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Calculating the Required Number of 

Bits in the Function of Confidence Level and 

Error Probability Estimation 

Dragan Mitić1, Aleksandar Lebl1, Žarko Markov1 

Abstract: This paper proposes the calculation of the required number of bits 

transmitted in the system, in order to achieve the desired level of confidence. 

Proposed solution is based on the selected value for the bit error probability, and 

statistical confidence levels. In addition, required error probability for telecom-

munications protocols and data transfer protocols is discussed, overview of the 

BER (Bit Error Ratio) testing equipment performance is provided, and compro-

mise of testing time in relation to the statistical level of confidence depending on 

BER is examined. 

Keywords: Digital telecommunication system, Estimating error probability, 

Statistical confidence level, Poisson theorem. 

1 Introduction 

In digital communications systems, the ultimate function of the physical 

layer is to as quickly and as accurately as possible transfer data bits in the 

media. Data can be transmitted over copper cable, optical fiber or free space. 

Two basic measures of physical performance levels are related to the speed at 

which data can be transmitted (Data Rate) and data integrity when they arrive at 

the destination. The primary measure of data integrity is called the Bit Error 

Ratio, or BER. 

For digital communications systems, BER can be defined as the estimated 

probability of error. This means that any bit that is transmitted through the 

system may be falsely accepted. So, transferred “one” will be accepted as 

“zero”, or transferred to a “zero” will be received as a “one”. In practical 

testing, BER is measured by transferring a finite number of bits through the 

system and counting incorrectly received bits. The ratio of incorrectly received 

bits and the total number of transferred bits is called Bit Error Ratio (BER). 

Quality of BER assessment is increased if the total number of transmitted bits 

increases. In the limiting case, when the number of transmitted bits tends 

infinity, the BER becomes perfectly estimated the actual probability of error. 
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In some articles, BER is called as the Bit Error Rate instead of the Bit 

Error Ratio. Most of the wrong bits in real systems are the result of random 

noise, and occur at random in contrast to the uniformly distributed noise. BER 

assessment is carried out in such a way, that the ratio of number of incorrect and 

total transferred bits is formed, so it is more correct to use the word ratio, than 

word rate. 

Depending on the exact number of bits (data pattern) conveyed through the 

system, there may be a different number of wrong bits. Patterns that contain 

long strings of Consecutive Identical Digits (CID) may contain significant low 

frequency spectral components that may be outside of the bandwidth of the 

system, causing deterministic jitter and other distortions in the signal, [1]. These 

effects depend on the data patterns and may increase or decrease the probability 

that wrong bits are transferred. This means that it is possible to get different 

results, when the BER is tested using various sequences of bits (data patterns). 

Detailed analysis of the effects that depend on data patterns is not the topic 

of this work, but it is enough to keep in mind the importance of accession of the 

specific data patterns to the specifications of BER and test results. 

Statistical level of confidence, SLC is defined as the probability, based on a 

set of measurements, that the actual probability of events is greater than some 

defined value. (For purposes of this definition, the real probability means the 

probability which is determined as the limit when the number of events n tends 

to infinity.) When applying this definition to the BER, the definition of SLC can 

be explained as (based on detection of errors when n bits are transferred) the 

actual probability of the event, BER, which is greater than a defined value γ. 

Based on the selected value for the probability of bit errors, BER, and level 

of SLC, the required number of transferred bits n is determined, which must be 

transmitted through the system to achieve the desired level of confidence. We 

then calculated the time of testing, and reduced testing time needed to complete 

the test of system in order to get the desired level of confidence, depending on 

the BER. The value of BER, which is especially interesting for us, is about 10–9
, 

as in [2] in Fig. 6. 

2 Definition of the Predicted Error Probability BER 

In most digital communication protocols, BER is defined by two values. 

Telecommunication protocols, such as SONET (Social Networking), usually 

require a BER of one bit error in 1010
 bits (BER = 1/10

10
 = 10

–10
) using a long 

pseudo-random series of bits. In contrast, protocols for data transmission over 

fiber optic and Ethernet channels typically require BER of less than 10
–12

 bits 

(BER < 10
–12

) using short sequences of bits. In some cases, the specification of 

the system requires BER of 10–16
 bits or less (BER ≤ 10

–16
). 
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It is important to note that the BER is essentially statistical average and it is 

only necessary to transfer a great enough number of bits. It is possible, for 

example, that it exists more than one error within the group of, for example, 

1010
 bits, and that the BER specification of 10

-10
 is still satisfied. The BER of 

10
–10 

will be satisfied when the total number of transferred bits is much higher 

than 1010
. It can also happen that there is less than 1 error in 10

10
 bits in the 

subsequent series of transmitted bits. Alternatively, it is possible to have zero 

error bits within the group of 10
10

 bits, and that BER is still higher than the 10
–10

 

(BER > 10
-10

), if there are more errors in subsequent groups of transferred bits. 

Considering these examples, it is clear that a test which determines the 

BER which is better than 10–10
 must be performed so that much more than 10

10
 

bits are sent in order to obtain accurate and reproducible measurement. On the 

basis of the previous consideration, we can now determine the number of bits 

which must be transmitted through the system in order to show that the BER is 

less than or equal to specified value (Section 4). 

3 Equipment and Testing Procedures 

Standard method of BER testing in one system uses a pattern generator and 

detector of errors, Fig. 1. Pattern generator transfers test series to the system 

under test. Error detector can independently generate the same test sequence, or 

it can receive it from the pattern generator. Pattern generator also provides the 

synchronization clock signal for the error detector. Error detector performs bit-

for-bit comparison between the data obtained from the system under test and the 

data generated by the pattern generator. Any difference between these two sets 

of data is counted as a bit error, BER. 

 

Fig. 1 – Test equipment and system in which BER is tested. 
 

As noted in the previous section, the standards for digital communications 

generally specify the data pattern used for BER testing. The test pattern is 

usually chosen to emulate the type of data that are expected during normal 

operation, or, in some cases, the sample that is particularly inconvenient for the 



D. Mitić, A. Lebl, Ž. Markov 

364 

system can be selected, in order to obtain the worst case of testing. An aim of 

using the pattern is to approximate the random data. The pattern is called 

pseudo random bit sequence (Pseudorandom Binary Sequence, PRBS), and it 

based on standardized algorithms of generation. PRBS sequences are classified 

according to the length of the series and usually are named according to these 

lengths as “27
–1” (pattern length = 127 bits) or “2

23
–1” (pattern length = 

8,388,607 bits). Other sequences simulate encoded/encrypted data or inconve-

nient sequence of data, and the known sequences are K28.5, (they use fibre 

channel and Ethernet) etc, [1]. Standard available pattern generators include 

standard built-in patterns, and the ability to create custom data patterns. 

In order to compare accurate bits obtained from the pattern generator to the 

bits received from the system being tested, the error detector must be 

synchronized on both patterns of bits and synchronization has to compensate 

time delays through the system under test. Clock signal from pattern generator 

provides synchronization of bits obtained from pattern generator. Error detector 

adds variable time delay to the signal generated in the pattern generator to allow 

synchronization of bits received from the system under test. Variable time delay 

is adjusted to minimize bit errors. 

4 Determination of the Required Numbers of Bits 

In well-designed systems, BER performance is limited by random noise 

and/or by random jitter. The result is that errors occur in a random 

(unpredictable) time. The errors can be bursty or they can appear separately. 

Accordingly, the number of errors that occur during operation of the system is a 

random variable that can not be accurately predicted. The real answer to the 

question how many bits must be transmitted through the system for a perfect 

BER test is so: unlimited number (essentially infinite). 

From a practical BER testing is required that the time of test is finite. We 

must accept worse value of the estimation than the perfect estimation. As 

previously stated, if the quality of BER assessment increases, then, also, the 

total number of transmitted bits increases. The problem is how to quantify the 

improvement of the quality assessment, so that it can be determined how many 

bits must be transmitted to obtain the desired quality of assessment. This can be 

done using the concept of SLC. In statistical meaning, the level of confidence in 

the value of error probability (P(e)), or BER, can be defined as a probability 

(which is based on the detected number of errors, (e), in n transmitted bits) that 

the true P(e) or BER is less than the mentioned ratio γ. (For the purpose of  this 

definition, the true P(e) means P(e) which is measured, if the number of 

transferred bits is infinite). Mathematically, this can be expressed as: 

 [ ]SLC ( ) | ,P P e e n= < γ , (1) 
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where the SLC is the level of confidence in P(e), P[.] indicates “probability 

that”, and P(e) is the actual BER. As the level of confidence is, by definition, 

probability, its range of possible values is from 0 to 100%. When the BER can 

be determined for a certain level of confidence, then we can say that the SLC is 

percentage of confidence when the true BER is less than γ. Another 

interpretation is that, if always the same number of bits, n, is transmitted 

through the system and calculated number of detected errors, e, is repeated 

every time during testing, it can be expected as a result of the BER estimation 

e/n, that real BER will be less than γ for SLC percent of repeated testing, [3]. 

If we now consider equation (1), then the question at which we really want 

to know the answer is how to form equation (1), in order to be able to calculate 

how many bits must be transferred, to obtain the predicted BER, for a given 

level of confidence. In order to do this, we use the statistical method that 

includes the binomial distribution function and Poisson theorem. 

4.1 Binomial distribution function 

Calculation of the level of confidence is based on the binomial distribution 

function, which is described in most books obout statistics [4, 5]. Binomial 

distribution function can be expressed as: 

 ( )
k n k

n

n
P k p q

k

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, (2) 

where 
n

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is defined as 
!

!( )!

n

k n k−
. 

The probability that k events (number of wrong bits) occurs in n attempts (n 

bits are transferred) is given in (2). In (2) p is the probability that event occurs 

in one attempt (a bit error), and q is the probability that this does not happen in 

one attempt (no error bits). Binomial distribution model has two possible 

outcomes, such as success/failure or error/no error. So, p + q = 1. 

The function of the cumulative binomial distribution, for the probability 

P(e) or BER, when less than N events occur in n attempts (or vice versa, that 

more than N events occur in n attempts), is given as: 

 
0 0

1

!
( ) ( ) ,

!( )!

!
( ) 1 ( ) .

!( )!

N N

k n k

n

k k

n

k n k

k N

n
P e N P k p q

k n k

n
P e N P e N p q

k n k

−

= =

−

= +

≤ = =

−

> = − ≤ =

−

∑ ∑

∑

 (3) 

Equations (1), (2) and (3), are presented graphically in Fig. 2. The 

following parameters were used to obtain a graphic in Fig. 2: 
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– Pn(k) is defined in (3); 

– n = 108
, total number of events (total number of transmitted bits); 

– k is the number of events that took place in n attempts (number of wrong bits); 

– p = 10–7
, the probability that the event occurred in the considered attempt 

(bit error probability, BER); 

– q = 1 – 10
–7

, the probability that the event did not happen in the consi-

dered attempt (the probability that no bit error happened); 

– p + q = 1; 

– mean value, μ = nq; 

– variance, σ2
 = npq. 

 

Fig. 2 – Binomial distribution, confidence level and the cumulative 
binomial distribution in the function of number of errors. 

 

4.2. Application of binomial distribution function 

to calculate the level of confidence 

In measuring the level of confidence, we begin by selecting the appropriate 

level of confidence and a hypothesis for the value p (bit error probability in the 

transmission of one bit). The selected p value is represented as ph. In principle, 

these values were chosen according to constraints imposed by telecom-

munication systems (if the limit is P(e) ≤ 10
–10

, we choose ph = 10
–10

, and level 

of confidence, for example, 90% or 99%). 
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Using the cumulative binomial distribution function, the level of 

confidence is defined as: 

 
0

!
SLC ( ) 1 (1 ) ,

!( )!

N

k n k

h h h

k

n
P e N p p p

k n k

−

=

= > = − −

−
∑  (4) 

where SLC is the level of confidence, Fig. 2. 

Now we use (4) to determine the probability P(e > N/ph), based on ph, that 

more than N wrong bits will happen, when a total of n bits are transferred. If, 

during the actual testing, the number of wrong bits is less than N bits (and if 

P(e > N/ph) is large), one of the following two conclusions can be made [2]: 

(a) we are fortunate in the selection of ph, 

(b) the actual value of p is less than ph. 

If the test is repeated several times and the number of measured wrong bits 

is constantly less than N, then is more and more secure the conclusion (b). 

Value P(e > N/ph) defines the level of confidence in the conclusion (b). If 

ph = p, there is a high probability, to detect more than N wrong bits. When less 

than N errors are measured, it is concluded that p is probably less than ph, and 

definition of level of confidence gives the probability that the conclusion is 

correct. In other words, we can be sure that the value of P(e), (where P(e) is the 

actual bit error probability) is less than ph for the level of confidence SLC%. 

4.3. Determination of the required number of transferred bits, n 

As noted above, when using the method of the level of confidence, in 

general we use hypothetical value of p = ph with the desired level of confidence, 

SLC. Then we solve (4), to determine how many bits, n, must be transferred 

through the system (with N or fewer errors). Solving (4), n can be very 

difficulty determined if certain approximations are not used. 

Assuming n·p > 1 (at least as many bits are transmitted as is the reciprocal 

value of the probability of wrongly transmitted bits) and k is the same order of 

magnitude as np, then Poisson’s theorem, (5) from [1], provides conservative 

estimate for the binomial distribution function: 
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( ) e
!( )! !

k
k n k np

n n
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P k p q

k n k k

− −

→∝
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In (6) it is presented that (5) can be used to obtain approximation for the 

cumulative binomial distribution: 
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Combining (4) and (6), n can be calculated as: 
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 (7) 

Now we can determine the total number of bits, n, which must be 

transmitted over the system to achieve the desired level of confidence, for the 

predicted probability of error P(e) or BER, and the procedure is as follows [2]: 

1. The desired value for ph, a hypothetical value for of p, is selected. Value 

ph is the probability of bit error that is being checked. If we want to show 

that P(e) ≤ 10–12
, then in (7) p = ph = 10

–12
 should be used. 

2. The desired level of confidence is selected. Compromise between the 

level of confidence and time of testing must be made. In order to reduce 

test time, the lowest real level of confidence is chosen. A compromise 

between the time of testing and the level of confidence is proportional to 

ln(1 – SLC). 

3. Value n is determined from (7). 

4. Test time is calculated. The time required to complete the test is n/R 

where R is the transmission rate. 

The final equation is given using (7): 

 ( )
0

1 ( BER)
ln 1 SLC ln ,

BER !

kN

k

n
n

k
=

⎡ ⎤⎛ ⎞⋅
= − − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  (8) 

where n is the number of bits that need to be transferred, BER is the probability 

of incorrectly transmitted bits, N is the total number of detected errors and ln[.] 

is the natural logarithm. When there are no detected errors (N = 0), the second 

member in equation (8) is equal to zero and the solution of the equation is 

simplified a lot. When N is not zero, equation (8) can be solved empirically 

using a computer. 

Now the equation (8) can be explained. Suppose we want to determine how 

many bits must be transferred without errors if we want to prove that error 
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probability in the whole system is less than 10–10
, (BER < 10

–10
), with the level 

of confidence 95%. In this example, N = 0, so that the second member in (8) is 

zero, and n is only dependent on SLC and BER. The result is n = (1/BER) 

[–ln (1 – 0.95)] ≈ 3/BER = 3·10
10

. 

This result shows a simple rule, that it is necessary to transmit three times 

the reciprocal of the specified BER without error, for the confidence level of 

95%, that the specified BER is satisfied for a given system. Similar calculations 

show that n = 2.3/BER for 90% confidence level, or 4.6/BER for 99% 

confidence level, if there is no error in the system [1]. 

 

Fig. 3 – Estimated number of transmitted bits, n, in function 
of the level of confidence between 0 and 10 error bits. 

 

Fig. 3 illustrates the relationship between the number of bits that must be 

transmitted and the confidence level for zero errors, one, two, and so on till ten 

errors. Results for commonly used confidence levels of 70% to 99% are shown 

in Table 1. In order to use the graph in Fig. 3, we select the desired level of 

confidence and through the point for this level of confidence we draw a vertical 

line until we cut the curve for a number of errors which were discovered during 

the test. From this intersection point, we pull a horizontal line to the left until 

we cut the vertical axis in order to determine the estimated number of bits n, 

which must be transmitted in the system for the desired level of confidence. 
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Table 1 

Estimated number of transmitted bits, n, 

for the confidence level of 70% to 99%. 

n = ln(1 – SLC) / BER Number 

errors 99% 95% 90% 85% 80% 75% 70% 

0 
4,61 

BER 

2,99 

BER 

2,3 

BER 

1,90 

BER 

1,61 

BER 

1,39 

BER 

1,20 

BER 

1 
7,00 

BER 

5,40 

BER 

4,70 

BER 

4,30 

BER 

4,00 

BER 

3,78 

BER 

3,60 

BER 

2 
8,72 

BER 

7,11 

BER 

6,41 

BER 

6,01 

BER 

5,72 

BER 

5,50 

BER 

5,31 

BER 

3 
10,03

BER 

8,42 

BER 

7,73 

BER 

7,32 

BER 

7,04 

BER 

6,81 

BER 

6,63 

BER 

4 
11,07

BER 

9,46 

BER 

8,77 

BER 

8,36 

BER 

8,08 

BER 

7,85 

BER 

7,67 

BER 

5 
11,90

BER 

10,30

BER 

9,60 

BER 

9,20 

BER 

8,91 

BER 

8,68 

BER 

8,50 

BER 

6 
12,57

BER 

10,96

BER 

10,26

BER 

9,86 

BER 

9,57 

BER 

9,35 

BER 

9,16 

BER 

7 
13,09

BER 

11,48

BER 

10,79

BER 

10,38

BER 

10,10

BER 

9,87 

BER 

9,69 

BER 

8 
13,50

BER 

11,90

BER 

11,20

BER 

10,80

BER 

10,51

BER 

10,29

BER 

10,10

BER 

9 
13,82

BER 

12,21

BER 

11,52

BER 

11,12

BER 

10,83

BER 

10,60

BER 

10,42

BER 

10 
14,07

BER 

12,46

BER 

11,76

BER 

11,36

BER 

11,07

BER 

10,85

BER 

10,66

BER 

 

5 Application of Procedure Level of Confidence 

in the Estimates of Bit Error Probability 

In most of the telecommunication systems P(e) ≤ 10
–10

 is expected. Let us 

suppose that two systems should be tested, where the transmission bit rate is 

2.5 Gbit/s (for the first one), and 10 Gbit/s (for the second one). First, we select 

ph = 10
–10

. Second, we would like to have the test that gives a 100% level of 

confidence in the desired specification, , but an infinite time of the test is 

required to fulfil this condition. Therefore, we choose level of confidence 99% 

and 90%. Then we solve n from the equation (8) using different values for N (N 

= 0, 1, 2, 3,..., N). The results are presented in Table 2 for a confidence level of 

99%, and in Table 3 for a confidence level of 90%. 
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Table 2 

Estimated number of required transmtted bits, n, and  
the required time of testing for SLC = 99% and ph = 10–10. 

Number of 

error bits 

(k) ≤ N 
N 

The required 

number of 

transferred bits 

n 

Time of testing 

for a bit rate 

2.5Gbit/s 

[s] 

Time of testing 

for a bit rate 

10Gbit/s 

[s] 

0 4.60·1010 18.42 4.60 

1 7.00·1010 28.01 7.00 

2 8.72·1010 34.86 8.72 

3 1.00·1011 40.13 10.03 

4 1.11·1011 44.30 11.07 

5 1.19·1011 47.61 11.90 

6 1.26·1011 50.26 12.60 

7 1.31·1011 52.37 13.10 

8 1.35·1011 54.02 13.50 

9 1.38·1011 55.30 13.82 

10 1.41·1011 56.26 14.07 

Table 3 
Estimated number required  transmitted bits, n, and the required 

 time of testing for SLC = 90% and ph = 10–10. 

Number of 

error bits 

(k) ≤ N 
N 

The required 

number of 

transferred bits 

n 

Time of testing 

for a bit rate 

2.5Gbit/s 

[s] 

Time of testing 

for a bit rate 

10Gbit/s 

[s] 

0 2.30·1010 9.21 2.30 

1 4.70·1010 18.80 4.70 

2 6.41·1010 25.65 6.41 

3 7.73·1010 30.92 7.73 

4 8.77·1010 35.08 8.77 

5 9.60·1010 38.40 9.60 

6 1.03·1011 41.05 10.26 

7 1.08·1011 43.16 10.79 

8 1.12·1011 44.81 11.20 

9 1.15·1011 46.09 11.52 

10 1.18·1011 47.05 11.76 
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Table 2 shows that, if no erroneous bits are detected during 18.42 s in a 

2.5 Gbit/s system, we get a confidence level of 99% that the bit error probability 

is P(e) ≤ 10–10
, with transfer of at least n = 4.60·10

10
 bits. If one bit error occurs 

in 28.01 s of testing, or two incorrect bits occur 34.86 s, the result is the same: 

the level of confidence is 99% that bit error probability is P(e) ≤ 10
–10

, with a 

minimum number of transmitted bits n = 7.0·1010
 and n = 8.72·10

10
 bits, 

respectively. 

5 Reducing Time of Tests 

Tests in which we require a high level of confidence and/or small BER, can 

last a long time, especially for systems with low-rate data transfer. The time 

required to complete the test is expressed by the following formula: 

 [ ] ,
n

VT s
R

=  (9) 

where: VT is time (given in seconds) needed to complete the test, n is the 

number of transferred bits and R is bit data rate in the system. 

Let us imagine a test with 99% level of confidence in the obtained results, 

and with BER = 10
–12

 for a system, which has a bit rate of 622 Mbps. From 

Table 1, we can see that the required number of bits is 4.61·10
12

 for zero errors. 

For 622 Mbps, the time of testing will be 4.61·1012 bits / 622·106 bits/s = 7411 s, 

which is slightly more than two hours. Two hours is usually too long time for a 

practical test, but what can be done to reduce the testing time? 

One common method is to shorten the time of testing, which involves 

deliberate reduction of the signal to noise ratio (SNR) in the system. This gives 

a higher level of bit error and faster measurement with degraded BER in order 

to obtain the required results, [6]. If we know the relationship between SNR and 

BER, then the results for degraded BER can be extrapolated to estimate BER. 

The application of this method is based on the assumption that the thermal 

(Gaussian) noise is dominant cause of errors in the system at the receiver input. 

The relationship between SNR and BER can be derived using Gaussian 

statistics and is documented in many books on communications [7]. Although 

there is no known closed form solution for the relationship between SNR and 

BER, the results can be obtained by numerical integration. One convenient 

method for calculating this relationship is to use Microsoft ExcelTM standard 

normal distribution, NORMSDIST[.]. Using this function, the ratio of SNR and 

BER can be calculated as: 

 BER 1 NORMSDIST(SNR / 2)= − . (10) 

Besides this, ratio SNR and BER can also be calculated using equation 

(11), which uses the Q factor (optical systems [8]), [9]: 
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where Q
2
, according to the literature [9], depends on the level of noise at 1 and 

0. We get two values: Q
2
 = 2 SNR when the noise level at 1 is much higher than 

the noise level at 0, and Q
2
 = SNR when the noise level at 1 is the same as at 0. 

Fig. 4 presents the value of BER in the function of SNR for the two 

methods of calculation using equation (10) and equation (11). To illustrate this 

method of accelerated testing, we start from the example, presented at the 

beginning of the section. In this example, testing in the case of BER = 10–12
 for 

99% confidence level in the transmission system of 622 Mbps would take more 

than two hours. 

 

Fig. 4 – The relationship between BER and SNR. 
 

From Fig. 4, we see that the BER of 10
–12

 corresponds to SNR of about 14. 

The communication system under test may be a signal channel between the 

transmitter and receiver, in which the attenuator is inserted. Since the signal is 

attenuated before the receiver input, then, on the assumption that the dominant 

source of noise at the receiver input remained the same, we weakened the 

signal, not noise. Therefore, SNR will be reduced by the same amount as the 
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signal. (It is important to ensure that the signal is not weakened below noise 

level for a given channel). For this example, SNR is reduced from 14 to 12 by 

inserting 0.67 dB attenuation. From Fig. 4 follows that reducion of SNR to 12 

corresponds to changing BER on 10–8
, according to equation (11), and on 10

–9
, 

according to equation (10). For a confidence level of 99% in the case of 

BER = 10–9
, it should be transferred 4.61·10

9
 bits (Table 1). The duration of 

testing is 7.41 s, according to equation (9). This duration is 1000 times smaller 

than the original time of testing. So, if we have no errors during testing which 

lasts 7.41 s when we are using the attenuator, we can say that BER is 10
–9

. 

Then, with extrapolation, when we remove the attenuation, we should get a 

BER of 10–12
. 

Shortening of testing time by reduction of the SNR and the use of 

extrapolation decrease the level of confidence in the obtained results. 

Decreasing the level of confidence becomes more important when the 

extrapolation distance becomes greater. To show this effect, the test will be 

considered where BER is decreased by a factor of 100 as the result of SNR 

reduction. If the test for the reduced SNR is performed for the 99% confidence 

level with zero errors, then it can be expected that, if the test is repeated 100 

times, 99 tests are with zero errors and one test is with one error. If we now 

combine all 100 received repeated tests, we get 100 times more bits with error. 

Extrapolation of results of 100 repeated tests on the original does not reduce the 

level of BER, gives one bit error in 1/BER bits, or it is n·BER = 1.0. Using 

equation (8) for N = 0 or n·BER = 1, we obtain 

 
( )

1

BER 1 ln 1 SLC ,

SLC 1 e 0.63.

n

−

⋅ = = − −

= − ≈

 (12) 

We get the appropriate level of confidence that is approximately only 63%, 

small enough to be out the graphic on Fig. 3. This value is far from 99%, level 

of confidence from which we started. 

On the basis of the examples, the SNR should be reduced as little as 

possible to achieve reasonable testing time. It must be understood that the 

extrapolation reduces the level of confidence. Also, measurements and 

calculations must be made with special precision. Errors those occur due to 

rounding, the measurement tolerance, etc., will be magnified when we 

extrapolate the results. 

6 Conclusion 

Bit Error Ratio (BER) for digital communication systems is an important 

measure, which is used to quantify the integrity of data transmitted through the 

system. Finite testing time provides that estimation of the probability erroneous 

bits will be received. The quality of estimation is enhanced when the test time 
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increases, and this quality can be quantified using methods of statistical level of 

confidence. Ideas for reducing the test time have been already published, but 

these ideas should be used with caution, because their using can significantly 

reduce the level of confidence. 

The proposed procedures for determining the required number of 

transferred bits n, based on the selected value of bit error probability and 

statistical level of confidence, are presented in use with optical systems. These 

optical systems, with the rate 2.5 Gbit/s and 10 Gbit/s, are developed by 

IRITEL. 

For the calculation of the required number of transmitted bits, n, we took 

the value for np = 10 (the condition np > 1 is fulfilled), and for all calculations 

in the paper programs MATLAB and MATHEMATICA are used. 
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