
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING

Vol. 9, No. 3, October 2012, 325-342

325

Constant-Coefficient FIR Filters Based on

Residue Number System Arithmetic

Negovan Stamenković
1
, Vladica Stojanović

1

Abstract: In this paper, the design of a Finite Impulse Response (FIR) filter

based on the residue number system (RNS) is presented. We chose to implement

it in the (RNS), because the RNS offers high speed and low power dissipation.

This architecture is based on the single RNS multiplier-accumulator (MAC) unit.

The three moduli set
1{2 ,2 ,2 1}n n n+

− , which avoids 2 1
n

+ modulus, is used to

design FIR filter. A numerical example illustrates the principles of residue

encoding, residue arithmetic, and residue decoding for FIR filters.

Keywords: FIR filters, Residue number system, Reverse converter, Forward

converter, Modulo MAC unit.

1 Introduction

The Residue Number System (RNS) has been recognized as one of the

efficient alternative number systems which can be used to high-speed hardware

implementation of Digital Signal Processing computation algorithms. In RNS,

an integer value with large word-length is divided into several relatively small

integer copies by a specific moduli set. The addition and multiplication of RNS

integers copies are performed in parallel. Each copy is called a channel and the

so called RNS channel implements modular arithmetic. In this way, RNS

arithmetic does not suffer from inter-channel propagation delay. Performance of

the system can be increased by selecting small word-length channels with short

internal carry prpagation delay [1, 2]. Due to this feature, many Digital Signal

Processing architectures based on RNS have been introduced in the literature

[3, 4]. Thus, RNS is an efficient method for the implementation of high-speed

Finite Impulse Response (FIR) filters, where dominant operations are addition

and multiplication. Implementation issues of RNS based FIR filters show that

performance can be considerably increased, in comparison with traditional

two’s complement binary number system [3 – 5].

1Faculty of Science and Mathematics, University of Pristina (at K. Mitrovica), 28220 Kosovska Mitrovica,
Lole Ribara 29, Serbia; E-mails: negovanstamenkovic@gmail.com; vlast70@gmail.com

UDK: 621.372.544 DOI: 10.2298/SJEE1203325S

N. Stamenkovic, V. Stojanovic

326

The basic of each RNS is a moduli set with consist of a set of pairwise

prime number [6]. Until now, many moduli set have been introduced for RNS

[7 – 9]. Among these, the moduli set {2 1, 2 , 2 1}n n n

− + is most well known.

This moduli set can result in simple design of forward and inverse converter,

but performance of RNS arithmetic unit is restricted to the time-performance of

modulo 2 1
n

+ channel. The modulo 2 1
n

− operations are complex, and are

bottleneck for RNS arithmetic unit. Hence, the moduli set
1{2 , 2 , 2 1}n n n+

−

[9, 10] is used as an alternative for moduli set {2 1, 2 , 2 1}n n n

− + in this paper.

In this moduli set, the moduli 1
2 1
n+

− is used instead of 2 1
n

+ . The arithmetic

unit of RNS system based on moduli set
1{2 1, 2 , 2 1}n n n+

− − is faster than those

based on moduli set {2 1, 2 , 2 1}n n n

− + .

A technique for implementing a finite impulse response (FIR) digital filter

in a residue number system (RNS) is presenter in this paper. From the viewpoint

of FIR architecture, single RNS multiplier-accumulator (MAC)-based

architecture is applied to each channel FIR filter design.

The paper is organized as follows. After an introduction about RNS and

reverse conversion algorithms, the architecture of the constant coefficient FIR

filters which have been designed for three moduli sets 1{2 1, 2 , 2 1}n n n+

− − will

be investigated in the third section. Section 4 discusses a method for binary

representation into residues, but the MRC architecture of RNS to binary

conversion in Section 5 is discussed. Finally, in Section 6 the implementation of

a 27th-order lowpass FIR filter is used to demonstrate design parameters that

must be considered in designing an RNS filter.

2 Background

A residue number system (RNS) is defined in terms of k integers that are

relatively-prime. That is
1 2

{ , , , }
k

m m m m= … where gcd(,) 1
i j

m m = for

, 1, ,i j k= … and i j< and gcd means the greatest common divisor [6, 11, 12].

Any integer X , with 0 X M≤ < , where
1

k

i i
M m

=

= ∏ is presented in the RNS as

1 2
(, , ,)

k
X x x x= … , where

i
i mx X= 〈 〉 and

i
m

X〈 〉 denotes modulo operation.

Thus RNS is a non-weighted number system which speeds up arithmetic

operations by dividing them into smaller operations. Since the arithmetic

operation in each moduli channel are independent of the others moduli channel,

there is no carry propagation among them and RNS leads to carry-free addition

and borrow-free subtraction. Magnitude comparison overflow detection and the

sign test are time consuming in RNS.

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

327

To perform the residue to binary conversion, that is, to convert the residue

number
1 2

(, , ,)
k

x x x… into the integer number X , the Chinese Remainder

Theorem (CRT) and mixed-radix conversion (MRC) are generally used.

The CRT is formulated as folows [13 – 15]:

1

i

k

i i m i M

i

X x N M

=

= 〈 〉∑〈 〉 , (1)

where /
i i

M M m= and 1

i
i i m

N M
−

= 〈 〉 is the multiplicative inverse of
i

M

modulo
i

m . The main disadvantage of this approach is that it requires

multiplication by the
i

M ’s, which are large numbers, and modulo M

operations.

By MRC algorithm the residue numbr
1 2

(, , ,)
k

x x x… can be converted into

integer number X as follows:

1

3 1 2 2 1 1

1

k

k i

i

X a M a m m a m a

−

=

= + + + +∏ � , (2)

where
i
a are the mixed-radix digits (MRDs) and they can be obtained from the

residues by [11]

1 1, 2 2, 1 1,

((()))
i

i i i i i i i m
a x a c a c a c

− −

= − − − −〈 〉� � (3)

and
,i j

c for 1 i j k≤ ≤ < is the multiplicative inverse of
i

m modulo jm , or

1
jij i m

c m〈 × 〉 = , for 1k > and
1 1
a x= .

3 FIR Filter Architecture

Traditional N-tap FIR filter with impulse response coefficients
k
b can be

described by

1

0

() ()
N

k

k

y n b x n k
−

=

= −∑ . (4)

Possible realization of a FIR filter [16, 17] in transposed form is shown in

Fig. 1. The implementation of N trap FIR filter requires the implementation of

N multiplications and 1N − additions. Multiplication is very costly regarding

hardware and computational time because the arithmetic unit performs fixed

point computation on numbers represented in 2’s complement form. The

arithmetic unit consists of a dedicated hardware multiplier and an adder

connected to the accumulator so as to be able to efficiently execute the

multiply-accumulate operation.

N. Stamenkovic, V. Stojanovic

328

Fig. 1 – Traditional FIR filter architecture.

Fig. 3 shows the MAC architecture suitable for set of three moduli. The

main components of an RNS system are a forward converter, parallel arithmetic

channels and a reverse converter. The forward converter encodes a binary

number into a residue represented number, with regard to the moduli set. Each

arithmetic channel requires modular multiplication and accumulation for each

modulo of set. The reverse converter decodes a residue represented number into

its equivalent binary number. The arithmetic channels are working in a

completely parallel architecture without any dependency, and this results in a

considerable speed enhancement.

Fig. 2 – RNS based FIR filter architecture for tree modili set.

The architecture has two separate memory spaces which can be accessed

simultaneously. One of the memories can be used to store coefficients and the

other to store input data samples both in residue form. FIR filtering is achieved

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

329

in the RNS domain by using triple modulo FIR filter blocks. The

implementation is generic and assumes 3 moduli (
1

m ,
2

m ,
3

m) selected so as to

meet the desired filter precision requirements. The FIR filtering is performed as

a series of modulo MAC operations across each moduli
1

m ,
2

m and
3

m .

3.1 The Multiply-Accumulate Unit

The associated formula of (4) for RNS FIR filters can be expressed as:

0

() () , for 1,2,3.
i i i i

N

m k m m m

k

y n b x n k i
=

〈 〉 = 〈 〉 〈 − 〉 =∑〈 〉 (5)

It is shown that the design of an FIR filter modulo
i

m , (5) is actually a sum

of product algorithm, that is, we need one modulo
i

m MAC unit.

Fig. 3 shows the modulo
i

m MAC unit, which multiplies two numbers,

i
k m
b〈 〉 and ()

i
mx n k〈 − 〉 , and sums the results. Multiply and accumulate

operation can be performed in single cycle by MAC unit. Suppose,
i

k m
b〈 〉 and

()
i

mx n k〈 − 〉 are two input sequence. In MAC unit (Fig. 3) the inputs are

multiplied and added with zero which is initially stored in the memory

(register). The sum is then stored in the memory unit. In the next clock, the next

inputs are multiplied and added with previous data stored in the memory. Note,

both operations are modular.

Fig. 3 – Modulo mi MAC unit.

For example, initially the multiplication
0 0

()
i i

m mz b x n= 〈 〉 〈 〉 is computed.

Then the modulo-
i

m result
0
z is added to the residue product

1
(1)

i i
m m

b x n〈 〉 〈 − 〉

to derive the intermediate quantity
1 0 1

(1)
i i

m m
z z b x n= 〈 + 〈 〉 〈 − 〉 . The result

()
i

my n〈 〉 is recursively derived after N additions and multiplications. Hence

the final result ()y n is generated by the residue-to-binary conversion of the

RNS result
1 2 3

{ () , () , () }m m my n y n y n〈 〉 〈 〉 〈 〉 .

N. Stamenkovic, V. Stojanovic

330

In the following text modular adder and modular multiplier which can be

used for MAC unit implementation will be described.

3.1.1 Modulo addition

Modulo (2 1)n

− (modulo 1
2 1
n+

−) addition algorithm that avoids double

representation of zero is defined by [18]:

2 1 2

1
n nout

i i i i
x y x y C

−

〈 + 〉 = 〈 + + − 〉 , (6)

where
out

C is the carry-out of the addition x y+ . Fig. 4a depicts the ar-

chitecture of the corresponding hardware operator which requires carry-

propagate adder, a NOR gate and decrementer [19]. Fig. 4b shows the internal

logic circuit schematic of a decrementer, based on the conventional n -bit ripple

borrow half subtractor. Only n half subtractors are used for constructing the

decrement architecture.

Fig. 4 – (a) The modular addition with respect to 2n−1 hardware

architecture; (b) ripple-borrow decrement stage.

The modulo 2n adder can be realized directly with n -bit adder with

ignored overflow.

3.1.2 Modulo multiplication

Modulo 2 1
n

− (modulo 1
2 1
n+

−) multiplication can be formulated as

2 1 2 2 1

div 2
n n n

n

i i i i i i
x y x y x y

− −

〈 × 〉 = 〈 × 〉 + ×〈 〉 , (7)

where
2
ni ix y〈 × 〉 corresponds to the low output word and div 2

n

i i
x y× to the

high output word of the multiplication
i i
x y× . Therefore, modulo (2 1)n

−

multiplication can be accomplished by an n bit unsigned multiplication

followed by an n bit modulo 2 1
n

− addition.

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

331

Equation (7) can be rewritten as sum of partial products:

1

,2 1 2 1
0

n n

n

i i i k

k

x y pp

−

− −

=

〈 × 〉 = 〈 〉∑ , (8)

where:
, 1 , 2 ,0

, ,i i n i n ix x x x
− −

= … ,

, 1 , 2 ,0i i n i n i
y y y y

− −

= … , and

, , 1 ,0 , 1 ,
()

i k k i n k i i n i n k
pp x y y y y

− − − −

= × … � , (implemented using AND gates)

is the k -th partial product modulo (2 1)n

− .

Note that all n -bit partial products
,i kpp have the same magnitude (as

opposed to ordinary multiplication, where the partial products have increasing

magnitude), i.e., the number of partial product bits to add is the same for all bit

positions. The partial product generation for inputs of four bits wide is as shown

in Table 1.

Table 1

Partial product generation for modulo 24−1.

6
2

5
2

4
2

3
2

2
2

1
2

0
2

 ,0 ,3i i
x y

,0 ,2i i
x y

,0 ,1i i
x y

,0 ,0 ,0i i i
x y pp=

 ,1 ,3i i
x y

,1 ,2i i
x y

,1 ,1i i
x y

,1 ,0i i
x y

,1 ,3 ,1ii i
ppx y =

 ,2 ,3i i
x y

,2 ,2i i
x y

,2 ,1i i
x y

,2 ,0i i
x y

,2 ,3i i
x y

,2 ,2 ,2ii i
ppx y =

,3 ,3i i
x y

,3 ,2i i
x y

,3 ,1i i
x y

,3 ,0i i
x y

,3 ,3i i
x y

,3 ,2i i
x y

,3 ,1 ,3ii i
ppx y =

In this multiplication, the bits with weight greater than 3
2 , which are to the

left of the straight line, are repositioned to the right of the line.

In conventional memory-based technique, the ROM stores the results of the

multiplication of all possible values. Here, we extended further to obtain a

memoryless-based implementation.

The architecture of proposed implementation of modulo (2 1)n

−

multiplication is shown in Fig. 5a. Assuming the coefficient word length of

4-bits and input sample word length of 4-bits, in Fig. 5a shows the hierarchical

decomposition of a 4 4× Wallace tree logic. For (4 4×) bits, four partial

products are generated, and are added in parallel. The partial sums are added by

using two carry save adders (CSA) and a carry propagate adder with end around

carry (CPA with EAC).

N. Stamenkovic, V. Stojanovic

332

Fig. 5 – (a) Architecture of modulo (24−1) multiplier; (b) partial product generator.

The principe of the proposed memoryless-based implementation of partial

product generator is shown in Fig. 5b. It consists of n 2-to-1 multiplexers, were

n is input sample word length. The partial product is generated by connecting

zero and coefficient value to the MUX data inputs, input data bits to the select

input, and circular shifting output of the MUX 1s − bits left, for 1 s n≤ ≤ .

Assuming the multiplier Y and multiplicand
,3 ,2 ,1 ,0i i i i i

x x x x x= are words

length of 4n = bits, there will be 4 values for partial product. Note, each of the

MUX consist of n number of MUX cells (for 2 1
n

− cannel), or 1n + number

of MUX cells (for
1

2 1
n+

− cannel) working in parallel.

Modulo 2n multiplication can be formulated as

1

,2
0

n

n

i i i k

k

x y pp

−

=

〈 × 〉 =∑ , (9)

were
, , 1 , 2 0

(0 0 0)

k

i k i i n k i n k
pp x y y y

− − − −

= ⋅

���

� � . The partial products are added

using carry save adders with the carry out bit discarded.

4 Binary to RNS Conversion

An integer X in the range [0,)M , represented in 2n notation as [20 – 22]:

3 1

2

2 1 0

0

2 2 2

n

i n n

i

i

X X N N N

−

=

= = + +∑ (10)

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

333

can be uniquely represented in RNS by the set
1 2 3

(, ,)x x x for the moduli set

1, 2 3
{ , }m m m . Three converters are required in order to obtain the RNS

representation of the integer, one for each base element.

The simplest one is the converter for the
1

2
n

m = channel. The value
1
x can

be obtained by the remainder of the division of X by 2
n

, which can be

accomplished by truncating the value X , since:

1 1 2 02

n n n
x X X X X

− −

= 〈 〉 = � . (11)

For the 2 1
n

− and
1

2 1
n+

− channels the calculation of the corresponding

residues is more complex, since the final result of the conversion depends on the

value of all the
i

X bits. Instead of using a division operation to calculate the

2 1
n

− residue, which is a complex operation and expensive both in terms of

area and speed, this calculation can be performed as a sequence of additions, as

described below:

 2

2 2 1 02 1 2 1
2 2

n n

n n

x X N N N
− −

= 〈 〉 = 〈 + + 〉 . (12)

By taking the equation:

2 1

2 1
n

n

−

〈 〉 = , (13)

(12) can be rewritten as:

2 2 1 0 2 1

n
x N N N

−

= 〈 + + 〉 . (14)

Thus the conversion of X to moduli 2 1
n

− can be performed simply by

adding modulo 2 1
n

− the
i

N components of X .

In an identical manner, the 1
2 1
n+

− residue can be calculated as:

1 1

1

2(1) 1

3 2 1 02 1 2 1

3 2 1 0 2 1

2 2 ,

,

n n

n

n n

x X N N N

x N N N

+ +

+

+ +

− −

−

′ ′ ′= 〈 〉 = 〈 + + 〉

′ ′ ′= 〈 + + 〉
 (15)

where
0

N ′ ,
1

N ′ and
2

N ′ ar 1n + bit numbers.

5 RNS to Binary Conversion

Given RNS number
1 2 3

(, ,)y y y with respect to the moduli set
1{2 ,2 1,2 1})n n n+

− − , the proposed algorithm compute binary equivalent of the

RNS number using MRC technique. For proposed moduli set 3k = then the (2)

reduces to:

N. Stamenkovic, V. Stojanovic

334

3 2 1 2 3 3 1

4 3 1 5 1

2 (2 1) 2 (2)2 ,

()2 2 .

n n n n n

n n

y a a a a a a a

y a a a a a

= − + + = + − +

= − + = +

 (16)

The various multiplicative inverse for proposed moduli set are:
12

1c = ,

13
2c = and

23
2c = − [9]. Mixed-radix digits are computed using (3):

1

1 1

2 2 1 2 1

3 2 3 1 2 1

,

,

(2())2 .

n

n

a y

a y y

a a y y
+

−

−

=

= 〈 − 〉

= 〈 − − 〉

 (17)

Binary number
4

a is only concatenation of MRDs
2
a and

3
a , were

3
a is

MSB and
2
a is LSB,

4 2 3

2
n

a a a= + . (18)

Finally,
5
a is traditional subtraction of MDRs

4
a and

3
a :

5 4 3
a a a= − . (19)

The proposed architecture of RNS-to-binary number conversion is depicted

in Fig. 6a. It contains two modulo 1
2 1
n+

− subtractors, one modulo 2 1
n

− and

one traditional borrow propagation subtractor (BPS).

The modulo (2 1)n

− subtraction can be expressed as follows:

2 1 2
n nout

x y x y B
−

〈 − 〉 = 〈 − − 〉 . (20)

The borrow out signal (
out

B), which results from the subtraction of both x

and y , can be used in the process of computing modulo 2 1
n

− subtraction. This

is due to the following observations:

1 if ,

0 if .

out

out

B x y

B x y

= <

= ≥
 (21)

Then modulo 2n subtractor with borrow out feed back into the borrow

input (to achieve end-around-borrow), can be used to implement modulo 2 1
n

−

subtractor (20). This type of subtractor is also known as the Borrow-Propagate-

Subtractor wit End-Around-Borrow (BPS with EAB). Note, that proposed

modulo (2 1)n

− subtraction algorithm, which avoids the double representation

of the zero, cover whole dynamic range while modulo subtractor based on the

CPA with EAC does not [9]. For example, the the residue-to binary converter,

that uses modulo 2 1
n

− subtractor based on the CPA with end-around carry,

generate wrong results for
1 2 3
y y y= = . For 6n = and

1 2 3
62y y y= = =

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

335

residue-to-binary converter generate 512126y = instead of 62y = . It can be

concluded, subtractor based on the CPA with end around carry reduce dynamic

range to
12 2 (2 1)2 (2 1)n n n n

y
+

− < < − − .

Fig. 6 – (a) The MRC architecture for the moduli set {2n, 2n−1, 2n+1−1};

(b) modulo 2n−1 subtractor based on the Borrow Propagate Subtractor

with End Around Borrow (BPS with EAB).

If modulo subtractor is performed as an ordinary subtractor with end

around borrow (EAB), where the borrow output depends on the borrow input, a

combinational logic is created to eliminate an unwanted race condition. Modulo

subtractor based on the BPS with EAB is shown on Fig. 6b, but one solution for

decrementer is shown in Fig. 4b.

Since
12

1c = , mixed-radix digit
2
a is available after modulo subtraction

2 1
y y− . Next,

3
a is obtained after four operations: the first operation is modulo

N. Stamenkovic, V. Stojanovic

336

subtraction
3 1
y y− , a second operation is resulting difference left circular

shifting by 1 bit (since
13

2c =), a third operation is modulo subtraction with
2
a

as minuend and results of circular shifting as subtrahend, and a last operation is

carried out by left circular shifting by 1 bit (since
23

2c = −) in the result.

Suppose that MRDs
1
a ,

2
a and

3
a have binary representations as follows

1 1, 1 1, 2 1,0

2 2, 1 2, 2 2,0

3 3, 3, 2 3,0

n n

n n

n n

a a a a

a a a a

a a a a

− −

− −

−

=

=

=

�

�

�

 (22)

As shown in (18) and (19), the three operand to be added to obtain
5
a .

These three operands is simplified as two (2n + 1)-bit word
4
a and

5
a since

2
a

and
3
2
n

a together have zeros in all (2n + 1)-bit positions:

2 2, 1 2, 2 2,0

1

3 3, 3, 1 3,0

1

0 0 0 ,

2 0 0 0.

n n

n
n

n

n n

n
n

a a a a

a a a a

− −

+

−

+

=

=

� �
����������

� �
����������

 (23)

Thus

4 3, 3, 1 3,0 2, 1 2, 2 2,0n n n n
a a a a a a a

− − −
= � � . (24)

The subtraction
5 4 3
a a a= − can be realized with traditional BPS. Finally,

after bits of organization (concatenation), based on the (16) we get the final

result as a binary number
5 1
2
n

y a a= + after bit organization:

5,2 5,2 1 5,0 1, 1 1, 2 1,0

2 1

n n n n

n n

y a a a a a a
− − −

+

= � �

��������������

. (25)

6 Filter Performance

The design and numerical computation of an FIR filter was done using

MATLAB using Parks-McClellan algorithm [23] in a two-step process. The

first is to use the firpmord command to estimate the order of the optimal

Parks- McClellan FIR filter to meet design specifications. The syntax of the

command is as follows: [N,fo,mo,w]=firpmord(f,m,dev), where

f=[0.4 0.5] is the vector of band frequencies, vector m=[1 0] contains

the desired magnitude response values at the passbands and the stopbands of the

filter, and the vector dev=[0.01 0.1] has the maximum allowable

deviations of the magnitude response of the filter from the desired magnitude

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

337

response. The second step is the actual design of the filter, using the firpm

command b=firpm(N,fo,mo) to find the impulse response bi of the Parks-

McClellan FIR filter for our design.

The filter coefficients are shown in Table 2 for double precision and for

9-bit precision, including the sign bit, in integer notation.

Integer value in the third column in Table 2 are transformed from floating

point value (second column) in two steps. The first step is the conversion of

floating point filter coefficients b in binary string b binary using two MatLAB

functions, Q_1=quantizer(’round’,Format) and b_binary=

num2bin(Q_1,b). Value Format in quantizer MatLAB function creates

parameters of binary numbers: [wordlength,fractionlength] for

signed fixed-point mode. For 9-bit precision format are wordlength=9 and

fractionlength=8.

Table 2

The 27th-order FIR lowpass filter coefficients for

mouli set (2n−1, 2n, 2n+1−1}, with n = 6.

The second step is the conversion of binary string b binary into integer

value using two new MATLAB functions: q_1=quantizer(’round’,

Format) and b_int=bin2num(q_1,b_binary). In this case value

Format fractionlength is equal zero, i.e. Format=[9, 0]. At last, integer

values of filter coefficients are transformed in RNS number. For coefficients

forward conversion MATLAB function mod can be used.

N. Stamenkovic, V. Stojanovic

338

This paper investigates binary to residue converter for the modulo set

{64,63,127} . In the following example we describe the fixed point-to-residue

number system conversion of coefficient
1
b . Double precision of filter

coefficient
1
b is 0.023540422135223− which is converted to binary number

b_binary=111111010, than to integer number b_int=-6, and at last to

RNS number b_RNS=(58, 57, 121).

The simulation, which is done in MATLAB, depicts the effects of this

design approach on the filter. Fig. 7 shows a plot of the ideal filter (dotted line)

and the actual output. It is shown, the residue number based FIR filter to have a

satisfactory attenuation performance.

0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

Normalized Frequency

A
tte

nu
at

io
n

[d
B

]

Double precision
9−bit precision

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

Normalized Frequency

Q
ua

nt
iz

at
io

n
er

ro
r

[d
B

]

Fig. 7 – Attenuation response (top) and quantization error

from filter coefficient rounding to 9-bits (bottom).

Assume that the data sequence is quantized to 10-bits (including sign) and

that filter must be implemented without rounding error. An absolute upper

bound on filter response | () |y n is given by (26):

30

1

| () | max{| () |} | | 476718 18.86 bits
k

k

y n x n b
=

≤ = ≈∑ . (26)

The moduli set {63,64,127} provides a dynamic range of 18.96 bits, which

is adequate for most practical situations since the bound of 18.86 bits given by

(26) is extremely pessimistic.

Fig. 8 shows the impulse response of RNS channels. The coefficient values

of the first and the second subfilter must be stored in 6 bit word, but the values

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

339

of the third subfilter must be stored in 7 bit word. In {64,63,127} residue umber

system unit sample is

(63,15,7) if 0,

()
(0,0,0) if 0.

n

n

n

=⎧
δ = ⎨

≠⎩
 (27)

0 5 10 15 20 25 30
0

50

100

y 1(n
)

0 5 10 15 20 25 30
0

50

100

y 2(n
)

0 5 10 15 20 25 30
0

50

100

y 3(n
)

Samples

Fig. 8 – The impulse response of the RNS channels:

(2n−1) above; 2n in themiddle; (2n+1−1) down.

0 5 10 15 20 25 30

0

0.2

0.4

SamplesIm
pu

ls
e

R
es

po
ns

e

0 5 10 15 20 25 30

−1
0
1
2

x 10
−3

Samples

E
rr

or

Fig. 9 – Impulse response of the RNS lowpass filter (above);

quantization error for impulse response (below).

N. Stamenkovic, V. Stojanovic

340

For the impulse response of whole filter we can use the mixed-radix

conversion technique in order to convert a number, presented in the residue

system, in the conventional number system, as shown in Fig. 6. The impulse

response for this digital filter is shown in Fig. 9.

The quantization error in the impulse response, resulting from quantizing

the coefficients to 9 bits, is shown in Fig. 9 below. It can be seen that 9 bits is

sufficient to maintain error which is less than 2
2 10

−

⋅ .

7 Conclusion

The Residue Number System has been recognized as one of the efficient

alternative number systems which can be used to high-speed hardware

implementation of Digital Signal Processing computation algorithms. However,

forward and reverse converters are needed to act as interfaces between RNS and

the conventional binary digital systems. The overhead of these converters can

frustrate the speed efficiency of RNS, and due to this a lot of research has been

done to design efficient reverse converters.

This paper presents a study on the state-of-the-art digital signal processing

which have been designed for the recently introduced large dynamic range RNS

three-moduli sets.

The applications of RNS to constant coefficient FIR filters has not been

thoroughly researched yet in the literature, therefore based on our preliminary

research, we propose to develop (i) new residue number systems that balance

inter-channel slack therefore maximize the use of the clock cycle; (ii) residue

channels architectures that exploit slack balancing for low power; and (iii)

characterized prototype circuit.

8 Acknowledgement

The authors are grateful to Professor Vidosav Stojanovic for comments and

suggestions that improved the presentation in the paper.

This work was supported by the Serbian Ministry of Science and

Technological Development, Project No. 32009TR

9 References

[1] P.V.A. Mohan: Residue Number Systems: Algorithms and Architectures, Kluwer Academic

Publisher, Dordrecht, Netherlands, 2002.

[2] A. Omodi, B. Prekumar: Residue Number System – Theory and implementation, Imperial

College Press, London, UK, 2007.

[3] R. Conway, J. Nelson: Improved RNS FIR Filter Architectures, IEEE Transaction on

Circuits and Systems II: Express Briefs, Vol. 51, No. 1, Jan. 2004, pp. 26 – 28.

Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic

341

[4] W.K. Jenkins, B. Leon: The use of Residue Number Systems in the Design of Finite

Impulse Response Digital Filters, IEEE Transaction on Circuits and Systems, Vol. 24, No.

4, Apr. 1977, pp. 191 – 201.

[5] G.C. Cardarilli, A. Nannarelli, M. Re: Residue Number System for Low-power DSP

Applications, 41st Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, CA, USA, 04 – 07 Nov. 2007, pp. 1412 – 1416.

[6] H.L. Garner: The Residue Number System, IRE Transaction on Electronic Computer, Vol.

EC-8, No. 2, June 1959, pp. 140 – 147.

[7] A. Hiasat, A. Zohdy: Residue-to-binary Arithmetic Converter for the Moduli Set (2k, 2k−1,

2k−1−1), IEEE Transaction on Circuits and Systems II: Analog and Digital Signal

Processing, Vol. 45, No. 2, Feb. 1998, pp. 204 – 209.

[8] Y. Wang, X. Song, M. Abdoulhamid, H. Shen: Adder Base Residue to Binary Number

Converters for (2n−1, 2n, 2n+1), IEEE Transaction on Signal Processing, Vol. 50, No. 7, July

2002, pp. 1772 – 1779.

[9] P.V.A. Mohan: RNS-to-binary Converter for a New Three-moduli set (2n+1−1, 2n, 2n−1),

IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 9, Sept. 2007,

pp. 775 – 779.

[10] S.H. Lin, M.H. Sheu, C.H. Wang: Efficient VLSI Design of Residue-to-binary Converter for

the Moduli Set (2n, 2n+1−1, 2n−1), IEICE Transactions on Information and Systems, Vol.

E91-D, No. 7, July 2008, pp. 2058 – 2060.

[11] N.S. Szabo, R.I. Tanaka: Residue Arithmetic and its Application to Computer Technology,

McGraw-Hill, New York, USA, 1967.

[12] F.J. Taylor: Residue Arithmetic: A Tutorial with Examples, Computer, Vol. 17, No. 5, May

1984, pp. 50 – 62.

[13] B. Parhami: Computer Arithmetic: Algorithm and Hardware Designs, Oxford University

Press, New York, USA, 2000.

[14] Y. Wang: Residue-to-binary Converters based on New Chinese Remainder Theorems, IEEE

Transaction on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 47, No.

3, March 2000, pp. 197 – 205.

[15] J.W. Chen, R.H. Yao: Efficient CRT-based Residue-to-binary Converter for the Arbitrary

Moduli Set, Science China – Information Sciences, Vol. 54, No. 1, Jan. 2011, pp. 70 – 78.

[16] M. Nikolić, M. Lutovac: Sharpening of the Multistage Modified Comb Filters, Serbian

Journal of Electrical Engineering, Vol. 8, No. 2, Nov. 2011, pp. 281 – 291.

[17] S. Damjanović, L. Milić: A Family of IIR Two-band Orthonormal QMF Filter Banks,

Serbian Journal of Electrical Engineering, Vol. 1, No. 3, Sept. 2004, pp. 45 – 56.

[18] R. Zimmermann: Efficient VLSI Implementation of Modulo (2n±1) Addition and

Multiplication, 14th IEEE Symposium on Computer Arithmetic, Adelaide, Australia, 14 –

16 April 1999, pp. 158 – 167.

[19] J.L. Beuchat: Some Modular Adders and Multipliers for Field Programmable Gate Arrays,

17th International Symposium on Parallel and Distributed Processing, Los Alamitos, CA,

USA, 22 – 26 April 2003, pp. 190 – 197.

[20] B. Vinnakota, V.V.B. Rao: Fast Conversion Techniques for Binary-residue Number

Systems, IEEE Transaction on Circuits And Systems I: Fundamental Theories And

Applications, Vol. 41, No. 12, Dec. 1994, pp. 927 – 929.

[21] S.J. Piestrak: Design of Residue Generators and Multioperand Modular Adders using Carry-

save Adders, IEEE Transactions on Computers, Vol. 43, No. 1, Jan. 1994, pp. 68 – 77.

N. Stamenkovic, V. Stojanovic

342

[22] R. Chaves, L. Sousa: (2n+1, 2n+k, 2n−1): A New RNS Moduli Set Extension, Euromicro

Symposium on Digital System Design, Rennes, France, 31 Aug. – 03 Sept. 2004, pp. 210 –

217.

[23] L.R. Rabiner, J.H. McClellan, T.W. Parks: FIR Digital Filter Design Techniques using

Weighted Chebyshev Approximation, Proceedings of the IEEE, Vol. 63, No. 4, April 1975,

pp. 595 – 610.

