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Fault Detection in Electric Power 

Systems Based on Control Charts 
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Abstract: This paper analyzes the control system of  the combustion process and 

protection from explosions in the boiler furnace of thermal power plant using the 

techniques of control charts. The data from old and newly introduced system for 

measuring under-pressure differences in boiler furnace at unit B2, TE Nikola 

Tesla (TENT) Obrenovac, were analyzed. The signal of undepressure diference 

is used for boiler protection function in thermal power plant TENT B. The results 

that confirm the advantages of the newly introduced system of measurements are 

presented. A detailed discussion about the benefits and the shortcomings of the 

control charts application in industrial processes are given in the paper. 

Keywords: Control chart, Statistical process control, Fault detection, Under-

pressure difference in boiler furnace. 

1 Introduction 

Process control and monitoring are becoming essential tasks in nowadays 

industry. Today, all processes are automatized and they contain a lot of sensors 

and actuators. Because of that, the control of these processes is sometimes very 

difficult. There are two principal approaches to perform the process control, 

namely, data driven techniques and analytical techniques [3]. In theory, the 

analytical technique is the better approach. It is based on analytical (physical) 

model of the system and permits to simulate the system. Though, at each 

instant, the theoretical value of each sensor can be known for the normal 

operating state of the system. As a consequence, it is relatively easy to see if the 

real process values are similar to the theoretical values. But, the major drawback 

of this approach is the fact that it requires detailed models of the process. An 

effective detailed model can be very difficult, time consuming and expensive to 

obtain, particularly for large scale systems with many variables. The data-driven 
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approaches are a family of different techniques based on the analysis of the real 

data extracted from the process. These methods are based on rigorous statistical 

development of the process data. In this paper we will work in the data-driven 

monitoring framework.  

Many data-driven techniques for the fault detection can be found in the 

literature: univariate statistical process control [1], multivariate statistical 

process control [2], and some PCA (Principal Component Analysis) based 

techniques [5, 6]. Other important approaches are PLS (Projection to Latent 

Structures) based approaches [7]. These fault detection techniques are able to 

detect a fault (disturbance) in a univariate and multivariate processes. The fault 

diagnosis procedure can also be seen as a classification task. Combination of 

multivariate statistical process control and Bayesian network as classifier can be 

found in literature [4, 8]. In this article we will describe implementation of 

univariate statistical process control in electric power system.  

Statistical process control (SPC) is a powerful collection of problem-

solving tools useful in achieving process stability and improving capability 

through the reduction of variability. SPC can be applied to any process. It has 

seven major tools, but the control chart is the most technically sophisticated. It 

was developed in the 1920. by Walter A. Shewhart [9] of the Bell Telephone 

Laboratories. Since then many types of control charts were developed and 

univariate SPC is extended to multivariate SPC when there is need for 

monitoring more than one variable. Control charts have had long history of use 

in industries. There are many reasons for their popularity. Control charts are a 

proven technique for improving productivity, as they are effective in defect 

prevention, they prevent unnecessary process adjustment, they also provide 

diagnostic information and they provide information about process capability. 

Modern computer technology has made it easy to implement control charts in 

any type of process, as data collection and analysis can be performed on a 

microcomputer or a local area network terminal in real time.   

Тhe main purpose of the control chart is to improve the process. In practice 

it is generally found that most processes work out of statistical control. Routine 

and careful use of control charts may help in successful identification of 

failures. If the causes of failures can be eliminated, variability will be reduced, 

and consequently the process will be improved [1]. 

The application of control chart techniques on real process in thermal 

power plant is described in this article. The old and newly introduced system for 

measuring under-pressure differences in boiler furnace at unit B2, Thermal 

Power Plants Nikola Tesla, Obrenovac, Serbia, were analyzed. The main goal of 

this analysis is to confirm advantages of the newly introduced system in regard 

to old system of measurement. In electric power systems the most important 

task is the increase of efficiency and reliability. Therefore, the analysis of the 
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control system of the combustion process and protection from explosions in the 

boiler furnace with control charts aims to help in improving the whole system 

and make it more reliable. 

This paper is structured as follows: in the next section we present the 

general theory of control charts. In Section 3 the control system of the 

combustion process and the protection from explosions in the boiler furnaces of 

thermal power plant is introduced, in details with its most important features. In 

Section 4 we present the application of control charts on the old and newly 

introduced system for measuring under-pressure differences in boiler furnace at 

various altitudes, and experimental results are presented. In Section 5 the 

conclusion and a short discussion about the advantageous and the shortcomings 

of the application of control charts in industrial processes and possible solutions 

to problems encountered are presented.  

2 General Theory of Control Charts 

The control chart is a statistical tool for fault detection in the system. 

Control charts make a clear difference between changes that are result of 

numerous, always present immeasurable disturbances in the process and 

changes that are the result of system fault. Generally speaking, control charts 

present graphical display of regular, e.g., irregular operation mode of process 

during time. 

In any production process, regardless of how well it is designed and 

maintained, a certain amount of inherent or natural variability will always exist. 

This natural variability or “background noise” is the cumulative effect of many 

small, essentially unavoidable causes. In the framework of statistical quality 

control, a system that has this natural variability is often called a “stable system 

of common causes”. A process that is operating with only common causes of 

variation is said to be in statistical control. In other words, the common causes 

are an inherent part of the process. Other kinds of variability may occasionally 

be present in the output of the process. Such variability is generally large when 

compared to the background noise, and it usually represents an unacceptable 

level of process performance. We refer to these sources of variability that are 

not part of the chance cause pattern as “special causes”. A process that is 

operating in the presence of special causes is said to be out of control.   

The control chart is a graphical display of a quality characteristic that has 

been measured or computed from a sample versus the sample number or time. A 

typical control chart contains a center line that represents the average value of 

the quality characteristic corresponding to the in-control state, e.g. only 

common causes are present. Two other horizontal lines, called the upper control 

limit (UCL) and the lower control limit (LCL), are also shown on the chart. 

These control limits are chosen so that if the process is in control, nearly all of 
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the sample points will fall between them. It is customary to connect the sample 

points on the control chart with straight-line segments, so that it is easier to 

visualize how the sequence of points has evolved over time. On Fig. 1 typical 

control chart is shown. 
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Fig. 1 – Typical control chart. 
 

Even if all the points fall inside the control limits, if they behave a 

systematic or nonrandom manner, then this could be an indication that the 

process is out of control. If the process is in control, all the plotted points should 

have an essentially random pattern. 

There is a close connection between control charts and hypothesis testing. 

The control chart is a test of the hypothesis that the process is in a state of 

statistical control. A point plotting within the control limits is equivalent to 

failing to reject the hypothesis of statistical control. One place where the 

hypothesis testing framework is useful is in analyzing the performance of a 

control chart. For example, we may think of the probability of type I error of the 

control chart (concluding the process is out of control when it is really in 

control) and the probability of type II error of the control chart (concluding the 

process is in control when it is really out of control). 

We now may give a general model for a control chart. Let w be a sample 

statistic that measures some quality characteristic of interest, and suppose that 

the mean of w is 
w

μ  and the standard deviation of w is 
w

σ . Then the center line, 

the upper control limit, and the lower control limit become 
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where L is the “distance” of the control limits from the center line, expressed in 

standard deviation units. This general theory of control charts was first proposed 

by Walter A. Shewhart, and control charts developed according to these 

principles are often called Shewhart control charts. 

Specifying the control limits is one of the critical decisions that must be 

made in designing a control chart. By moving the control limits further from the 

center line, we decrease the risk of a type I error. However, widening the 

control limits will increase the risk of a type II error. Commonly practice is to 

take for L to be L = 3 making three-sigma control limits. If the distribution of 

the quality characteristics is reasonably approximated by the normal 

distribution, then it is assumed that 99.7% of points will fall inside the control 

limits while the system is in statistical control. In this way it is made good 

balance between type I error and type II error. 

The first step in constructing the control chart requires analysis of 

preliminary data set which is assumed to be in statistical control. This phase is 

called phase I. In this phase it is very important to establish reliable control 

limits for phase II. In phase II, we use the control chart to monitor the process 

by comparing the sample statistic for each successive sample as it is drawn from 

the process to the control limits.  

Performance of the control chart can be expressed in terms of its average 

run length (ARL). Essentially, the ARL is the average number of points that 

must be plotted before a point indicates an out of control condition. If the 

process observations are uncorrelated, then for any Shewhart control chart, the 

ARL can be calculated easily from 

 
1

ARL
p

= , (2) 

where p is the probability that any point exceeds the control limits. That means 

for three-sigma control limits, p = 0.0027 is the probability that a single point 

falls outside the limit when the proces is in control and ARL = 370. That is, 

even if the process remains in control, an out-of-control signal will be generated 

every 370 samples, on average. 

When we monitor only one qualitative characteristic of interest, we use 

univariate control charts. When we monitor more qualitative characteristics 

which are correlated we use multivariate control charts which take this 

correlation into account. There are many types of control charts which can be 

chosen depending on the nature of the process. In this paper is performed 
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univariate analysis with MR (Moving Range) chart for individual measurements 

which actually contains two charts-upper chart is chart for individual 

measurements and lower chart is MR chart. 

In many applications of the individuals control chart we use the moving 

range of two successive observations as the basis of estimating the process 

variability. The moving range is defined as 

 
1

| |
i i i

MR x x
−

= − . (3) 

Let the MR  be mean value of all moving ranges and x  mean value of 

samples. Then the control lines for control chart for individual measurements 

are: 
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Control lines for MR control charts are: 
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=
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 (5) 

All constants in formulas (3) and (4) are in look up tables and depend on 

sample size [1]. 

3 Case-study: Boiler Furnace in Thermal Power Plant 

In thermal power plants the most important tasks are increasing of energy 

efficiency and availability and reliability of existing power plants. The 

replacement of old and the installation of new distributed control systems 

improve the existing electric power systems and make them more effective and 

reliable. On the other hand, these computer systems for acquisition, monitoring 

and regulation of complex processes, such as boiler, turbine and generator in 

power plants, are opening space for simple superstructure and further 

optimization  of some subsystems work, e.g., for the increase of availability and 

reliability of whole system. SCADA systems with appropriate PLC computers 

allow not only permanent monitoring and storing of all relevant physical 

quantities, but on the basis of these systems we can develop reliable protection, 

warning and regulation systems. The final goal of these computer architectures 

is the forming of optimized, more autonomic, reliable and safe processes. 
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Because of that, analysis of the control system of the combustion process and 

protection from explosions in the boiler furnace of thermal power plant helps in 

achieving this goal. 

In this paper we analyzed in unit B2, the old and newly introduced system 

for measuring under-pressure differences in boiler furnace at various altitudes 

which have protection function of the boiler in thermal power plant TENT B. 

Measuring and supervision of under-pressure difference at different 

altitudes is very important from two points of view. First one has protective 

nature, because big enough difference of these under-pressures shows stable 

combustion in boiler furnace, thus preventing explosion in boiler because of 

accumulated gasses or oxidation of unburned coal particles. On the other hand, 

after introducing protective under-pressure difference ∆p in boiler furnace, it is 

possible to reduce significantly the consumption of fuel oil to support fire and it 

is reduced number of outages of blocks TENT B, due to extinguishing fires.  

In this paper two systems for measuring of under-pressure difference on the 

boiler are analyzed. First, e.g., the former system for measuring of under-

pressure difference measures three physical quantities (one on right and two on 

left side of boiler). Each of these measurements contains two impulse lines, 

where one line is attached to the boiler at elevation 72 m, second line is attached 

to the boiler at elevation 24 m, and both lines are then conducted in the boiler’s 

environment and are placed in differential pressure sensor at elevation 44m. 

With these measurements we established empirical dependence of under-

pressure difference from temperature in boiler furnace. Based on this 

dependency and after monitoring of combusting (of fire) in furnace, border 

values of under-pressure difference are established at which boiler protection 

works. It is required under-pressure difference ∆p > 300 Pa for generation of 

permission for turning the mill on, if more than 40 m³/h fuel oil is turned on, or 

turning on of fuel oil for fire support if in drive are turned on at least three mills. 

In case where ∆p < 250 Pa protective extinguishing of fire in boiler is 

necessary. Error of old system for under-pressure difference measurement 

shows gradient dependency of almost 2 Pa per one degree (–1.92 Pa/ºC).  The 

error becomes more significant when temperature is bigger than 20°C and 

endangers usefulness of border values which are defined with protective 

functions of boiler (which is especially problem during the summer time). Then, 

environmental temperature of boiler becomes greater than 50°C, measurement 

error ∆p is bigger than 100 Pa, in negative direction, and unnecessary fire 

extinguishing in boiler very probably. Experimental measurements show that 

old system of measurement has a systematic error. 

Second, e.g., the newly introduced system for measuring under-pressure 

difference in boiler furnace is realized with two independent under-pressure 

measuring sensors at elevations 72 m and 24 m by forming their difference. 
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Experimental results showed that new system for measuring under-pressure 

difference eliminates systematic error, and as such presents reliable danger 

quantifier from explosion, so it can be used in protection logic during blocks 

starting, and also in theirs nominal regime of work. 

In next section experimental results are shown in order to confirm 

advantages of new system in regard to old system of measurement. 

4 Experimental Results 

In order to analyze system for measuring under-pressure differences on 

boiler, we performed analysis of old and newly introduced system of 

measurement with MR control charts. Results were obtained from 

measurements which are recorded 16.12.2011. in typical modes of block B2 

(nominal operation mode), during decreasing of block power and during 

increasing of block power, which we shall further call first and second 

measurements, respectively. 
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Fig. 2 – Control chart for individual measurements 
for new system (first measurements). 

 

On Figs. 2, 3, 4 and 5 are shown control charts for individual measurements 

and MR charts for old and newly introduced system for first measurements. All 

control lines are established in phase I under statistical control. After careful 

analysis of Fig. 4, and after computing the autocorrelation function it is obvious 
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that measurement of old system are correlated and that we cannot effectively 

apply MR charts on these measurements until we do not solve the 

autocorrelation issue. 
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Fig. 3 – MR chart for new system (first measurements). 
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Fig. 4 – Control chart for individual measurements 
for old system (first measurements). 
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Fig. 5 – MR chart for old system (first measurements). 

 

Independence of the observations is the most important assumption used 

during control chart design. Conventional control charts do not work well if the 

quality characteristics exhibit even low levels of correlation over time. 

Specifically, these control charts will give misleading results in the form of too 

many false alarms if the data are positively correlated. This point has been made 

by numerous authors [10, 13, 14]. There are many techniques that can be found 

in literature for solving this problem [1, 2, 10, 11]. Almost all approaches are 

based on analytical techniques. These approaches have proved useful in dealing 

with correlated data by direct modeling the correlative structure with an 

appropriate time series model (AR, ARIMA) and using that model to remove 

autocorrelation from the data and then applying control charts on residuals 

[15, 16]. 

Also, there is approach that is not based on the model, e.g a model-free 

approach [1] and it is applied in this paper. Runger and Willemain [12] 

proposed a control chart based on unweighted batch means for monitoring 

autocorrelated process data. The unweighted batch means chart breaks 

successive groups of sequential observations into batches, with equal weights 

assigned to every point in the batch. Let the jth unweighted batch mean be 

 ( 1)

1

1
b

j j b i

i

x x
b

− +

=

= ∑ . (6) 
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The important implication of equation (6) is that although one has to 

determine an appropriate batch size b, it is not necessary to construct an 

ARIMA model of the data. This approach is quite standard in simulation output 

analysis, which also focuses on inference for long time series with high 

autocorrelation.   

Using formula (6) we created batch means and applied MR control chart on 

them. On Fig. 6 batch means control chart for individual values for old system 

and first measurement is shown, while on Fig. 7 MR batch means control chart 

for old system and first measurement is shown. b = 18 is chosen for batch size. 
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Fig. 6 – Batch means control chart for individual values 
for old system (first measurements). 

 

After analysis of Figs. 6 and 7 we can conclude that the number of points 

which are within control lines is much bigger in regard to MR control charts 

from Figs. 4 and 5 where we could not apply control charts properly because of 

correlated data. 

On Figs. 6 and 7 we can see that, although most of the points are within 

control lines, they do not form random pattern. We calculated the correlation 

matrix between under-pressure difference which is measured with old system of 

measurement and quantities of interest (block power at generator's output, boiler 

furnace's temperature at elevation +79 m, total air flow and total quantity of 

coal) so we could see which of these quantities has the biggest influence on old 

system of measurements. After we computed correlation matrix it was obvious 
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that the biggest correlation coefficient (it is a negative coefficient) is between 

boiler furnace's temperature and the old system of measurement and the total 

quantity of coal and old system of measurement (also a negative coefficient). 

Also, the correlation matrix between quantities of interest and the new 

system of measurement was calculated. The biggest correlation coefficient 

(negative coefficient) is between the total amount of fuel and new system of 

measurements, but this coefficient is significantly smaller at the new system in 

regard to the old system. For further analysis on Fig. 8 the change of temperature 

in boiler furnace and total amount of fuel for first measurements is shown. 

Comparing Figs. 4, 6 and 8 we can see the direct influence of temperature 

change and total amount of fuel, on under-pressure difference change which 

was obtained with the old system of measurement. In fact, at the 336th
 sample 

there comes a sudden increase of temperature, which is manifested with the fall 

of points in regard to mean value at the same time. Then there comes a decrease 

of temperature which is manifested with the sudden rise of points, and then 

temperature starts easily to increase, and we can see the new fall of points. Also, 

the sudden rise of total amount of fuel from 600th
 to 800

th
 sample has a big 

influence on points displayed from the 30
th
 to 40

th
 batch. 

In order to confirm these conclusions control charts on second measure-

ments were applied. Fig. 9 shows control chart for individual measurements for 

new system (second measurements). 
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Fig. 7 – MR batch means control chart for old system (first measurements). 
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(a)                                                                  (b) 

Fig. 8 – (a) Change of temperature in boiler furnace (+79 m right) for first 
measurements (b) Time dependency for total amount of fuel for first measurements. 
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Fig. 9 – Control chart for individual measurements 
for new system (second measurements). 

 

Fig. 10 shows MR chart for new system for second measurements. On Fig. 11 

the batch means control chart for individual values for old system (second 

measurement) is showed. On Fig. 12 MR batch means control chart for old 

system for second measurements is shown. For batch size b = 22 is chosen. 
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Fig. 10 – MR chart for new system (second measurements). 
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Fig. 11 – Batch means control chart for individual values 
for old system (second measurements). 
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Fig. 12 – MR batch means control chart for old system (second measurements). 

 

Again, in order to investigate which of quantities of interest has the biggest 

influence on new and old system of measurements, the correlation matrix was 

computed. Based on the correlation matrix it is obvious that on old and new 

system of measurement the biggest influence has total air flow, except that this 

correlation coefficient is significantly bigger for old, than for the new system.  

For further analysis on Fig. 13 time dependency of total air flow is shown. 

Comparing Figs. 11 and 13 a big dependence of total air flow and old system of 

measurement is noticeable. This effect is especially expressed from the 800th
 to 

1000
th
 sample where sudden rise and fall of points on control chart happen. This 

influence is also noticeable at the new system of measurement, but it is much 

smaller compared to the old system of measurement.  

Because of demonstrated strong influence of quantities of interest on old 

system of measurement, many false alarms could be seen. We applied control 

charts on measurements which are recorded during the nominal operation mode, 

e.g., while the process was stable and in control, and, again, old system showed 

irregularity of functioning. As we pointed out in Section 3 in case where under-

pressure difference is ∆p < 250 Pa protective extinguishing of fire in boiler is 

necessary. That means if protective under-pressure difference is not reliable 

than unnecessary extinguishing of fire is very probably which leads to block 

outage and very big financial and material costs. This analysis confirmed the 

unreliability of the old system of measurement. 
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Fig. 13 – Time change of total air flow for second measurements. 
 

5 Conclusion 

After the detailed analysis of control charts that we applied on the old and 
new system of measurement, we can notice significantly stronger influence of 
quantities of interest (temperature in boiler furnace, total air flow and block 
power at generator's output) on the old system of measurement in regard to new 
system of measurement. Because of this fact reliability of the old system of 
measurement is questioned. Control charts confirmed that old system of 
measurement has a systematic error and endangers the reliability of the whole 
process. 

The data from the new system of measurements have much noise, therefore 
the data have bigger variance and some points are outside of control limits. It is 
pretty sure that with adequate filtration of these data a big number of points that 
are outside of control limits would fall within the control limits. This is an 
explanation of false alarms on control charts for the new system of 
measurement. 

During the control charts designing some problems were encountered. The 
first problem was the autocorrelation of data from the old system of 
measurements. We applied model-free approach and created batch means 
control charts in order to reduce the autocorrelation. In some future work there 
is possibility for constructing time series models and applying control charts on 
residuals. 
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The second problem that we had during the control chart designing was 

nonnormality of data from the old system of measurement. General model of 

control chart assume normal distribution of data and therefore if we choose 

three-sigma control limits then it is assumed that 99.7% of points will fall inside 

the control limits while the system is in statistical control. Very often this 

assumption is not valid, so control charts that do not assume normality of data 

are developed. They can be found in literature as distribution-free or 

nonparamteric control charts [17 – 20]. A key advantage of distribution-free 

charts is that the user does not need to assume any particular distribution (such 

as the normal distribution) for the underlying process and the in-control 

probability calculations and associated conclusions remain valid for any 

continuous distribution. This distribution robustness could be an advantage, 

particularly, in start-up situations where we usually do not have knowledge of 

the underlying distribution.  

Also, there is a big problem with control chart designing of dynamic-

behavior processes. A possible solution for this problem would be the making 

of adaptive control limits that follow system dynamics in the sense that big 

variation from central line which is consequence of system dynamics, not 

system fault, is treated as the nominal operation mode. In the literature one can 

find some solutions for this problem [21], but there is a lot of space for new 

ideas. 

Control charts could be used as one more type of boiler protection from 

explosion in power plant. If we could collect big enough number of 

measurements for reliable estimation of control limits in phase I, which would 

be adaptive and totally follow process behavior, application of control charts in 

phase II, e.g. online data monitoring would be very efficient. Analyzing of 

points that are outside of control limits, or form nonrandom pattern on control 

charts we could notice that something is wrong with sensor system or maybe we 

could detect system fault. We could remove assignable causes and improve the 

process which is the main purpose of control charts.  
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