for the considered region. The GPFM will have a 
satisfactory accuracy if the used normalized individual profile function models 
are adequately selected. An adequate dataset should encompass a sufficient 
number of characteristic stands with model trees. In our case, the characteristic 
stand contains one or two model trees.  

In Fig. 4 the dashed line represents the first generalized profile function 
model, GPFM 1, based on the first 21 analyzed trees, that is, on the Basic 
dataset. The dotted line represents the second generalized stem profile model, 
GPFM 2, based on the second set of 21 analyzed trees, that is, on the Validation 
dataset. The two models are very similar, so that it can be assumed that 
practically the model GPFM 1 was validated by the model GPFM 2. This means 
that 21 stems are sufficient to generate an acceptable generalized model. 

 

Fig. 4 – Generalized profile function models, GPFMs. 
 

The solid line represents the generalized model, GPFM, based on all 
analyzed trees and we can say that a very convergent generalized model is 
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obtained. It can be concluded that the generalized model, GPFM, is the special 
normalized model which is presented in Fig. 4 or GPFM is in fact, GPFM table 
with 1001 corresponding data pairs. 

The presented generalized model in Fig. 4 can be used for generating the 
approximate of any individually profile model. The renormalization is 
performed so that each individual (renormalized) model passes through the 
characteristic point (x0,y0), (x0 breast height = 1.3 m, y0 = D /2, radius at breast 
height) and the final point (H,0). The renormalization per x axis is performed 
with H, and per y axis with y(0) where:  

 y(0) = (D /2) / [y (1.3/H)]. (9) 

The value y(1.3/H) is obtained using the obtained generalized model, 
Fig. 4., or from the GPFM table. 

5 Comparison of the Obtained Generalized Models 

The accuracy and applicability of the presented generalized models will be 
assessed in this section. Accuracy of the generalized models will be tested by 
the regression analysis. Correlation coefficients and standard errors between the 
measured and estimated radiuses r and referent and estimated volumes will be 
computed. 

5.1 Comparison of the estimated radiuses 

The results of testing of accuracy of the estimated radiuses r in the case of 
applications GPFM based on neural networks, but with smaller data sets, with 6, 
14 and 20 objects, are presented in [7 – 9, 11], also. 

In this paper comparison of the obtained generalized models is based on 
Figs. 5, 6, 7 and 8. 

A Comparison of measured and estimated r 
(GPFM based on linear regression) 

The comparison of the measured and estimated radiuses r for all h, in the 
case of applications and GPFM based on linear regression, Model 2, is 
presented in Fig. 5. 

It can be seen in Fig. 5, that the deviation of the estimated r from measured 
r is too high. It is known that the biggest difference between the measured and 
estimated radiuses r occurs for the biggest radiuses because of irregularity the 
root swelling trees (The biggest difference occurs on the ground level). Because 
of that in numerous papers, the comparison of the radiuses is made only for 
heights above ground level bigger than 1 m, Korol and Gadow (2003) [2]. 

The comparison of the measured and estimated radiuses in the case of 
linear regression, only for h > 1 m, is presented in Fig. 6. 
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Fig. 5 –Comparison of measured and estimated r 
for all h (GPFM based on linear regression). 

 

Fig. 6 – Comparison of measured and estimated r 
only for h > 1 m (GPFM based on linear regression). 
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Values of the statistics of data comparison by the regression analysis for all 
4 figures (Figs. 5, 6, 7 and 8) are presented in Table 2. The first pair of results 
of the data comparison represents intercept on y axis and the slope of regression 
line. It is obvious that the ideal angle of the slope of regression line obtained by 
the comparison of the estimated and the measured data is 45°, and that it should 
start from the origin. In other words, the value of the parameter b should be near 
1.0, and the value of parameter a, intercept on y axis, should be near 0. The 
second pair of the results refers to the standard error of the estimate S, and the 
correlation coefficient R. It can be seen in Table 2 that the values of the 
intercept on y axis and standard error of the estimate, Fig. 5, are irregular and 
extreme height, –0.1998 and 2.0356. 

It can be seen in Fig. 6 and Table 2, that the intercept on y axis, the slope 
of regression line, standard error of the estimate and the correlation coefficient 
are satisfactory. 

B Comparison of measured and estimated r (GPFM based on NN) 

In the case of applications of neural networks, comparison of the measured 
and estimated radiuses, of all h, is shown in Fig. 7. 

 

 

Fig. 7 – Comparison of measured and estimated r 
for all h (GPFM based on NN). 
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As we can see, Fig. 7, in the case of using GPFM based on neural networks, 
for all h, the intercept on y axis, the values of the slope of regression line, 
standard error of the estimate and the correlation coefficient are satisfactory, 
Table 2. 

The comparison of the measured and estimated radiuses in the case of using 
GPFM based on neural networks, for h > 1m, is presented in Fig. 8. 

Table 2 
Values of the statistics of data comparison. 

Statistics of the r comparison 

 
Interc. 

a 
Slope 

b 
Std. Err. 

S 
Corr. coeff. 

R 
R2 

[%] 

LR all data 
–

0.19985 
1.07482 2.03565 0.95811 91.80 

LR for h>1.m 0.00356 1.01326 0.24182 0.99865 99.74 

NN all data 0.22339 0.95279 0.77962 0.99176 98.37 

NN for h>1.m 0.04813 0.97498 0.48017 0.99594 99.18 

 

 

Fig. 8 – Comparison of measured and estimated r 
only for h > 1m (GPFM based on NN). 
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The slopes of regression lines in Figs. 6 and 8 are very close to 1, 1.0133 
and 0.9750, Table 2. Also, the correlation coefficients are very similar, 0.9987 
and 0.9959. 

It is important to emphasize that in the case of applications GPFM based on 
neural networks, acceptable results are obtained practically for all radiuses. 

5.2 Comparison of accuracy of the obtained GPFMs in volumes computing 
The very important purpose of the generalised stem profile models is to 

estimate both the individual standing trees volumes (with an acceptable 
accuracy) and the total stand volume (as precisely as possible). Evidently that 
the estimate of volume of the individual trees should be unbiased.  

A Comparison of referent and estimated V 
(GPFM based on linear regression) 
Using the assumption that the stem is a symmetric geometrical figure which 

is formed by rotating the stem profile function around h-axis, it is possible to 
get an expression for stem volume computing. The volume can be calculated 
now using (10), that is, the definite integral [15], where the sub-integral 
function is the square of the stem profile function, equation 1. 

 2

0
( ) ( e e ) d

h ph qhV h u v w h   . (10) 

In the considered case, the square of the profile function is an integrable 
function, so that it is possible to determine an analytic expression for calculation 
of the stem volume [15, 22]. These references present explicit relations and also 
several examples of the calculated volumes. 

Testing of the accuracy of the obtained GPFM is performed by comparing 
the obtained estimated volumes with the referent volumes. The estimated 
volumes represent the volumes based on GPFM, V(GPFM), and the the 
reference volumes are obtained for every stem individually, using MBF, that is, 
using the original values of i, p and q parameters, [15, 22], Table 3, V(MBF). 

In Table 4. basic values of the statistics of the estimated volumes based on 
GPFM, are given. 

The volumes will be compared by applying the regression analysis. The 
first pair of results of the volume comparison represents statistical performance 
in volume estimation. These are regression statistical parameters, standard error 
of the estimate, SVE and the correlation coefficient RVE. The second pair in the 
results contains the slope of the regression line and the intercept on y axis. 

Evidently, the slope of the regression line obtained by comparing the 
estimated and the reference volumes, in the ideal case must have the angle of 
45° and has to start from the origin. In other words, parameter b has to have 
value near 1.0 and parameter a, that is the intercept on y axis, has to have the 
value near 0. 
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Table 3 
The basic values of the statistics of the calculated volumes 

based on MBF and original i, p and q parameters. 

 V [m3] Aver. Med. SD Min. Max. 

Total Data set MBF 0.9464 0.7973 0.7774 0.0098 2.8930 

 
Table 4 

Values of the statistics of the estimated volumes. 

 V [m3] Aver. Med. SD Min. Max. 

Total Data set 
GPFM 

Lin. Reg. 
0.9839 0.8176 0.7991 0.0459 3.0444 

 

 

Fig. 9 – Statistical performances in volume estimation 
(GPFM based on linear regression), a = 0.0156, b = 1.0222. 

 

B Comparison of referent and estimated V (GPFM based on NN) 

When NNs are used for obtaining the individual profile function, stem 
volumes can simply be calculated by using the inner vector product instead of 
numerical integration. With the assumption that all the values of r(h) define the 
row vector R, the volume can simply be calculated by the equation: 
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 ( ) TV NN h    R R , (11) 

where h  is the height increment (5.65 – 36.15) mm. In the considered case, 
the row vector R contains 1001 values. 

The basic statistical performance of the calculated volumes V(NN) based on 
(11) are presented in Table 5. Note that these values are very similar with 
values presented in Table 3. 

Table 5 
The basic values of the statistics of the calculated volumes. 

 V [m3] Aver. Med. SD Min. Max. 

Total Data set NN 0.9473 0.7953 0.7755 0.0100 2.8905 

 

Testing of the accuracy of the obtained GPFM is performed by comparing 
the obtained estimated volumes with the referent volumes. The estimated 
volumes represent the volumes based on GPFM, V(GPFM), and the referent 
volumes are in fact V(NN). 

In Table 6 values of the statistics of the estimated volumes based on 
GPFM, are given. 

Table 6 
Values of the statistics of the estimated volumes. 

 V [m3] Aver. Med. SD Min. Max. 

Total Data set GPFM 0.8938 0.7764 0.7124 0.0105 2.7375 

 

Testing of the efficiency of volume estimation can be performed by 
comparing the obtained estimated volumes with the referent volumes by the 
regression analysis. As in the case of radii comparison, in the ideal case it is 
necessary that four important regression parameters have already mentioned 
values. 

Comparison of the estimated and referent volumes done by regression 
analyses for the total data set is illustrated by Fig. 10. 

We can see in Fig. 10 that the volumes based on GPFM do not deviate 
much (except four points) from the referent volumes, SVE = 0.0853 and RVE = 
0.9930, Table 7. It can be seen that the regression line starts approximately 
from the origin, as the translation along y axis is only 0.0326. 
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Fig. 10 – Testing of volume estimation V(GPFM) versus V(NN) 
(GPFM based on NN). 

 

Table 7 
Values of the statistics of volume estimation using GPFMs. 

Statistics of the V comparison 

 
Interc. 

a 
Slope 

b 
Std. Err. 

S 
Corr. coeff. 

R 
R2 

[%] 

GPFM Lin. Reg. 0.0156 1.0222 0.0772 0.9954 99.08 

GPFM NN 0.0326 0.9100 0.0853 0.9930 98.60 
 

6 Conclusion 

By comparing the measured and estimated radiuses, it is shown that the 
obtained generalized profile function models, based on linear regression and 
neural networks, can be very successfully used in the process of the 
approximation of the individual profile functions. The standard errors for h>1m 
in the case linear regression is smaller, 0.24182 compared with 0.48017, in the 
case of the application of neural networks, Table 2. However, the correlation 
coefficients between measured and estimated data in the case linear regression 
for h > 1m and neural networks for all h are very high, over 0.99 for both 
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GPFM. GPFM based on neural networks practically can be used for all h. 
Typical limits (h > 1.0 m) are not needed in this case. From this point of view 
the obtained generalized profile function model based on neural networks is 
better than the models based on linear or nonlinear regression. 

Accuracy of estimated volumes obtained by using generalized profile 
function models, based on both linear regression and neural networks are 
satisfactory, Table 7. Results obtained by regression analyses presented in 
Table 7 show inappreciable preference of GPFM based on linear regression 
regarding of volumes estimation. 
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