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Abstract: Since modern multicore processors can execute existing sequential 

programs only on a single core, there is a strong need for automatic 

parallelization of program code. Relying on existing algorithms, this paper 

describes one new software solution tool for parallelization of sequential 

assembly code. The main goal of this paper is to develop the parallelizator which 

reads sequential assembler code and at the output provides parallelized code for 

MIPS processor with multiple cores. The idea is the following: the parser 

translates assembler input file to program objects suitable for further processing. 

After that the static single assignment is done. Based on the data flow graph, the 

parallelization algorithm separates instructions on different cores. Once 

sequential code is parallelized by the parallelization algorithm, registers are 

allocated with the algorithm for linear allocation, and the result at the end of the 

program is distributed assembler code on each of the cores. In the paper we 

evaluate the speedup of the matrix multiplication example, which was processed 

by the parallelizator of assembly code. The result is almost linear speedup of 

code execution, which increases with the number of cores. The speed up on the 

two cores is 1.99, while on 16 cores the speed up is 13.88. 

Keywords: MIPS, Compiler, Assembler, Parser, SSA form, Data flow graph, 

METIS, Linear scan register allocation. 

1 Introduction 

The appearance of multiprocessor systems has provided new opportunities 
to increase the speed of program execution. Parallelization of existing 
sequential programs and the generation of new parallel programs have become 
important areas of research. The aim of this work is to develop parallelizator of 
assembly code and evaluate how parallelization affects the speed of program 
execution. Besides the large set of programming languages, there is now a 
considerable choice in their upgrades in the form of libraries (MPI, OpenMP, 
OpenCL, etc.) that allow programmers to develop applications that run 
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concurrently on multiple processors or multicore processor of a multiprocessor 
computer. Information technologies have gone a step further, separating 
themselves from the physical support to the higher layers of abstraction of 
computer systems. This primarily applies to the languages and technologies 
with an automatically controlled allocation of memory (Microsoft C# with .Net, 
Java, etc.). The development of smart phones, tablets, smart TVs, and their 
growing popularity led to the return to massive use of low level programming 
languages (Assembler and C). Certain efforts were made for automatic 
parallelization of sequential C code [1]. Still, increasing the use of C/C++ 
programming languages, what is also the contribution of the new C++11 
standard, there is a need for assembler programming for real time processing. 
RISC (Reduced Instruction Set Computing) processors, which are mostly used 
in phones and similar embedded devices, are starting to follow the CISC 
(Complex Instruction Set Computing) processors. Motivated by the increasing 
popularity of RISC processors, this paper, relying on the existing algorithms, 
implements the translator of source code that automatically translates a given 
sequential code for execution on a single core to parallel code intended for a 
fixed number of cores. A number of papers have already made different 
researches on techniques of assembly code optimization, but not parallelization. 
Amme et al. [2] described a new approach for the determination of data 
dependences in assembly code. It is based on a sophisticated algorithm for 
symbolic value propagation, and it can derive value-based dependences between 
memory operations instead of just address-based dependences. It was integrated 
into the system for assembly language optimization and proved to be a good 
improvement in terms of the precision of the dependence analysis in many 
cases. 

The techniques used in this paper are taken from the design of program 
compilers. The techniques are adapted to a specific problem, namely: static 
single assignment form [3] (hereinafter SSA form) that is intermediate 
representation of data during the program translation, and the linear scan 
algorithm for register allocation as the phase that follows parallelization 
algorithm [4]. 

Section 2 describes the architecture of parallelizator and presents activity 
diagram and class diagram. Parallelizator of assembly code is divided into three 
parts: the frontend, middle, and backend. The frontend of parallelizator, 
described in Section 3, represents parser of assembler code with the 
transformation to SSA form. Section 4 describes the middle part of 
parallelizator that contains the data flow graph and the parallelization algorithm. 
The backend of parallelizator, which is used for both register allocation of 
processed assembler code and code emitter, is given in Section 5. Section 6 
refers to the parallelizator evaluation, while the last section presents the 
conclusion. 
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2 The Architecture of Parallelizator 

The main assignment of parallelizator is to read sequential assembler code 
for execution on one core at the input stage, and to deliver parallelized code for 
MIPS processor with multiple cores at the output. 

Fig. 1 shows the activity diagram of parallelizator, which illustrates the 
following sequence of events: 

Assembler code was obtained by compiling C code with GCC compiler. By 
including option –S in the GCC compiler, instead of machine code, the 
assembler code is produced at the output. 

The parser translates input assembler file into programming objects suitable 
for further processing. These objects imitate normal intermediate code of 
programming interpreter. The object contains pointers to the registers which it is 
related to. Registers are represented as variables for transition to SSA form. 

Unlike the original source code that usually redefines each variable more 
than once, in the SSA form each variable is defined exactly once, and can be 
used multiple times [3]. The realization of SSA form produces lists of used and 
defined variables, which are used to obtain intermediate code that is easily to 
handle later on. 

1. Data flow graph is determined over all instructions of assembly code, 
where each instruction has a list of instructions that it depends on. 

2. The main idea for parallelization was the partitioning of data flow graph 
as studied in [5, 6]. Capko et al. [5] stated that the necessary 
preconditions for the efficient calculation are optimal load balancing of 
processors and data model partitioning among processors. They 
proposed the novel multilevel Super-Roots algorithm that is actually an 
improved existing algorithm. Existing algorithm, METIS [7] from 
METIS from METIS tool was used for initial partitioning of data 
model. The proposed algorithms are applied on data model described in 
[5]. They stated that experiments have shown that Super-Roots 
algorithm achieves better results than METIS multilevel algorithm in 
many cases, but this is true only in the case when calculation regions 
are weakly connected. In their next paper [6], Capko et al. included the 
solution for partitioning dynamically changed graphs. Based on the data 
flow graph, the parallelization algorithm divides instructions to 
different cores. After the parallelization algorithm is performed, it is 
possible that the liveness of a variable is discontinued, i.e. the variable 
continues to live on another core. In that case it is necessary to add 
synchronization instructions (load/store instructions) to the cores.  

3. The classic compilers use algorithm for register allocation using 
mathematical theory of graph coloring. The biggest drawback of this 
method is that it takes a lot of processing power to perform. Because of 
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its speed, which is up to 70 times higher than the graph coloring [4], the 
linear register allocation is used. When performing a linear registers 
allocation after SSA analysis, it is necessary to make the liveness 
analysis as an intermediate step. This analysis is achieved by only a 
single pass through the list of instructions, where the positions of 
variables in the SSA form are sufficient information. 

Registers allocation is shown in Table 1. 

 

Fig. 1 – UML activity diagram of parallelizator. 

 

Table 1 

The registers allocation flow, from the original program 

to the registers of hypothetical processor. 

 1 2 3 4 

Source code X = 2 Y = 3 X = X +Y X = X + 5 

SSA X.0 = 2 Y.0 = 3 X.1 = X.0 + Y.0 X.2 = X.1 + 5 

Live variables Rs1 Rs1, Rs2 Rs1, Rs2, Rs3 Rs3, Rs4 

Register allocation R1 R1, R2 R1,R2,R3 R1, R3 
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Fig. 2 shows modules (with appropriate classes) of parallelizator: parser 
(CParser), module for transitioning code to SSA form (CRegisterRename), the 
data flow graph builder (CDdg), METIS library for separating data flow graph 
to the desired number of partitions (CDDGPartitioner), module for data 
synchronization based on shared memory (CParallelizer), registers allocation 
(CResourceAllocator) and code emitter module (CDumper). 

 

Fig. 2 – UML class diagram of parallelizator. 

 

The program was implemented so that the main function calls Do() method 
of class CAsmParallelizer. The Do() method calls Do() methods of remaining 
classes that implement already mentioned modules of parallelizator. 

3 Parallelizator Frontend 

Parallelizator frontend consists of assembly code parser that performs the 
transformation to SSA form. The parser is implemented by string tokenization 
and switch-case decision structure. It has two levels: 

1. The first level extracts line by line from the assembly code, ignoring 
lines that are not of interest for further processing. 

2. The second level divides the text line into tokens of interest for further 
processing. 
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For example, the line “ADD $t1, $t2, $t3” is divided by the parser to 4 
symbols: “ADD” – type of instructions, “$t1” – the destination register, “$t2” – 
source register and “$t3” – source register. 

The condition for switch-case structure is a type of instruction. Switch-case 
structure recognizes the type of instruction and sets lists of uses and definitions 
of variables. 

While extracting lines from an assembly code line-by-line, the parser 
classifies the whole assembler code to: program, functions and basic blocks. All 
the data elements are connected by the pointers. The initial assembler program 
is presented as a list of objects CFunctionBlock, where each single element of 
the list contains information about one function of the initial program. The 
function is considered to begin with the directive .align and to end with the 
directive .size. CFunctionBlock contains information about basic blocks, 
specifically a list of objects of type CBasicBlock, while the basic block contains 
information about the instructions, namely a list of objects of type CInstruction. 

 

Fig. 3 – The data structure of the assembly code parser. 
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Each instruction contains the type of instruction, and two lists of variables: 
(1) list of variables used by the instruction, and (2) list of variables defined by 
the instruction. 

Data structure of the assembly code parser is illustrated in Fig. 3. 

The module for transitioning code to SSA form is part of the parser, but as 
an important technique, it had to be presented separately. SSA formed code 
implies that each variable is defined exactly once, and can be used multiple 
times. These variables are enabling easier implementation of optimization 
techniques in the program compilation process. 

There are papers that show that the linear scan algorithm for register 
allocation on SSA form provides the same or even better results than the 
classical register allocation via mathematical methods of graph coloring [4]. In 
the example given in Table 2, the variable X based on SSA analysis is renamed 
in X.1, as the result of variable redefinition. The example shows that X.2 does 
not take the value X.0, but that it takes the value X.1 since X is redefined. 

4 Parallelizator Middle Part 

The middle part of parallelizator consists of the following modules: the data 

flow graph, METIS library for dividing data flow graph to the desired number 

of partitions, and modules used for data synchronization via shared memory. 

The structure dependencies that exist in the program are well formed using 

the graph as the program abstraction. Data flow graph is performed over all 

instructions of assembly code. The nodes of the graph represent instructions, 

while branches of the graph connect dependent instructions. Branches of the 

graph represent variables, thus instruction dependencies are defined according 

to use of same variables. Each instruction has a list of instructions from which it 

depends on. To determine the relationship between instructions, variables of 

each instruction are observed. Two instructions are dependent if same variable 

appears in both instructions. 

Based on the data flow graph, the parallelization algorithm divides 

instructions into different partitions, intended to fit to different cores. In the case 

of data flow graph described in this paper, calculation regions are strongly 

connected and the graph is not changed during partitioning, i.e., after 

compilation. Thus, the reduced algorithm from those from [5] and [6] is used. 

Specifically, multilevel k-way algorithm for graph partitioning from METIS 

tool is selected [8]. This algorithm divides the data flow graph into a desired 

number of partitions, providing approximately the same load per each core of 

processor, but also trying to find the least possible number of links between 

partitions on which it divides the graph. 
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After the instructions are distributed by the cores, the synchronization 
instructions are added where necessary (load/store instructions). If there is a 
variable in the instruction which is used in one core, and it is not defined in that 
core, it is necessary to add synchronization instructions to the cores. The store 
instruction should be added to the core where the variable is defined and the 
load instruction should be added to the core where the variable is used. 
Specifically, the store instruction is added after the variable is defined in some 
core, while load instruction is added before using the variable in the other core. 

5 Parallelizator Backend 

The backend of parallelizator performs resource allocation. Resource 
allocation includes the allocation of physical locations, registers and memory to 
logical data, in this case, the data presented in the SSA form. 

In case of the parser model, SSA form considers one exception. The 
registers that should not be changed present that exception. Changing any of 
these registers would introduce undefined program execution as a result. 
Registers which must not be changed are: zero register ($0), register that 
assembler uses to switch from pseudo-instruction to physical instruction ($at), 
registers reserved for the OS kernel ($k0, and $k1), a global pointer ($gp) the 
stack pointer ($sp), the frame pointer ($fp), return address register ($ra), 
registers that hold return value from a function ($v0, and $v1), and registers for 
passing parameters to function ($a0, $a1 , $a2, $a3) [9]. 

All other registers are included in the set of registers available for 
allocation. Type of this set is the STL set. The uniqueness of the registers was 
accomplished using the set. As such, they are free for use during allocation. 
When the register is allocated, it is transferred from a set of available registers 
to the set of occupied registers. When the register lifetime comes to an end, 
according to liveness analysis data, the register is returned to the set of available 
registers. 

6 Evaluation 

Evaluation was done on the example of matrix multiplication. 

The dependency between the source code speedup and the number of cores 
was observed in this example. The speedup is defined as the ratio of Ts/Tp, 
where Ts is execution time of sequential program, while Tp is execution time of 
parallel program. It is assumed that all instructions have the same execution 
time. Ts presents the total number of sequential assembly code instructions, 
while Tp is the largest number of distributed instructions per core. 

Table 2 shows how number of cores influences the assembly code execution 
speedup. In the example of matrix multiplication, the code execution speed is 
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growing, as the number of cores increases. Using only two cores the speedup is 
doubled compared to the sequential code execution. Using 16 cores, the 
speedup is almost 14 times larger. 

Table 2 
Results of experimental measurements of code execution speedup. 

Number of cores 
Speedup code on the example

of matrix multiplication 

2 1.99448 

4 3.94536 

8 7.76344 

16 13.8846 

 

Fig. 4 presents graphical results of the code execution speedup depending 
on the number of cores. 

  

Fig. 4 – Code execution speedup results depending on the number 

of cores on the example of matrix multiplication. 
 

7 Conclusion 

This paper presents a new solution for automatic parallelization of 
assembly code. It is separated in three parts: frontend, middle part, and backend. 
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Most important methods included in proposed assembly code parallelization are 
transition for single static assignment from frontend, building data dependency 
graph and graph partitioning from middle part, and finally resource allocation 
and instructions scheduler from backend. 

By analyzing the testing results it can be concluded that the results are 
satisfactory. High and almost linear code execution speedup was achieved when 
increasing number of cores. The speedup for 2 cores is 1.99, while for 16 cores 
the speedup is 13.88. 

Current solution builds data dependency graph according to register 
dependency only, i.e. the memory locations dependencies are not taken into 
account. In order to avoid the risk of data races, alias analysis in terms of 
memory locations should be added to this solution. Alias analysis of executable 
code is well studied topic [9], but these new dependencies will definitely make 
graph partitioning more complex and implicitly reduce partitioning 
effectiveness and code execution speedup accordingly. 

The second limitation of this solution is partitioning of graphs generated 
from sequential code only. In order to make it applicable for code structured in 
any way, analysis based on control flow graph and the determination of 
dependencies among basic blocks should be added. 

The choice of the linear registers allocation in this paper has proved as a 
relatively simple algorithm that does not consume a lot of resources for 
allocation. In terms of allocation efficiency it is not behind the conventional 
algorithm for registers allocation, as stated in [10]. 

Having in mind that other solutions are only offering different techniques 
for optimization of assembly code, the method proposed in this paper is a first 
step towards an ambitious goal of making a complete translator of sequential 
assembly code to the parallel one. 
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