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Abstract: Power consumption has become a major concern of embedded 

systems today. With the aim to reduce power consumption during the runtime, 

operating systems are dealing with power management. In this work, the 

FreeRTOS port is extended with power management features on LM3S3748 

microcontroller. Tickless idle technique is implemented to provide more power-

saving during the processor idle periods. 
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1 Introduction 

In embedded systems green technology implies the development of 

hardware and software solutions that reduce energy consumption. In general, 

efficient power management in embedded systems reduces the cost of providing 

power to the chip and lowers the chip temperature. In battery-operated devices, 

less energy consumption increases battery lifetime. 

Because power consumption has become a major concern of embedded 

systems, many low power techniques were introduced in the manufacture of 

hardware platforms. Power consumption can be lowered by gating clocks to the 

hardware modules that are not currently used. Dynamic power dissipation of 

CMOS logic is proportional to the operating frequency and to the square of the 

operating voltage. Therefore, lowering clock frequency and voltage supply level 

during the runtime can be used for power saving when top performance of a 

system or module is not required. 

To reduce the power consumption during the runtime, operating systems 

provide power management features. Most of the real time operating systems do 

not have well designed power management, or do not provide support for low 

power modes usage at all. Because of the hardware platform dependency, 

FreeRTOS, just as many other operating systems, does not provide power 

management features. This work is focused on extending the FreeRTOS port for 

the LM3Sxxxx family of microcontrollers with power management. The goal is 
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to put the microcontroller into the low power mode, when there is no useful 

work for the processor to be done. To keep the track of time, FreeRTOS waste 

power when the processor is idle, because the system remains in the Run mode. 

To deal with this problem, a power management technique known as tickless 

idle has been developed. The tickless idle technique implies the turning off the 

system timer from the idle task function, so as to enter sleep mode and ensure 

that the processor is operating only when there is a ready task to execute or 

generated interrupt needs handling. 

The Software is developed in IAR Embedded Workbench for ARM. 

Extended FreeRTOS port is tested on EK-LM3S3748 evaluation board [1], that 

contains LM3S3748 microcontroller based on the ARM Cortex-M3 processor 

[2]. 

2 LM3S3748 Low Power Modes 

The Cortex-M3 provides Sleep and Deep Sleep modes as a power 

management feature [3, 4]. In both modes, the processor clock is gated and 

therefore code is no longer executed. The clock frequency of active peripherals 

is unchanged in the Sleep mode, but in the Deep Sleep mode the clock 

frequency is lowered. For additional power savings in Deep Sleep, the on-chip 

LDO voltage regulator can be programmed to adjust the output voltage level to 

lower values. During the Deep Sleep mode, PLL is turned off. Sleep mode 

should be entered when the processor is idle and the system clock frequency 

cannot be lowered, or when the lowest possible wake-up latency is required. For 

additional power savings, the Deep Sleep mode can be entered. A drawback of 

the Deep Sleep compared to the Sleep mode usage is increased wake-up 

latency. 

The low power mode can be invoked by executing either WFI (Wait For 

Interrupt) or WFE (Wait For Event) instruction. If the low power mode is 

entered by executing the WFI instruction, only enabled interrupts can wake up 

the processor. After a wake up from the WFI power saving, the execution 

continues from the interrupt service routine. The WFE provides a mechanism 

for conditional entering into the low power mode. If the event register is 0, the 

WFE execution invokes the low power mode. Otherwise, WFE resets the event 

register and behaves as a NOP instruction. If the SEVONPEND bit in the 

system control register is set, every interrupt transition from inactive to pending 

state sets the event register [4, 5]. After a wake-up from the WFE power saving, 

the execution continues from the interrupt service routine if the interrupt that 

caused the wake-up is enabled. Otherwise, the execution continues after a WFE 

call. Whether the Sleep or the Deep Sleep mode is entered, it is determined by 

the SLEEPDEEP bit in the system control register, regardless of which 

instruction invoked the low power mode. 
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3 FreeRTOS 

FreeRTOS is a free and open source real time operating system designed to 

have small footprint and targeted to embedded systems [6]. It is written in C 

language and does not contain drivers, support for complex memory 

management or networking. Scheduling algorithm is simple round-robin with 

priorities, also a co-operative, preemptive or hybrid scheduling is configurable. 

Both tasks and coroutines are supported, but in this work only tasks are 

considered. Tasks can be blocked for a specified time, when they are called 

delayed. Blocking tasks for a specified time is usually used for creating periodic 

tasks. If tasks are blocked indefinitely, they are called suspended. Tasks can be 

unsuspended by calling an appropriate function from the interrupt service 

routine or by some other task. 

FreeRTOS keeps the track of time by counting periodically generated 

interrupts as ticks. In the official FreeRTOS ports for microcontrollers based on 

the Cortex-M3, the Systick timer is used as a tick source. Each time the Systick 

interrupt routine executes, an internal FreeRTOS variable called xTickCount is 

incremented and a check is performed whether any delayed task has to be 

deblocked. All internal time-based calculations, such as task delay time, depend 

on the xTickCount value. For the correct functioning of FreeRTOS, no Systick 

interrupt should be neglected, because deadlines of some tasks could be missed. 

The Cortex-M3 has a powerful possibility of disabling all interrupts that are 

below or equal to a priority determined by the BASEPRI register. Those 

interrupts are called low priority interrupts. Interrupts whose priority is greater 

than the BASEPRI register value are called high priority interrupts. As 

FreeRTOS uses this mechanism for disabling interrupts, they are never all 

disabled. By the system's-kernel function, only low priority interrupts can be 

disabled. In the interrupt service routines of high priority interrupts, the usage of 

the kernel system functions is not allowed. Therefore, the kernel function for 

disabling interrupts is used for keeping critical sections safe from other tasks 

preemption. This mechanism's advantage is that handling high priority 

interrupts is never delayed by the kernel system code. 

4 Tickless Idle Implementation 

The only FreeRTOS system task is the Idle task, which has the lowest 

priority. In FreeRTOS, the Idle task not only executes the infinite loop to feed 

the processor with instructions, it deletes tasks which have finished their 

execution and also may contain some application hook functions that are 

usually used for runtime statistics. The low power mode could be entered in the 

Idle task function when Idle finishes the usual job, unless there are some user 

tasks ready to execute. Even when the Idle task is being executed, there might 
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be user tasks ready to execute. For example, while the Idle task was running, 

some external event caused a user task to be unsuspended. If the preemptive 

kernel is not configured, the unsuspended task will continue execution when the 

current timeslice expires or the Idle task yields. Consequently, before entering 

the low power mode a check for ready tasks must be performed and if there are 

any, the low power mode must not be entered. 

If the Sleep mode was entered by invoking the WFE or WFI instruction, the 

Systick would wake up the processor periodically every time a tick is generated. 

In some special use-cases, this realization could be acceptable, therefore it is 

also implemented. In most cases, this is an unreasonable power wasting, 

because the processor wakes up unnecessarily and often. Also, in the Deep 

Sleep mode, because of the changed system clock frequency, the Systick would 

be slower in generating ticks and would give wrong information to the system 

about the elapsed time. In order to obtain more power-saving, a tickless idle 

solution is implemented. The tickless idle implies disabling the tick source from 

the Idle task function, in order to ensure that the processor remains in the low 

power mode for longer periods of time. When the Systick is disabled, it is 

necessary to tackle the problem of time tracking in the low power mode. 

For that purpose a timer is used. Generally speaking, it would be suitable to 

use a timer whose clock source is independent from the system clock, having in 

mind that the system clock frequency changes in the Deep Sleep mode. One 

solution, as developed in [7], would be to use the RTC timer. Using the RTC 

timer for the Sleep mode time tracking also ensures that the processor stays 

longer in the Sleep mode, than when timer clocks have higher frequency. 

However, due to hardware bugs in LM3S3748 [8], the RTC timer cannot be 

used. Instead, a 32-bit general purpose timer clocked with the system clock was 

used in this work. At the moment of entering the low power mode, it is known 

when a user task has to continue execution. That information is obtained from 

the delayed task list and is used for the configuring of the timer to generate 

interrupt and wake up processor just before the task has to be deblocked. If 

there are no delayed tasks, the processor can remain in the Sleep mode for 2
32

–1 

system clock cycles. 

When the system resumes from the low power mode, the xTickCount 

variable has to be updated in accordance with the slept ticks count, before the 

schedule of tasks resumes. Updating xTickCount is complicated, because some 

asynchronous interrupt can cause a wake-up. Therefore, after resume from low 

power mode, it must be examined what was the wake-up source. If timer 

interrupt has woken-up processor, there is no need to calculate number of slept 

ticks. Only already known tick count that was used for timer configuring has to 

be added to xTickCount value. If some other interrupt caused wake-up, current 
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timer value is read and accordingly xTickCount variable is updated. After 

general purpose timer is disabled and Systick is enabled, task scheduling 

resumes. 

In regular FreeRTOS operating, the xTickCount variable overflows every 

2
32

 tick. When such an overflow happens, the pointers to FreeRTOS internal 

lists have to be exchanged. Pointers to delayed task control blocks are kept in 

those lists. In [7], processor is woken up to handle pointers exchange before the 

overflow occures. There is no need to additionally wake up the processor for 

handling the pointers exchange. A better solution is implemented in this work: 

pointers are exchanged after the processor is woken up if the overflow was 

supposed to happen while the processor was in the low power mode. 

5 Protecting Critical Section 

Another problem to solve is caused by the fact that the process of entering 

the low power mode must be non-interruptable by other tasks. Supposing for 

example, that all the checks have been done and all the conditions for entering 

the low power mode have been met, the next thing to do is to appropriately 

configure the general purpose timer and to execute the WFI or WFE instruction. 

Suppose that after the configuring of the timer some interrupt is generated and 

in the interrupt service routine a task is unsuspended. If preemptive scheduling 

is configured, that would cause an unsuspended task to continue execution 

immediately. A saved program counter value of the Idle task will result upon 

entering the low power mode next time the Idle continues execution, without 

even performing checks if that has been allowed and also without properly 

configured general purpose timer. If the cooperative scheduling is configured, 

there will still be a problem: the unsuspended task will not execute 

immediatelly, but it will once the processor wakes up from the already 

configured low power mode. In both configurations a deadline would be missed 

and the system could crash.  

In order to protect the critical section when entering the low power mode, 

there is no need to disable all interrupts. Only low priority interrupts, which in 

the interrupt service routine can cause a task to unsuspend, should be disabled. 

If low priority interrupts were disabled before the process of entering the low 

power mode, and the WFI instruction executed after that, only high priority 

interrupts could cause a wake-up. Therefore, the WFE instruction is used with 

the SEVONPEND bit set. When the SEVONPEND bit is set and the WFE is 

used for power saving, every interrupt transition from the inactive to the 

pending state is a wake-up event. This means that even a disabled low priority 

interrupt can cause a wake-up. 

Entering the low power mode critical section is protected from other tasks 

preemption, by invoking the FreeRTOS system function for disabling interrupts. 
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Before the low priority interrupts are disabled, the event register should be reset. 

If any low priority interrupt occurs after the low priority interrupts are disabled, 

it will transit to the pending state and cause the event register to be set. In that 

case, the WFE execution behaves as the NOP instruction and the low power 

mode is not entered. When the xTickCount variable is updated and the Systick is 

enabled, low priority interrupts are enabled and a pending interrupt is served. If 

preemption after executing an interrupt service routine happens because a task 

was unsuspended, the saved program counter of the Idle task points out of the 

critical section, what is a desired behavioral. 

If the Sleep mode is used, high priority interrupts are served without any 

delay. If a high priority interrupt occurs after the configuring of the system 

clock for the Deep Sleep mode and before the system clock is reconfigured for 

the Run mode, the interrupt service routine would be served with a slower clock 

rate. That is the overhead of using the Deep Sleep mode. Interrupt service 

routines of low priority interrupts always execute with high frequency clock 

configured for the Run mode, regardless of when an interrupt occurs. 

6 Implemented Solutions 

By configuring the system macros, the user choses which low power mode 

is to be used. If the Deep Sleep mode is configured, the generated kernel code 

takes more memory compared to the Sleep mode, as shown in Table 1. 

Table 1 

Generated code sizes and measurement results. 

Mode Code Size [B] IC [mA] 

Run 6778 129.0 

Sleep non-tickless 7000 80.0 

Sleep tickless 7560 80.0 

Deep Sleep tickless 1 7844 52.8 

Deep Sleep tickless 2 7960 52.8 

 

Two different solutions for Sleep mode usage are implemented. The WFI 

instruction is used for entering the Sleep mode in the non-tickless solution, 

because there is no critical section that has to be protected. The processor is 

woken up periodically by a Systick interrupt, so the xTickCount variable doesn’t 

have to be additionally updated. This solution (Sleep non-tickless, Table 1) 

saves the least power compared to all tickless solutions. Another solution for the 

Sleep mode is tickless (Sleep tickless, Table 1). As the general purpose timer is 

configured to generate an interrupt, and also due to disabling and enabling the 
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Systick, a drift in time appears. Unfortunately, the drift has an accumulative 

effect on the xTickCount value and cannot be compensated. In order to configure 

the general purpose timer, the number of ticks for which microcontroller should 

remain in the Sleep mode has to be converted to an equivalent number of the 

system clock cycles. 

For the Deep Sleep mode, the system clock is lowered to 32 kHz and can 

be more divided. Optionally, the on-chip LDO voltage regulator can be 

programmed to adjust a lower voltage level for the Deep Sleep mode. The user 

configures the value of the system clock frequency in the Deep Sleep mode, and 

has to pay attention to the consequences of the changing clock rate. First of all, 

high priority interrupts can occur when the clock frequency is low and the 

system would react slower. Every interrupt handling during the suspend-resume 

process causes more drift in time. As the general purpose timer does not have a 

clock source independent from the system clock, the system clock frequency is 

adjusted to 32 kHz, then the timer is configured. Consequently, before the WFE 

call, a part of critical section executes with a slow clock rate. Additional delay is 

entered after the system resume by configuring the PLL and setting the system 

clock for the Run mode, executing with a slow clock rate, too. When 32 kHz is 

configured for the Deep Sleep system clock frequency, the measuring has 

shown that the suspend-resume cycle takes approximately 30 ms, unless in that 

period of time high priority asynchronous interrupts are generated. That is why 

it must be checked in how many milliseconds a task will have to be deblocked. 

If the calculated time is less than 30 ms + x, Deep Sleep must not be entered. 

Value of x is configurable. 

When configuring the general purpose timer that generates an interrupt 

while processor is in Deep Sleep, a conversion from tick count to equivalent 

low frequency clock cycles must be done. When calculating clock cycles that 

the timer has to count with a low frequency clock, rounding in calculation 

causes error. After the system resume, if the timer has not generated an 

interrupt, the current timer value is read and again calculations are made for the 

conversion to an equivalent tick count. All rounding errors affect the 

xTickCount value and have an accumulative effect. Deviation of the 

xTickCount value is proportional to the number of asynchronous interrupts that 

occur during the Deep Sleep, and also to the number of entries to the Deep 

Sleep mode. In order to prevent the accumulation of errors, two solutions for 

using the Deep Sleep mode are implemented. One is based on more energy 

saving: after an asynchronous interrupt causes a wake-up, another enter into 

Deep Sleep is tried (Deep Sleep tickless 2, Table 1). In another solution, when 

an asynchronous interrupt occurs, the processor remains in the Run mode, 

waiting for the general purpose timer to generate an interrupt (Deep Sleep 

tickless 1, Table 1). This solution provides less energy saving, but also 

decreases the error accumulation. 
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7 Measurements 

Because board's voltage supply is constant, power consumption is 

proportional to current consumption. A current consumption is measured using 

the high side current sense monitor ZXCT1081 with a gain of 10 and a voltage 

output. Externally, a RSENSE = 1Ω resistor is added. The signal output is 

measured with the oscilloscope LeCroy WaveAce 222 (2×220MHz) and equals 

10ICRSENSE, where IC is drawn current. Measured current is drawn by EK-

LM3S3748 board, not only by the microcontroller. 

 

Fig. 1 – Measurement result – Sleep mode. 

 

Fig. 2 – Measurement result – Deep Sleep mode. 

 

In general, the energy consumption depends on the used peripherals and 

amount of time spent in each mode, which is application defined. For measuring, 

a simple application with two tasks that are toggling diodes and sending 

messages to the serial port is used. The same applications is executed with 
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different configurations of FreeRTOS power management: Sleep (Fig. 1) or 

Deep Sleep mode (Fig. 2). 

For tested application, the average current is shown in Table 2. If Sleep 

mode is entered during the processor's idle periods, the average current is 

lowered by 38.1 mA. More power saving is achieved using Deep Sleep, so that 

average current is lowered by 59.2 mA. 

Table 2 

Measured Average Current. 

Configured Low Power Mode Average IC [mA] 

- 129.0 

Sleep tickless 90.9 

Deep Sleep tickless 1, 2 69.8 

 

Because in measured use case asynchronous interrupts are not generated, 

the average currents for Deep Sleep tickless 1 and 2 solutions are equal. 

8 Conclusion 

In this work, the FreeRTOS port is extended to support low power modes 

usage for the LM3S3748 microcontroller based on the Cortex-M3. Sleep and 

Deep Sleep modes are used, and in total four solutions are implemented. One 

solution of the Sleep mode is based on keeping the track of time in the Sleep 

mode as in the Run mode. Because of frequent and unnecessary waking-up, this 

solution provides the least energy saving compared to all other solutions. It is 

implemented because it does not involve any inaccuracies, no delays, which 

tickless solutions normally involve. 

In order to induce even more power saving, the tickless idle power 

management technique is implemented. For keeping the track of time while the 

processor is in the low power mode, the general purpose timer is configured to 

generate an interrupt at an appropriate moment and wake up the processor. The 

general purpose timer was the only option for time tracking, because of 

hardware bugs in the used microcontroller. A disadvantage of using the general 

purpose timer is a drift in time that has an accumulative effect. The drift occurs 

due to the configuring of the timer, disabling and enabling the Systick. An 

additional drift is caused by changing the system clock frequency for the Deep 

Sleep mode. The best solution would be to use a timer that has a separate clock 

source and does not depend on the system clock frequency. For that purpose, on 

some another platform the RTC timer can be used, as it is used in [7, 9]. Even a 

better solution would be to make FreeRTOS totally tickless, because there 
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would be no need for counting elapsed ticks during the low power state. 

Another improvement is related to the fact that in the implemented solutions the 

decision which low power mode should be entered is made before compile time. 

This approach is acceptable when all the tasks are created before the scheduling 

starts and are never deleted. In other situations, it would be much better if the 

decisions were brought dynamically during the runtime. The implemented 

solutions can be easily extended to support the decisions dynamically. 

The measurements have shown that implemented solutions have an impact 

on reducing power consumption during the processor's idle periods. 
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