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Robust Linear Parameter Varying Induction 
Motor Control with Polytopic Models 

Khamari Dalila1, Makouf Abdessalem1, 
Drid Said1, Larbi Chrifi-Alaoui2 

Abstract: This paper deals with a robust controller for an induction motor which 
is represented as a linear parameter varying systems. To do so linear matrix 
inequality (LMI) based approach and robust Lyapunov feedback controller are 
associated. This new approach is related to the fact that the synthesis of a linear 
parameter varying (LPV) feedback controller for the inner loop take into account 
rotor resistance and mechanical speed as varying parameter. An LPV flux 
observer is also synthesized to estimate rotor flux providing reference to cited 
above regulator. The induction motor is described as a polytopic model because 
of speed and rotor resistance affine dependence their values can be estimated on 
line during systems operations. The simulation results are presented to confirm 
the effectiveness of the proposed approach where robustness stability and high 
performances have been achieved over the entire operating range of the 
induction motor. 

Keywords: Induction motor, LMI, LPV controller, Lyapunov feedback controller, 
Polytopic representation. 

1 Introduction 

The Induction motor is widely used in industry due to the simple 
mechanical structure and easy maintenance. However this motor presents a 
challenging control problem for three reasons. The dynamical system is highly 
non linear, the rotor flux is not usually measurable and finally the rotor 
resistance value varies considerably with a significant impact on the system 
dynamics. The trends in induction motor control system is to use effective 
robust controller design such as H  and other robust control approaches [3, 4, 
5, 21]. Furthermore the main advantage of using field-oriented control of 
voltage-controlled induction motor is that good performance can be achieved 
via non-linear state feedback [2]. 
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In this work, the synthesis of a LPV system controller use a linear matrix 
inequality (LMI) approach [6, 7] and Lyapunov theory [8]. LPV systems are a 
special class of systems, which are linear time invariant (LTI) system for every 
fixed value of the parameter vector ( )t  This parameter can be measured on 
line during control operation. Also the LPV control technique can eliminate the 
tedious process of manually tuning control, gain and can provide a systematic 
gain-scheduling method [9, 10, 11, 23]. In our case it is assumed that only the 
stator current and the rotor speed are available for measurement, the rotor 
resistance estimation is beyond the scope of this work.  The control law consists 
of fast inner loop used to track stator current reference generated by the 
Lyapunov theory associated to a sliding mode control of the flux and the speed 
of the motor. This approach shows good robustness and high performance with 
respect parameter and load torque variation.  

The induction motor model described in the ( , )   frame can be written as 
an LPV system wich can be translated in polytopic representation because of 
affine dependence with the rotor speed and the rotor resistance. This feature will 
be exploited in designing a self gain scheduled LPV feedback controller for the 
inner loop [12, 13, 14]. Also, the LPV motor structure can be used to improve 
the robustness of the flux observer and to compute the worst case flux 
estimation error in terms of H  norm respecting parameter variation [17]. The 
paper is organized as follows. In Section 2, the LPV modeling and control 
synthesis conditions are derived for affine parameter dependent systems. In 
Section 3 the control structure of the stator current is given. In Section 4 robust 
non linear controls is obtained for the speed and flux control. In Section 5 the 
robust flux observer synthesis with mixed sensitivity structure is given. 
Validation with numerical simulations for all theoretical resulting and 
interpretations are presented in Sections 6 and 7. 

2 Induction Motor LPV Model 

2.1 Induction motor models 

The state space representation of the induction motor in the stator reference 
frame is given as follows: 
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where 
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with 1   , 2 rR  , ( , )s si i   are the stator current components, ( , )r r    are 

the rotor flux components and ( , )s sV V   is the stator voltage components. 

The electromagnetic torque is given by: 

      e s r
r

M
p

L
T i φ . (2) 

2.2 Polytopic induction motor representation 

LPV model of induction motor is described by state space representation of 
the form 

 
( ( ))

( ) :
t 

 

x A x Bu
G

y Cx

 θ
θ  (3) 

where    1 2 ( ) ( )
T T

rt R t    θ  is a time varying parameter. According to 

[22] and based on the theory of heating materials, the rotor resistance rR  can be 
taken as time varying parameter since it can be accurately estimated on line 
[20]. Thus: 

 0 1 2( ) ( , )r rR R     A A A A Aθ . (4) 

Specifically for our problem, the parameter vector ( )tθ  has the following 
convex decomposition: 

 
4
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1
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i

t


               θ  (5) 

where i  gives the corner of polytopic parameter range. The corner values of 
parameter range are: 

 11 min 12 max 21 min 22 max(0, ), (0, ), (0, ), (0, )r rR R          . (6)  

At the vertices values of   the plant matrix is: 

 1 11 2 12 3 21 4 22( ) ( ) ( ) ( ) ( )           G G G G Gθ , (7) 

with: 
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The structure of the LPV controller of the system (7) is than given by 
polytopic representation as following: 

 
4

1

( ) ( )
( )

( ) ( )
k i k i

i
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θ θ
θ

θ θ
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3 LPV Stator Current Control 

LPV stator current controller is designed in the stator frame. Its main 
advantage is that the inconveniences related to the Park transformation which 
could significantly affect the performances are avoided [18]. 

3.1 LPV control background 

2L  Gain performance 
Consider an open loop LPV system P  described by 
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 (9) 

where y  denote the measured output, z  the controlled output, w  the reference 

and disturbance inputs and u  the control inputs. 

The matrices in (9) are affine functions of the parameter vector that varies 
in polytope Θ  with vertices 1,..., jθ θ , that is: 

    1
1 1

( ) conv ,..., , 0, 1
r r

j i j j j
j j

t
 

       θ Θ θ θ θ . 

The LPV synthesis problem consists in finding a controller ( )K θ  described 
by: 

 
( ) ( ( )) ( ) ( ( )) ( )
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such that the closed- loop system (11) (with input w  and output z  is internally 
stable and the induced 2L – norm of w z  is bounded by a given number 

0  for all possible parameter trajectories: 

 
( ( )) ( ( )) ( )( )
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The characterization of robust stability and performance for the closed-loop 
system clP  (11) is proved by the following theorem. 



Robust Linear Parameter Varying Induction Motor Control with Polytopic Models 

339 

Theorem: The LPV system (11) has a quadratic stability and 2L  gain level 

0   if there exists a matrix 0X   such that: 
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 (12) 

This implies for synthesis inequalities (12) that, without loss of generality, 
we can replace the search over the polytope Θ  by the search over the vertices 
of this set Consequently, condition (12) can be reduced to a finite set of linear 
matrix inequalities (LMI). 

3.2 Computation of self-scheduled LPV controller 

We assume that parameter dependence of the plant P is affine and Θ  is 
polytope with vertices jθ , 1,2,...,j r . According to the result in [6, 7], one 

LPV controller ( )K θ  can be computed through the following steps: 

*Compute the vertex controllers ( , , ,0), (1 )
j j jj K K K j r  K A B C  as 

follows: 

Solve the set of LMIs (13) and (14) 
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where ( ) denotes terms whose expressions follow the requirement that the 

matrix is self-adjoint. This step gives ˆ ˆˆ( , , )
j j jK K KA B C  and symmetric matrices 

X  and Y . 

Compute 
jKA , 

jKB  and 
jKC  by: 

– 1
2 2

ˆ ˆˆ( ) T
Kj Kj j Kj j j Kj

    A N A XA Y B C Y XB C M , 

– 1 ˆ
Kj Kj

B N B , 

– ˆ T
Kj Kj

C C M , where N  and M  are matrices such that T I XY NM . 
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Finally the state space matrices of the LPV polytopic controller (.)K  as a 
convex combination of the vertex controllers is given by: 

 
1

( )
0 0

j j

j

r K KK K
j

jK K

  
    
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A BA B

C C
θ . (15) 

3.3 Loop shapping-mixed sensitivity structure 

To reach objectives in terms of performances and robustness of system 
control we have to introduce weighting functions acting as frequency filters on 
the I/O signals of the systems [15, 16]. It can be shown that robust stability, 
reference tracking, disturbance and noise attenuation can be defined with 
sensitivity function 1( ) S I GK  complementary sensitivity function 

 T I S  and the closed loop transfer function KS . Thus, H  mixed 

sensitivity criterion respect following inequality: 1s

T

W S

W KS


 , where TW  must 

be a high-pass filter function to insure robustness against neglect dynamics and 

sW  a low-pass filter to guarantee good tracking accuracy. 

3.4 LPV current controller design 

The ( , )rK R , as it is shown in Fig. 1, is a current LPV feedback controller 

allowing to tracks the set point reference srefi . The input of controller is the 

difference between srefi  and si  obtained from ( , )rG R  representing the 

induction motor. 

 

Fig. 1 – Mixed sensitivity structure of H  traking. 

 

The current feedback controller is obtained using polytopic representation 
of induction motor given by (1). The measured output is considered as 
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s sy i i      and the external inputs is of reference current s ref s refw i i     . 

The controller outputs are the stator voltage components s su V V     . The 

robust multivariable LPV controller has to provide satisfactory performance 
over the whole operating range of the motor. The LPV controller in polytopic 
representation with four vertices is computed using the LMI toolbox. Each 
vertex can be considered as an LTI controller with eight states. The 2L – gain 

bound   guaranteeing the closed loop system performance and stability is equal 

for our case to ( = 1.0002). In order to obtain the optimal controller the 
weighting function used are as following: 

 

200 200
diag , ,

0.0002 0.0002

200 200
diag , .

0.0002 0.0002

s

T

W
s s

W
s s

     
     

 (16) 

4 Speed and Flux Controller 

The Lyapunov theory associate to sliding mode control technique is used to 
design speed and flux controller. This control system allows robust control of 
all transient electromagnetic phenomena in a motor. To simplify the synthesis 
procedure of controller the rotor flux is oriented on the d axis as it is given by 
following relations: 

 ,  0.rd r rq    (17) 

The induction motor model can be expressed in the synchronous frame and 
specifically the dynamics of flux and speed are given by the following equation: 

 0
d

d rdr
sd rd

r

r

r

R
i

R

L L t


     , (18) 

 e

d

dlT J fT
t


    , (19) 

where lT  is the load torque and eT  the electromagnetic torque given by 

 e rd sq
r

M
T p i

L
  . (20) 

The equations described by (18) and (19) can be rewritten as 
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where 1
r

rd
r

R
f

L
  , 2 lf T f    . 

Practically, are if  non linear functions and strongly affected by 
temperature, saturation skin effects and different nonlinearities induced by 
harmonic pollution due to converters of frequencies and noise measurements. 
The objectives is to determine a control law making possible to maintain flux 
orientation, tracking reference speed and flux even in the presence of parameter 
variations and measurement noises [20]. 

To do so we can write the following expression i i if f f   , where îf  is 

the true non linear feedback function (NLFF), if  is the effective NLFF and if  

is the NLFF variation around. if . The if  can be generated from the variations 

of parameters as indicated above. We assume that all of the i if  , where the 

i  are known bounds. Knowledge of the i  is not difficult obtain, since one 

can use a sufficiently large number to satisfy the constraint i if  : 

 
1 1

2 2

d 1ˆ
d

d ˆ
d

,

.

rd
sd

r

e

f f i
t T

J f f T
t


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





 









 (22) 

Proposition: In the case of all flux state model, if the flux orientation 
constraints is satisfied the following control laws are used 

 
 1 1 11

2 22

ˆ ( ) sgn( ) ,

( ) sgn( ),

r
sd rd rd r rd r

m

e ref ref ref

T
i f K K

L

T J K K

       

     








 (23) 

where ii iK    and 0iiK   for 1,...,3i  . 

Proof: Let the Lyapunov function related to the flux and speed dynamics 
defined by  

 
1 1

( ) ( ) 0
2 2rd r refV J      . (24) 
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This function is globally positive-definite over the whole state space. Its 
derivative is given by 

 ( )( ) )(( )rd r rd r ref refV J          . (25) 

Substituting (22) in (25), it results: 

 
1 1

2 2

ˆ( )( )

ˆ( )( ).

m
sd

r

ref e ref

rd r r

L
V f f i

T

J T f f J

      

    



 

 




 (26) 

Let us replace the control law (24) in (26) we obtain  

 
1 11

2 22 1

( ) ( sgn( )

( ) ( sgn( ) ,

rd r rd r

ref ref

d rV f K

f K V

        
     

   





  

 


 (27) 

 
  2

1 1 2 ( ) 0rd r refV K K       , (28) 

the term 

 1 11 2 22( )( sgn( ) ( ) sgn( )ref rer fd r rd rf K f K                  , 

( ), ( )rd er r f
      and lT  then 1 0V V   . 

All variation if  can be absorbed by ii iK f . The equation (29) is 

satisfied since 0iK   and i i iif K   . 

The function given in (28) is globally negative-definite. Hence, using 
Lyapunov's theorem we conclude that: 

 lim( ) 0, lim( ) 0.rd r reft n



 
       (29) 

5 Flux Observer Design 

The flux observer has been performed using standard problem structure 
where the controller is in fact the observer and the same optimization 
mechanism is used to achieve the synthesis [13, 19]. The inputs and outputs are 
as it is indicate by Fig. 2 and robustness is improved by tacking into account 
rotor resistance and speed variations. The design consists of finding obsu G y  

to minimize, closed- loop H  LPV norm from w  to z  according to the small 

gain theorem. The flux observer can be built up using polytopic representation 
of induction motor with mixed sensitivity structure and it is computed under 
LMI convex optimization using the LMI tool box. Described by 22  = 4LTI 
corner the observer have 6 state. 
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In Fig. 2 s s mV V    w  constitute the exogenous inputs, e e    z  

the outputs, s si i    y  the measurements and ˆ ˆ[ ]T
s s   u  the control 

input. 

The tracking errors of rotor flux components are given as ˆ
r re      

and ˆr re      . The robust quadratic stability and performance is achieved 

for 0.0086   using following shaping filter: 

 
3 3

0.006 0.006
diag ,

7.3 10 7.3 10
W

s s
       

. 

 

Fig. 2 – Mixed sensitivity structure for flux observer. 

 

Fig. 3 – General block diagram of the suggested IM control scheme. 
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Fig. 3 gives a general description of the diagram block suggesting an 
induction motor control scheme. As it is shown we note that flux given by an 
LPV observer and speed are nonlinear feedback-controlled. The stator current 
components are transformed into ( , )   frame and then controlled by an LPV 
controller. 

6 Simulation Results 

The performances of controllers are investigated by simulation on induction 
motor which parameters values are given in appendix. Full non-linear 
simulations were carried out for the speed, flux step demand and for parameter 
variation see Figs. 4 and 5.  
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Fig. 4 – Rotor resistance and load torque
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Fig. 5 – Speed tracking. 
 

Fig. 6 represents response of the rotor speed following the specified 
reference. At 1.1 s a reversal speed test from157 rad/s to –157 rad/s was 
performed with loaded machine (14 Nm) at 0.5 s. 
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Fig. 6 – Torque time variation. 
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Fig. 7 – Current trackin g response. 
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Fig. 7 and Fig. 8 show good current reference tracking without any effect of 
parameter variation. We can note furthermore that the current peak stays within 
the admissible limits. However the tracking of the flux given in Fig. 9 depends 
entirely on the flux estimation accuracy. 
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Fig. 8 – Current error zoom. 
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Fig. 9 – Flux tracking reference. 

7 Conclusion 

The main objectives of this paper are to show the high performances 
provieded by the robust non linear controller over the entire operating range. An 
LMI based approach has been proposed to design a quadratically stable flux 
observer and an output Lyapunov feedback regulator to track the stator current. 
In both cases we have obtained a scheduled time varying system  (LPV) which 
ensures a finite 2L attenuation for a given closed-loop transfer function which 

represent the design requirement. It is clearly turned out that with the use of the 
LPV techniques associated with Lyapunov feedback controller the robustness 
and stability of the whole drive was demonstrate. The main advantage of using 
LPV methods is that they provide a systematic way of designing an H  flux 

observer for the induction motor assuming that the rotor speed and resistance 
are available. Stability of the flux estimator was demonstrated using small-gain 
based analysis. The simulation results demonstrate clearly high performances of 
the induction motor control according to the profile defined above. 

8 Appendix 

The machine parameters are as follows: 
– Resistance of the rotor:  4  rR   , 

– Resistance of the stator: 8SR   , 

– Inductance of the rotor: 0.47HrL  , 
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– Inductance of the rotor: 0.47 HSL  , 
– Mutual inductance: 0.44HM  , 
– Inertia: 20.04kgmJ  , 

– Number of poles pairs: 2p  . 
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