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Abstract: This paper examines a possible application of Java technology for an 

implementation of a software tool for processing and visualization of input 

signals originating from a thermal power plant’s coal-supply system. Performance 

of the tool is evaluated from the aspects of algorithms, architecture, and 

scalability. During the evaluation the performance indicators were CPU and 

memory load, while varied input signals were sampling rate and a level of user 

interaction. All measurements are performed on both real and synthetic load.  
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1 Introduction 

The main reasons for use of Java technology for processing and 

visualization of signals are a wide range of available tools and free open source 

libraries which enable fast and easy application development. Another advan-

tage is the ability to run the same application on different platforms without the 

need for adaptation. In addition, running an application under the Java virtual 

machine enables easy control of access rights to the actual resources that might 

be important in safety-critical systems. The negative effects of use of Java 

technology are mainly related to increased CPU and memory loads. 

This paper examines the possibility of using a Java-based technology for 

the implementation of a tool for signal processing and visualization. The 

developed prototype, named PRODI, is a monitoring tool for a thermal power 

plant’s coal-supply system. The tool, in real time, periodically check critical 

input signals and by using the built-in expert system decides whether there has 

been a failure or not, and also visualize input signals and calculated values. The 

tool is designed according to the configuration and input signals that correspond 

to the ones obtained at power plant “Nikola Tesla”. The tool is used for testing 

purposes only and has never been deployed in the production environment. The 

goal of this paper is to illustrate empirically obtained the tool’s performance 
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results and to describe certain design decisions made during the development of 

the tool. 

The paper has the following structure. Section two gives insight into 

background and motivation for the implemented fuzzy logic algorithms. The 

tool description and implementation details are given in Section three, while 

Section four examines the performance of implemented algorithms, used 

architecture, and expected scalability. Section five evaluates the obtained 

results, while section six concludes the paper. 

2 Background and Motivation 

In modern complex systems, especially safety-critical systems like thermal 

power plants, it is very important to incorporate reliable fault detection and 

isolation (FDI). Assuring early detection of faults has many benefits such as 

avoiding subsystem deterioration, maintaining performance and optimality or 

avoiding damage to main machinery. In addition to early detection, it is very 

important to provide for quick error isolation so that operators can take proper 

corrective action and restore the system to its normal operating point, avoiding 

unnecessary shutdowns.  

The coal-supply subsystem is one of the most important subsystems in 

modern thermal power plants, responsible for adequate fuel delivery. Any 

failure to maintain its normal operating condition can lead to operating losses 

and production delays. The coal stored in hoppers falls onto the first and second 

conveyors called the feeders, which delivers the coal to the mill. The mill 

crushes the coal into fine dust, which is then added to preheated air. The 

resulting air-fuel mixture is blown into the burner. This process is monitored by 

means of the air-fuel mixture temperature. Since the temperature of the 

preheated air is well regulated, with small variations, the temperature of the air-

fuel mixture is mainly defined by the amount of coal dust. If the amount of coal 

reaching the mill decreases (e.g., if a large chunk of coal blocks the supply to 

the feeder), the temperature of the air-fuel mixture increases because it mainly 

consists of preheated air (coal dust decreases the temperature of the mixture 

because its temperature is much lower than that of the preheated air). When the 

air-fuel mixture temperature exceeds a 250o

C, the burner has to be shut down. 

The main idea is to construct an FDI system able to detect any coal-shortage as 

early as possible, using the data from the process. 

The vast number of FDI algorithms found in the literature can be divided 

into two groups: model-based algorithms and data-driven algorithms. Model-

based algorithms assume the existence of a mathematical model of the system, 

which makes them very powerful. However, this assumption also represents the 

main drawback [1, 2], as model-based algorithm design needs to be insensitive 

to disturbances and include noise impact suppression mechanisms, while being 
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robust to modeling errors with sufficient sensitivity to faults [1]. Modern power 

plants represent complex systems with large numbers of unknown inputs, 

rendering mathematical modeling very complicated or even impossible. Data-

driven algorithms, on the other hand, are based on the statistical decision theory 

and can be further divided into two main groups: sequential algorithms and 

fixed size sampling (FSS) algorithms [3, 4]. Data-driven algorithms also have 

drawbacks. Sequential algorithms are well developed for stationary systems, but 

in variable structure systems like power plants, forming a decision strategy is a 

highly sophisticated problem. FSS algorithms are much easier to implement but 

their main drawback is the introduction of a large number of assumptions which 

they cannot readily satisfy in a real-life application [5, 6]. 

A two layer FDI system [7] for coal-shortage detection in a thermal power 

plant coal-supply unit is shown in Fig. 1. Layer 1 consists of a knowledge-based 

fault detection and isolation intelligent system (FDIIS) and an algorithm based 

on an FSS strategy, proposed [8], running in parallel. Outputs from these 

systems (residuals) are then passed on to Layer 2 of the intelligent system for 

evaluation and a final decision on whether a coal-shortage really occurred. As a 

result, a lower probability of miss and faster detection are accomplished. The 

motivation for this FDI structure lies in the knowledge that no perfect FDI 

algorithm exists and that reliable and in-time fault detection and isolation in 

complex systems can be achieved by combining different methods, and this 

combined FDI method offers several “opinions”. 

 

Fig. 1 – Two-layer system. Layer 1 consists of an FDIIS running in parallel 

with an FSS algorithm. Layer 2 consists of an intelligent system 

which evaluates residuals (REIS), generated by Layer 1 algorithms. 

 

3 Tool Description 

The software tool is implemented upon the previously presented theoretical 

background. The algorithms conform to the requirements of the Nikola Tesla 

Thermal Power Plant, Obrenovac, Serbia. The problem addressed concerns 
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coal-shortage detection at the mills of this plant. The system comprises three 

parts: Data Acquisition, OPC Server and PRODI tool (Fig. 2). 

 

Fig. 2 – Structure of PRODI tool. 

 

The Data Acquisition represents the boiler of the thermal power plant. It is 

a SCADA application, including a schematic representation of the process and 

on-demand simulation of faults. It consists of modules for combustion chamber, 

six mills, control unit, turbine controller, fuel oil system, and superheater. 

Within modules, parameters like mill velocity, mill current, feeder torques, and 

others can be interactively changed. 

The OPC (Object Linking and Embedding (OLE) for Process Control) 

ensures communication of real-time plant data between control devices from 

different manufacturers. OPC was designed to provide a common bridge for 

Windows based software applications and process control hardware.  

The PRODI tool (Fig. 2) consists of five modules named: data generation, 

data input, FDI algorithm, data storage, and visualization. Data generation 

module produces data streams that statistically corresponds to the real 

measurements and enables PRODI tool to be used independently for simulation 

purposes. Data input module reads data streams from either OPC Server, Data 

generation module, or file, and converts them to a form suitable for the FDI 

algorithm. 

The FDI algorithm module processes data according to algorithms 

described in the previous section. The algorithm is organized in two layers 

where the first layer comprises of intelligent system based on fuzzy logic [4] 

and system based on fixed size sampling [5]. The systems at the first layer run 

in parallel and forward their results to the second layer. The second layer 

contains an intelligent system based on fuzzy logic that decides on whether a 

system works correctly or a fault occurred [8, 9]. The processing is implemented 

as a real-time system meaning that the all calculations and visualization have to 

be performed within a sampling cycle. The system supports variable sampling 
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cycle and the signals that could be sampled and processed encompass feeder 

moment, mill current, feeder and mill torque. All three algorithms were firstly 

developed using MATLAB environment and that implementation was used as a 

referent for testing purposes. Afterward, a second implementation using Java 

programming and available fuzzy logic libraries was developed. The Java 

implementation was further optimized, bringing up the third implementation, 

having in mind fixed size of the sampling buffer needed for the algorithm and 

iterative nature of processing. 

Data storage module collects both input and output data used by the FDI 

algorithm module and stores them in external files or databases in such a way 

that enables reconstruction of complete history or any part of it. Stored data is 

signed using private-public key encryption for the purpose of non-repudiation 

and data integrity preservation. Stored data can be also used for simulation and 

algorithm verification purposes. 

Data visualization module displays input signals, variables and decision 

functions, and supports on-line parameter tuning. Each graphic (Fig. 3) supports 

manipulation of range size, provides an instant overview of signal levels, and 

displays the domain in which a supply system failure was recognized. Apart 

from the visual display of selected signals, additional options, including display 

parameter tuning, signal status change notification and help options are available. 

 

Fig. 3 – PRODI tool: visualization of input signals and decision functions. 

 

The PRODI tool was developed using integrated development environment 

(IDE) Eclipsе v3.6.1, with additional plug-in WindowBuilder v8.1 for user 

interface design and Test and Performance Tools Platform v4.7.1 for perfor-

mance evaluation during development process. Development process relayed on 
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using existing solutions, such as open source libraries, as much as possible. The 

JFuzzyLogic library was used as a support for fuzzy logic processing and some 

of the frequently used methods encompass fuzzification, defuzzification, and 

interpretation of Feature Code List (FCL) formatted text files. The JFreeChart 

library was used for data visualization using various types of charts, pies, graphs, 

and supporting objects (e.g. labels, markers, annotations). The JEasyOpc library 

was used for accessing the OPC server and retrieval of signal values sampled by 

the Data Acquisition part of the system. 

4 Performance Analysis 

Insight into performance of a tool enables quality and usability assessment 

of the tool and technologies used for its development. Besides, performance 

analysis can pinpoint the potential bottlenecks that might be resolved by 

changing or optimizing the source code.  

Performance analysis and results presented in this paper are obtained on 

Intel Core i3 M350 (2,27GHz), with 3GB DDR3 physical RAM memory, 64-bit 

Windows 7 SP1 operating system and 32-bit Java virtual machine version 

1.6.0_26. Tools used for performance and resource measurements are standard 

Windows monitoring tool Resource Monitor and Java profiler VisualVM 

version 1.3.2. 

This section is organized in three subsections dealing with different aspects 

of performance analysis. The first subsection presents the results regarding the 

different implementations of the FDI algorithms used in the tool. The different 

approaches to the software architecture of tool are considered in the second 

subsection, while the third subsection deals with scalability of the tool. 

4.1 Algorithms 

Performances of the FDI algorithms have a great impact on the overall 

performances of the tool because they represent core of the signal processing. 

Obtained results illustrate differences among three implementations and used 

technologies. 

The version developed using MATLAB was used as a referent 

implementation and was not considered for production because of the 

requirements to support true real-time environment. Two other implementations 

are developed using Java programming language. Even though Java supports 

real-time execution using specific virtual machines such as jRate, Apogee, or 

IBM WebSphere Real-Time, this paper considers performance results using 

conventional Java virtual machine. The first Java version is developed using 

existing open source libraries for fuzzy logic. The second Java version, which 

solely relies on standard Java libraries and specially developed methods, is 

optimized with regard to the problem addressed and domain knowledge. 
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The evaluation procedure measures the processing time from the moment 

of data entry into the FDI algorithm module to the moment of release of the 

corresponding output. The input data contains 7195 samples and the sampling 

rate is set at a value of one second. Execution time of the algorithm is calculated 

as average time spent per sample. 

0 2 4 6 8 10 12

1.12

10.46

1.59

Matlab 1st version 2nd version

miliseconds
 

Fig. 4 – Comparison of signal processing algorithm performance. 

 

The execution time, given in Fig. 4, shows that the referent implementation 

exhibits the best processing time coming from the fact that is executes using 

native mode. Even though the best in laboratory conditions MATLAB 

implementation was not considered for production because of the requirements 

to support true real-time environment. Comparison of implementations in Java 

shows that the processing time of the first version is increased by a factor of 6 

compared to the second, optimized version, or 9 compared to the reference 

implementation. 
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Fig. 5 – PRODI tool execution time distribution in milliseconds (per sample). 

 

In order to understand the reasons for discrepancy between two Java 

versions the execution time distribution has to be analyzed. The percentages of 

time that the first version spends in the various parts of the code are unevenly 

distributed as shown in Fig. 5. The largest proportion of the time (91%) is taken 

up by fuzzy logic expert subsystems, or more precisely by fuzzy system 

processing methods. 
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In the JFuzzyLogic library used for the first version, the most demanding 

process during the implementation of the fuzzy logic controller is the 

implication process where the resulting membership function is computed in a 

pre-defined range, which is the standard approach in the implementation of a 

configurable controller. On the other hand, in the second version this is exactly 

where reference to a specific knowledge base and the nature of the membership 

functions are used. By computing important points only no time is lost on 

computing the entire range of the function. Since the range in the library is 

modeled for 1000 samples, and the resulting membership function is computed 

twice in both fuzzy logic subsystems (FDIIS and REIS), there are 4000 

operations per sample, compared to the two operations required in the second 

version. 

4.2 Architecture 

In this subsection two versions implemented in Java are compared from the 

aspect of software architecture. The first version uses four threads while the 

second version uses two threads. The four-thread architecture relies on one 

thread for visualization and other three for data input, algorithm processing and 

data storage [10, 11]. The two-thread architecture displays results in the first 

thread, while data input, algorithm processing and data storage are in the second 

thread, as presented in Figs. 6 and 7. 

 

Fig. 6 – The two-thread architecture. 
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Fig. 7 – The four-thread architecture. 

 

The processor load is measured with and without user interaction during the 

tool testing. Even though it is not an integral part of the processing algorithms, 

user interaction is considered because the time elapsed from the moment of 

acquisition of sample to the moment of displaying the result of processing may 

depend on the level of interaction and demanding graphical operations. It is 

extremely important to understand this behavior very well because if the 

processor load during user/application interaction is at its maximum, this means 

that it might not be possible to execute the processing algorithm at the planned 

rate. Fig. 7 shows average and maximum loads when there is no user 

interaction, as well as maximum loads with user interaction, for both 

implementation versions. The first version generates a slightly lower CPU load, 

and therefore better overall performance. 
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Fig. 8 – Comparison of processor load depending on the implementation version. 
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A characteristic of the maxima during user interaction, which is apparent in 

the processor load graphic (Fig. 8), is that they usually occur at the beginning of 

measurement and later rarely achieve that level. This type of behavior in the 

present case may be attributed to the time when the user interface, as a result of 

user action, initializes the graphical components not yet displayed. 

The conducted tests also considered memory load with and without user 

interaction. The reasons for this are the same as when considering processor 

load. However, contrary to processor load, in addition to the current use of 

memory (active), attention in this case also needs to be paid to the memory no 

longer in use. The memory which is not in use is comprised of objects to which 

there are no references, but the garbage collector has not yet cleared it and, 

together with the active memory, it makes up the total memory. As shown in 

Fig. 9, the total memory may be more than double in size. To avoid this 

situation it is needed to provide explicit calls of the garbage collector in proper 

places in the source code. However, if explicit calls are too frequent, they may 

lead to unexpected processor load. 

Based on the memory loads shown in Fig. 9, it is apparent that with user 

interaction the first implementation is more demanding than the second 

implementation and vice-versa when there is no interaction. This type of 

behavior may be explained by the fact that the second implementation, that uses 

only standard Java libraries, can handle better a configuration change. 
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Fig. 9 – Comparison of memory load depending on the implementation version, 

where: Dyn. – Dynamic memory without interaction, 

Dyn. inter. – Dynamic memory with interaction, 

Tot. – Total memory without interaction, 

Tot. inter. – Total memory with interaction. 

 

4.3 Scalability 

Estimating scalability of the tool requires tests where input parameters are 

varied within their limits. Four out of five modules of PRODI tool 
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predominantly depend upon two parameters, the sampling rate and a level of 

user interaction. Change in the sampling rate influence on a performances and 

functioning of data input, FDI algorithm, data storage, and visualization 

modules. Level of user interaction places more load on a visualization module 

that is identified as a critical one. Only module that does not depend on two 

mentioned parameters is data generation module, which is only used for testing 

purposes. 

During experiments sampling rate is varied in range from 0.2 to 2 s, which 

corresponds to an expected human reaction time. Measurements are done with, 

and without user interaction, and this requires the user to go several times 

through all the options offered by the tool. Conditions during all measurements 

are identical or, more precisely, the tool is executed in the same environment 

and displays information as follows: one graphic with all series of normalized 

values, with the application window always set to the same size (1366×768) and 

the same set of applications active in the background. All measurements begin 

one minute after initiation of the tool and last for another five minutes. 

2.0 1.0 0.8 0.6 0.4 0.2

0

10

20

30

40

50

60
Peak interactive

Peak

Average

sampling rate (seconds)

p
e
rc
e
n
ta
g
e
s

 
Fig. 10 – Process load at for different sampling rates. 
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Fig. 11 – Memory load for different sampling rates, where: 

Dyn. – Dynamic memory without interaction, 

Dyn. inter. – Dynamic memory with interaction, 

Tot. – Total memory without interaction, 

Tot. inter. – Total memory with interaction. 
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Figs. 10 and 11 show processor loads and (peak) memory loads. Similar to 

previous measurements, the highest processor load at interaction occurs only 

once, during the first user action when graphical components are initialized. In 

some cases the usage of the dynamic memory is increased. Unexpected increase 

may be a significant problem and the cause lies in the Java virtual machine and 

its inner structure. Delay in the deallocation of the dynamic memory may lead 

to higher processor load due to the fact that allocating new memory space 

requires more processing power when memory is congested. 

5 Results Evaluation 

Special attention during the implementation of PRODI tool was dedicated 

to the optimization of source code in a way that would not affect its readability. 

Beside signal processing algorithm adaptation described in the previous section, 

steps taken regarding optimization are: avoiding instantiating temporary objects 

in dynamic memory, task parallelization where possible, and reimplementation 

of charts drawing library in a part regarding data storing. 

The term temporary object relates to an object that has a relatively short 

life-cycle after which the object is discarded and in case of Java technology, left 

to garbage collector [12]. Garbage collector removes the object and frees the 

dynamic memory space that was occupied by the object. Activating garbage 

collector too frequently increases CPU load [13]. Activating garbage collector 

too rarely may increase memory load and also CPU load in cases when there is 

too much objects to be removed. Ways of dealing with temporally objects 

implemented in PRODI tool are usage of primitive types instead of objects, 

where possible, and “reusing” of temporary objects [14]. 

The usage of primitive types such as integers, floating point numbers, or 

logical values instead of classes decreases memory load and decreases CPU 

load by reducing garbage collector unpredictable executions [15]. Downside of 

primitive types usage is decreasing code readability by deviating from object 

oriented paradigm. Moreover, it is not always possible to use primitive types 

when classes are expected (e.g. library interfaces require object types). 

Reusing temporary objects means keeping objects even after no longer 

needed with an idea to avoid creation of new objects of the same class. 

Reusable objects are usually implemented as a pool of objects whose size is 

determined upon estimated number of used and needed objects. Examples of 

objects that are implemented as reusable in the case of PRODI tool are objects 

for keeping values of signals or shared objects used for synchronization 

between working thread and graphical user interface thread. 

Four threaded architecture shows how effective parallelization can be, and 

also how that allows easy extension of the tool’s functionalities. Parallelization 

is obtained using multiple modules that are statically connected during 
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initialization of the tool. Among modules there is one module that represents 

core of the tool and it interacts with the other modules, executing in separated 

threads, which are responsible for conducting specific tasks. The core module 

depending on a user activity starts appropriate modules. All modules are in a 

ready state after initialization of the tool, and can be started concurrently. Only 

core module is aware of existence of other modules. Such architecture allows 

easy extension of the system functionalities because adding a new module 

requires changes only in the core module. Suggested static linking of modules 

with the core module helps eliminating possible synchronization issues that 

could arise in architectures where dynamic, run-time, linking of modules is 

used. 

Reimplementation of charts drawing library in a part regarding data storing 

is also conducted by using primitive types instead of classes. Floating point type 

is used for storing signal values, while integer type is used for storing absolute 

time shown on a chart. The library requires that both signal values and time 

values, are kept in form of data series. Instead of existing data series as dynamic 

structures, reimplementation introduced solution based on ring buffers. The ring 

buffers are implemented as static arrays whose sizes are based on expected 

number of samples for the observation period and are reallocated automatically 

when needed. 

6 Conclusion 

This paper presents an implementation of a software tool for monitoring of 

thermal power plant’s coal-supply system. The tool processes input signals and 

visualizes both input signals and calculated values. In the essence the tool 

executes two stage fault detection algorithm based on fuzzy logic for the 

purpose of determining the correctness of the coal-supply and transportation 

system. The tool was developed using the Java programming language and 

some open source libraries.  

Performance of the tool is evaluated from the aspects of algorithms, 

architecture, and scalability. During the evaluation the performance indicators 

were CPU and memory load. Evaluation of the algorithms showed that use of 

domain-specific knowledge and minimal changes in the open-source libraries 

can enable significant speedup of critical parts of the tool. Evaluation of the 

architecture showed that four threaded architecture creates lower CPU load then 

two threaded counterpart, but may introduce additional memory load in the 

presence of user interaction. Evaluation of the scalability showed that Java 

based tools can be used for real-time applications but beside a signal sampling 

period a level of user interaction with the tool has to be considered as an 

important parameter that may affect the overall performance. 
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