
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING

Vol. 10, No. 1, February 2013, 185-198

185

Java Based Tool for Fault Detection

Processing and Result Visualization

Dušan Radivojević
1
, Dražen Drašković

1
,

Zaharije Radivojević
1
, Miloš Cvetanović

1

Abstract: This paper examines a possible application of Java technology for an

implementation of a software tool for processing and visualization of input

signals originating from a thermal power plant’s coal-supply system. Performance

of the tool is evaluated from the aspects of algorithms, architecture, and

scalability. During the evaluation the performance indicators were CPU and

memory load, while varied input signals were sampling rate and a level of user

interaction. All measurements are performed on both real and synthetic load.

Keywords: Java tool, Fault detection, Data visualization, Performance analysis.

1 Introduction

The main reasons for use of Java technology for processing and

visualization of signals are a wide range of available tools and free open source

libraries which enable fast and easy application development. Another advan-

tage is the ability to run the same application on different platforms without the

need for adaptation. In addition, running an application under the Java virtual

machine enables easy control of access rights to the actual resources that might

be important in safety-critical systems. The negative effects of use of Java

technology are mainly related to increased CPU and memory loads.

This paper examines the possibility of using a Java-based technology for

the implementation of a tool for signal processing and visualization. The

developed prototype, named PRODI, is a monitoring tool for a thermal power

plant’s coal-supply system. The tool, in real time, periodically check critical

input signals and by using the built-in expert system decides whether there has

been a failure or not, and also visualize input signals and calculated values. The

tool is designed according to the configuration and input signals that correspond

to the ones obtained at power plant “Nikola Tesla”. The tool is used for testing

purposes only and has never been deployed in the production environment. The

goal of this paper is to illustrate empirically obtained the tool’s performance

1School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia;
E-mails: dusan.radivojevic.belgrade.serbia@gmail.com; drazen.draskovic@etf.rs; zaki@etf.rs; cmilos@etf.rs

UDK: 004.438 “JAVA” DOI: 10.2298/SJEE1301185R

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

186

results and to describe certain design decisions made during the development of

the tool.

The paper has the following structure. Section two gives insight into

background and motivation for the implemented fuzzy logic algorithms. The

tool description and implementation details are given in Section three, while

Section four examines the performance of implemented algorithms, used

architecture, and expected scalability. Section five evaluates the obtained

results, while section six concludes the paper.

2 Background and Motivation

In modern complex systems, especially safety-critical systems like thermal

power plants, it is very important to incorporate reliable fault detection and

isolation (FDI). Assuring early detection of faults has many benefits such as

avoiding subsystem deterioration, maintaining performance and optimality or

avoiding damage to main machinery. In addition to early detection, it is very

important to provide for quick error isolation so that operators can take proper

corrective action and restore the system to its normal operating point, avoiding

unnecessary shutdowns.

The coal-supply subsystem is one of the most important subsystems in

modern thermal power plants, responsible for adequate fuel delivery. Any

failure to maintain its normal operating condition can lead to operating losses

and production delays. The coal stored in hoppers falls onto the first and second

conveyors called the feeders, which delivers the coal to the mill. The mill

crushes the coal into fine dust, which is then added to preheated air. The

resulting air-fuel mixture is blown into the burner. This process is monitored by

means of the air-fuel mixture temperature. Since the temperature of the

preheated air is well regulated, with small variations, the temperature of the air-

fuel mixture is mainly defined by the amount of coal dust. If the amount of coal

reaching the mill decreases (e.g., if a large chunk of coal blocks the supply to

the feeder), the temperature of the air-fuel mixture increases because it mainly

consists of preheated air (coal dust decreases the temperature of the mixture

because its temperature is much lower than that of the preheated air). When the

air-fuel mixture temperature exceeds a 250o

C, the burner has to be shut down.

The main idea is to construct an FDI system able to detect any coal-shortage as

early as possible, using the data from the process.

The vast number of FDI algorithms found in the literature can be divided

into two groups: model-based algorithms and data-driven algorithms. Model-

based algorithms assume the existence of a mathematical model of the system,

which makes them very powerful. However, this assumption also represents the

main drawback [1, 2], as model-based algorithm design needs to be insensitive

to disturbances and include noise impact suppression mechanisms, while being

Java Based Tool for Fault Detection Processing and Result Visualization

187

robust to modeling errors with sufficient sensitivity to faults [1]. Modern power

plants represent complex systems with large numbers of unknown inputs,

rendering mathematical modeling very complicated or even impossible. Data-

driven algorithms, on the other hand, are based on the statistical decision theory

and can be further divided into two main groups: sequential algorithms and

fixed size sampling (FSS) algorithms [3, 4]. Data-driven algorithms also have

drawbacks. Sequential algorithms are well developed for stationary systems, but

in variable structure systems like power plants, forming a decision strategy is a

highly sophisticated problem. FSS algorithms are much easier to implement but

their main drawback is the introduction of a large number of assumptions which

they cannot readily satisfy in a real-life application [5, 6].

A two layer FDI system [7] for coal-shortage detection in a thermal power

plant coal-supply unit is shown in Fig. 1. Layer 1 consists of a knowledge-based

fault detection and isolation intelligent system (FDIIS) and an algorithm based

on an FSS strategy, proposed [8], running in parallel. Outputs from these

systems (residuals) are then passed on to Layer 2 of the intelligent system for

evaluation and a final decision on whether a coal-shortage really occurred. As a

result, a lower probability of miss and faster detection are accomplished. The

motivation for this FDI structure lies in the knowledge that no perfect FDI

algorithm exists and that reliable and in-time fault detection and isolation in

complex systems can be achieved by combining different methods, and this

combined FDI method offers several “opinions”.

Fig. 1 – Two-layer system. Layer 1 consists of an FDIIS running in parallel

with an FSS algorithm. Layer 2 consists of an intelligent system

which evaluates residuals (REIS), generated by Layer 1 algorithms.

3 Tool Description

The software tool is implemented upon the previously presented theoretical

background. The algorithms conform to the requirements of the Nikola Tesla

Thermal Power Plant, Obrenovac, Serbia. The problem addressed concerns

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

188

coal-shortage detection at the mills of this plant. The system comprises three

parts: Data Acquisition, OPC Server and PRODI tool (Fig. 2).

Fig. 2 – Structure of PRODI tool.

The Data Acquisition represents the boiler of the thermal power plant. It is

a SCADA application, including a schematic representation of the process and

on-demand simulation of faults. It consists of modules for combustion chamber,

six mills, control unit, turbine controller, fuel oil system, and superheater.

Within modules, parameters like mill velocity, mill current, feeder torques, and

others can be interactively changed.

The OPC (Object Linking and Embedding (OLE) for Process Control)

ensures communication of real-time plant data between control devices from

different manufacturers. OPC was designed to provide a common bridge for

Windows based software applications and process control hardware.

The PRODI tool (Fig. 2) consists of five modules named: data generation,

data input, FDI algorithm, data storage, and visualization. Data generation

module produces data streams that statistically corresponds to the real

measurements and enables PRODI tool to be used independently for simulation

purposes. Data input module reads data streams from either OPC Server, Data

generation module, or file, and converts them to a form suitable for the FDI

algorithm.

The FDI algorithm module processes data according to algorithms

described in the previous section. The algorithm is organized in two layers

where the first layer comprises of intelligent system based on fuzzy logic [4]

and system based on fixed size sampling [5]. The systems at the first layer run

in parallel and forward their results to the second layer. The second layer

contains an intelligent system based on fuzzy logic that decides on whether a

system works correctly or a fault occurred [8, 9]. The processing is implemented

as a real-time system meaning that the all calculations and visualization have to

be performed within a sampling cycle. The system supports variable sampling

Java Based Tool for Fault Detection Processing and Result Visualization

189

cycle and the signals that could be sampled and processed encompass feeder

moment, mill current, feeder and mill torque. All three algorithms were firstly

developed using MATLAB environment and that implementation was used as a

referent for testing purposes. Afterward, a second implementation using Java

programming and available fuzzy logic libraries was developed. The Java

implementation was further optimized, bringing up the third implementation,

having in mind fixed size of the sampling buffer needed for the algorithm and

iterative nature of processing.

Data storage module collects both input and output data used by the FDI

algorithm module and stores them in external files or databases in such a way

that enables reconstruction of complete history or any part of it. Stored data is

signed using private-public key encryption for the purpose of non-repudiation

and data integrity preservation. Stored data can be also used for simulation and

algorithm verification purposes.

Data visualization module displays input signals, variables and decision

functions, and supports on-line parameter tuning. Each graphic (Fig. 3) supports

manipulation of range size, provides an instant overview of signal levels, and

displays the domain in which a supply system failure was recognized. Apart

from the visual display of selected signals, additional options, including display

parameter tuning, signal status change notification and help options are available.

Fig. 3 – PRODI tool: visualization of input signals and decision functions.

The PRODI tool was developed using integrated development environment

(IDE) Eclipsе v3.6.1, with additional plug-in WindowBuilder v8.1 for user

interface design and Test and Performance Tools Platform v4.7.1 for perfor-

mance evaluation during development process. Development process relayed on

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

190

using existing solutions, such as open source libraries, as much as possible. The

JFuzzyLogic library was used as a support for fuzzy logic processing and some

of the frequently used methods encompass fuzzification, defuzzification, and

interpretation of Feature Code List (FCL) formatted text files. The JFreeChart

library was used for data visualization using various types of charts, pies, graphs,

and supporting objects (e.g. labels, markers, annotations). The JEasyOpc library

was used for accessing the OPC server and retrieval of signal values sampled by

the Data Acquisition part of the system.

4 Performance Analysis

Insight into performance of a tool enables quality and usability assessment

of the tool and technologies used for its development. Besides, performance

analysis can pinpoint the potential bottlenecks that might be resolved by

changing or optimizing the source code.

Performance analysis and results presented in this paper are obtained on

Intel Core i3 M350 (2,27GHz), with 3GB DDR3 physical RAM memory, 64-bit

Windows 7 SP1 operating system and 32-bit Java virtual machine version

1.6.0_26. Tools used for performance and resource measurements are standard

Windows monitoring tool Resource Monitor and Java profiler VisualVM

version 1.3.2.

This section is organized in three subsections dealing with different aspects

of performance analysis. The first subsection presents the results regarding the

different implementations of the FDI algorithms used in the tool. The different

approaches to the software architecture of tool are considered in the second

subsection, while the third subsection deals with scalability of the tool.

4.1 Algorithms

Performances of the FDI algorithms have a great impact on the overall

performances of the tool because they represent core of the signal processing.

Obtained results illustrate differences among three implementations and used

technologies.

The version developed using MATLAB was used as a referent

implementation and was not considered for production because of the

requirements to support true real-time environment. Two other implementations

are developed using Java programming language. Even though Java supports

real-time execution using specific virtual machines such as jRate, Apogee, or

IBM WebSphere Real-Time, this paper considers performance results using

conventional Java virtual machine. The first Java version is developed using

existing open source libraries for fuzzy logic. The second Java version, which

solely relies on standard Java libraries and specially developed methods, is

optimized with regard to the problem addressed and domain knowledge.

Java Based Tool for Fault Detection Processing and Result Visualization

191

The evaluation procedure measures the processing time from the moment

of data entry into the FDI algorithm module to the moment of release of the

corresponding output. The input data contains 7195 samples and the sampling

rate is set at a value of one second. Execution time of the algorithm is calculated

as average time spent per sample.

0 2 4 6 8 10 12

1.12

10.46

1.59

Matlab 1st version 2nd version

miliseconds

Fig. 4 – Comparison of signal processing algorithm performance.

The execution time, given in Fig. 4, shows that the referent implementation

exhibits the best processing time coming from the fact that is executes using

native mode. Even though the best in laboratory conditions MATLAB

implementation was not considered for production because of the requirements

to support true real-time environment. Comparison of implementations in Java

shows that the processing time of the first version is increased by a factor of 6

compared to the second, optimized version, or 9 compared to the reference

implementation.

0.73

6.40%

0.11

0.97%
0.18

1.55%

10.35

91.08%

other

algorithm

data fetch

jFuzzyLogic

Fig. 5 – PRODI tool execution time distribution in milliseconds (per sample).

In order to understand the reasons for discrepancy between two Java

versions the execution time distribution has to be analyzed. The percentages of

time that the first version spends in the various parts of the code are unevenly

distributed as shown in Fig. 5. The largest proportion of the time (91%) is taken

up by fuzzy logic expert subsystems, or more precisely by fuzzy system

processing methods.

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

192

In the JFuzzyLogic library used for the first version, the most demanding

process during the implementation of the fuzzy logic controller is the

implication process where the resulting membership function is computed in a

pre-defined range, which is the standard approach in the implementation of a

configurable controller. On the other hand, in the second version this is exactly

where reference to a specific knowledge base and the nature of the membership

functions are used. By computing important points only no time is lost on

computing the entire range of the function. Since the range in the library is

modeled for 1000 samples, and the resulting membership function is computed

twice in both fuzzy logic subsystems (FDIIS and REIS), there are 4000

operations per sample, compared to the two operations required in the second

version.

4.2 Architecture

In this subsection two versions implemented in Java are compared from the

aspect of software architecture. The first version uses four threads while the

second version uses two threads. The four-thread architecture relies on one

thread for visualization and other three for data input, algorithm processing and

data storage [10, 11]. The two-thread architecture displays results in the first

thread, while data input, algorithm processing and data storage are in the second

thread, as presented in Figs. 6 and 7.

Fig. 6 – The two-thread architecture.

Java Based Tool for Fault Detection Processing and Result Visualization

193

Fig. 7 – The four-thread architecture.

The processor load is measured with and without user interaction during the

tool testing. Even though it is not an integral part of the processing algorithms,

user interaction is considered because the time elapsed from the moment of

acquisition of sample to the moment of displaying the result of processing may

depend on the level of interaction and demanding graphical operations. It is

extremely important to understand this behavior very well because if the

processor load during user/application interaction is at its maximum, this means

that it might not be possible to execute the processing algorithm at the planned

rate. Fig. 7 shows average and maximum loads when there is no user

interaction, as well as maximum loads with user interaction, for both

implementation versions. The first version generates a slightly lower CPU load,

and therefore better overall performance.

Average Peak Interactive

0

10

20

30

0.8
2.8

26.5

3.1

7.4

28.1

1st version 2nd version

p
e
rc
e
n
ta
g
e
s

Fig. 8 – Comparison of processor load depending on the implementation version.

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

194

A characteristic of the maxima during user interaction, which is apparent in

the processor load graphic (Fig. 8), is that they usually occur at the beginning of

measurement and later rarely achieve that level. This type of behavior in the

present case may be attributed to the time when the user interface, as a result of

user action, initializes the graphical components not yet displayed.

The conducted tests also considered memory load with and without user

interaction. The reasons for this are the same as when considering processor

load. However, contrary to processor load, in addition to the current use of

memory (active), attention in this case also needs to be paid to the memory no

longer in use. The memory which is not in use is comprised of objects to which

there are no references, but the garbage collector has not yet cleared it and,

together with the active memory, it makes up the total memory. As shown in

Fig. 9, the total memory may be more than double in size. To avoid this

situation it is needed to provide explicit calls of the garbage collector in proper

places in the source code. However, if explicit calls are too frequent, they may

lead to unexpected processor load.

Based on the memory loads shown in Fig. 9, it is apparent that with user

interaction the first implementation is more demanding than the second

implementation and vice-versa when there is no interaction. This type of

behavior may be explained by the fact that the second implementation, that uses

only standard Java libraries, can handle better a configuration change.

Dyn. Dyn. inter. Tot. Tot. inter.

0

50

100

150

14.7

44.9
59.7

97.5

21.8
35.3

65.4

86.3

1st version 2nd version

m
e
g
a
b
yt
e
s

Fig. 9 – Comparison of memory load depending on the implementation version,

where: Dyn. – Dynamic memory without interaction,

Dyn. inter. – Dynamic memory with interaction,

Tot. – Total memory without interaction,

Tot. inter. – Total memory with interaction.

4.3 Scalability

Estimating scalability of the tool requires tests where input parameters are

varied within their limits. Four out of five modules of PRODI tool

Java Based Tool for Fault Detection Processing and Result Visualization

195

predominantly depend upon two parameters, the sampling rate and a level of

user interaction. Change in the sampling rate influence on a performances and

functioning of data input, FDI algorithm, data storage, and visualization

modules. Level of user interaction places more load on a visualization module

that is identified as a critical one. Only module that does not depend on two

mentioned parameters is data generation module, which is only used for testing

purposes.

During experiments sampling rate is varied in range from 0.2 to 2 s, which

corresponds to an expected human reaction time. Measurements are done with,

and without user interaction, and this requires the user to go several times

through all the options offered by the tool. Conditions during all measurements

are identical or, more precisely, the tool is executed in the same environment

and displays information as follows: one graphic with all series of normalized

values, with the application window always set to the same size (1366×768) and

the same set of applications active in the background. All measurements begin

one minute after initiation of the tool and last for another five minutes.

2.0 1.0 0.8 0.6 0.4 0.2

0

10

20

30

40

50

60
Peak interactive

Peak

Average

sampling rate (seconds)

p
e
rc
e
n
ta
g
e
s

Fig. 10 – Process load at for different sampling rates.

2.0 1.0 0.8 0.6 0.4 0.2

0

50

100

150

200

250

300

350

Tot. inter.

Tot.

Dyn. inter.

Dyn.

sampling rate (seconds)

m
e
g
a
b
y
te
s

Fig. 11 – Memory load for different sampling rates, where:

Dyn. – Dynamic memory without interaction,

Dyn. inter. – Dynamic memory with interaction,

Tot. – Total memory without interaction,

Tot. inter. – Total memory with interaction.

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

196

Figs. 10 and 11 show processor loads and (peak) memory loads. Similar to

previous measurements, the highest processor load at interaction occurs only

once, during the first user action when graphical components are initialized. In

some cases the usage of the dynamic memory is increased. Unexpected increase

may be a significant problem and the cause lies in the Java virtual machine and

its inner structure. Delay in the deallocation of the dynamic memory may lead

to higher processor load due to the fact that allocating new memory space

requires more processing power when memory is congested.

5 Results Evaluation

Special attention during the implementation of PRODI tool was dedicated

to the optimization of source code in a way that would not affect its readability.

Beside signal processing algorithm adaptation described in the previous section,

steps taken regarding optimization are: avoiding instantiating temporary objects

in dynamic memory, task parallelization where possible, and reimplementation

of charts drawing library in a part regarding data storing.

The term temporary object relates to an object that has a relatively short

life-cycle after which the object is discarded and in case of Java technology, left

to garbage collector [12]. Garbage collector removes the object and frees the

dynamic memory space that was occupied by the object. Activating garbage

collector too frequently increases CPU load [13]. Activating garbage collector

too rarely may increase memory load and also CPU load in cases when there is

too much objects to be removed. Ways of dealing with temporally objects

implemented in PRODI tool are usage of primitive types instead of objects,

where possible, and “reusing” of temporary objects [14].

The usage of primitive types such as integers, floating point numbers, or

logical values instead of classes decreases memory load and decreases CPU

load by reducing garbage collector unpredictable executions [15]. Downside of

primitive types usage is decreasing code readability by deviating from object

oriented paradigm. Moreover, it is not always possible to use primitive types

when classes are expected (e.g. library interfaces require object types).

Reusing temporary objects means keeping objects even after no longer

needed with an idea to avoid creation of new objects of the same class.

Reusable objects are usually implemented as a pool of objects whose size is

determined upon estimated number of used and needed objects. Examples of

objects that are implemented as reusable in the case of PRODI tool are objects

for keeping values of signals or shared objects used for synchronization

between working thread and graphical user interface thread.

Four threaded architecture shows how effective parallelization can be, and

also how that allows easy extension of the tool’s functionalities. Parallelization

is obtained using multiple modules that are statically connected during

Java Based Tool for Fault Detection Processing and Result Visualization

197

initialization of the tool. Among modules there is one module that represents

core of the tool and it interacts with the other modules, executing in separated

threads, which are responsible for conducting specific tasks. The core module

depending on a user activity starts appropriate modules. All modules are in a

ready state after initialization of the tool, and can be started concurrently. Only

core module is aware of existence of other modules. Such architecture allows

easy extension of the system functionalities because adding a new module

requires changes only in the core module. Suggested static linking of modules

with the core module helps eliminating possible synchronization issues that

could arise in architectures where dynamic, run-time, linking of modules is

used.

Reimplementation of charts drawing library in a part regarding data storing

is also conducted by using primitive types instead of classes. Floating point type

is used for storing signal values, while integer type is used for storing absolute

time shown on a chart. The library requires that both signal values and time

values, are kept in form of data series. Instead of existing data series as dynamic

structures, reimplementation introduced solution based on ring buffers. The ring

buffers are implemented as static arrays whose sizes are based on expected

number of samples for the observation period and are reallocated automatically

when needed.

6 Conclusion

This paper presents an implementation of a software tool for monitoring of

thermal power plant’s coal-supply system. The tool processes input signals and

visualizes both input signals and calculated values. In the essence the tool

executes two stage fault detection algorithm based on fuzzy logic for the

purpose of determining the correctness of the coal-supply and transportation

system. The tool was developed using the Java programming language and

some open source libraries.

Performance of the tool is evaluated from the aspects of algorithms,

architecture, and scalability. During the evaluation the performance indicators

were CPU and memory load. Evaluation of the algorithms showed that use of

domain-specific knowledge and minimal changes in the open-source libraries

can enable significant speedup of critical parts of the tool. Evaluation of the

architecture showed that four threaded architecture creates lower CPU load then

two threaded counterpart, but may introduce additional memory load in the

presence of user interaction. Evaluation of the scalability showed that Java

based tools can be used for real-time applications but beside a signal sampling

period a level of user interaction with the tool has to be considered as an

important parameter that may affect the overall performance.

D. Radivojević, D. Drašković, Z. Radivojević, M. Cvetanović

198

7 Acknowledgment

Work on this project was partially cofounded by the Ministry of Education,

Science, and Technological Development of the Republic of Serbia (III44009

and TR32047). The authors gratefully acknowledge the support.

8 References

[1] J. Gertler: Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, NY,
USA, 1998.

[2] S.X. Ding: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms and
Tools, Springer-Verlag, Berlin, Germany, 2008.

[3] M. Bassevile, I. Nikiforov: Detection of Abrupt Changes: Theory and Application, Prentice
Hall, NY, USA, 1993.

[4] T.L. Lai: Sequential Multiple Hypothesis Testing and Efficient Fault Detection-isolation in
Stochastic Systems, IEEE Transactions on Information Theory, Vol. 46, No. 2, March 2000,
pp. 595 – 608.

[5] L. Fillatre, I. Nikiforov: Fixed Size Sample Strategy for Change Detection and Isolation of
Non-orthogonal Faults, 7th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes, Barcelona, Spain, June 30 – 03 July 2009, pp. 283 – 288.

[6] I. Nikiforov: A Simple Recursive Algorithm for Diagnosis of Abrupt Changes in Random
Signals, IEEE Transactions on Information Theory, Vol. 46, No. 7, Nov. 2000, pp. 2740 – 2746.

[7] V. Todorovic, P. Tadic, Z. Djurovic: Expert System for Fault Detection and Isolation of
Coal-Shortage in Thermal Power Plants, Conference on Control and Fault Tolerant Systems,
Nice, France, 06 – 08 Oct. 2010, pp. 666 – 671.

[8] P. Tadic, Z. Djurovic, G. Kvascev, V. Papic: Coal-shortage Detection in Power Plants by
Means of a Fixed Size Sampling Strategy, IFAC Conference on Control Methodologies and
Technology for Energy Efficiency, Vilamoura, Portugal, 29 – 31 March 2010.

[9] P. Tadic, M. Stanković, S. Stanković, Ž. Djurović: An Application of Decentralized
Estimation in a Fault Detection Problem, Serbian Journal of Electrical Engineering, Vol. 6,
No. 3, Dec. 2009, pp. 373 – 387.

[10] Z. Radivojević, M. Cvetanović, Z. Jovanović: Reengineering the SLEEP Simulator in a
Concurrent and Distributed Programming Course, Computer Applications in Engineering
Education, (Early View).

[11] Z. Radivojević, M. Cvetanović: Dizajn simulatora diskretnih događaja opšte namene, ETRAN
Conference, 06 – 08 June 2006, Belgrade, Serbia, Vol. 3, pp. 146 – 149. (In Serbian).

[12] H. Inoue, D. Stefanovic, S. Forrest: On the Prediction of Java Object Lifetimes, IEEE
Transactions on Computers, Vol. 55, No. 7, July 2006, pp. 880 – 892.

[13] A. Corsaro, D. Schmidt: The Design and Performance of Real-time Java Middleware, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, No. 11, Nov. 2003, pp. 1155 – 1167.

[14] R. Krapf, L. Carro: Efficient Signal Processing in Embedded Java Systems, International
Symposium on Circuits and Systems, Bangkok, Thailand, 25 – 28 May 2003, Vol. 4,
pp. IV-61 – IV-64.

[15] Y. Chang, A. Wellings: Garbage Collection for Flexible Hard Real-time Systems, IEEE
Transactions on Computers, Vol. 59, No. 8, Aug. 2010, pp. 1063 – 1075.

