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Abstract: In this paper, the design of a Finite Impulse Response (FIR) filter 

based on the residue number system (RNS) is presented. We chose to implement 

it in the (RNS), because the RNS offers high speed and low power dissipation. 

This architecture is based on the single RNS multiplier-accumulator (MAC) unit. 

The three moduli set 
1{2 ,2 ,2 1}n n n+

− , which avoids 2 1
n

+  modulus, is used to 

design FIR filter. A numerical example illustrates the principles of residue 

encoding, residue arithmetic, and residue decoding for FIR filters. 

Keywords: FIR filters, Residue number system, Reverse converter, Forward 

converter, Modulo MAC unit. 

1 Introduction 

The Residue Number System (RNS) has been recognized as one of the 

efficient alternative number systems which can be used to high-speed hardware 

implementation of Digital Signal Processing computation algorithms. In RNS, 

an integer value with large word-length is divided into several relatively small 

integer copies by a specific moduli set. The addition and multiplication of RNS 

integers copies are performed in parallel. Each copy is called a channel and the 

so called RNS channel implements modular arithmetic. In this way, RNS 

arithmetic does not suffer from inter-channel propagation delay. Performance of 

the system can be increased by selecting small word-length channels with short 

internal carry prpagation delay [1, 2]. Due to this feature, many Digital Signal 

Processing architectures based on RNS have been introduced in the literature 

[3, 4]. Thus, RNS is an efficient method for the implementation of high-speed 

Finite Impulse Response (FIR) filters, where dominant operations are addition 

and multiplication. Implementation issues of RNS based FIR filters show that 

performance can be considerably increased, in comparison with traditional 

two’s complement binary number system [3 – 5]. 
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The basic of each RNS is a moduli set with consist of a set of pairwise 

prime number [6]. Until now, many moduli set have been introduced for RNS 

[7 – 9]. Among these, the moduli set {2 1, 2 , 2 1}n n n

− +  is most well known. 

This moduli set can result in simple design of forward and inverse converter, 

but performance of RNS arithmetic unit is restricted to the time-performance of 

modulo 2 1
n

+  channel. The modulo 2 1
n

−  operations are complex, and are 

bottleneck for RNS arithmetic unit. Hence, the moduli set 
1{2 , 2 , 2 1}n n n+

−  

[9, 10] is used as an alternative for moduli set {2 1, 2 , 2 1}n n n

− +  in this paper. 

In this moduli set, the moduli 1
2 1
n+

−  is used instead of 2 1
n

+ . The arithmetic 

unit of RNS system based on moduli set 
1{2 1, 2 , 2 1}n n n+

− −  is faster than those 

based on moduli set {2 1, 2 , 2 1}n n n

− + . 

A technique for implementing a finite impulse response (FIR) digital filter 

in a residue number system (RNS) is presenter in this paper. From the viewpoint 

of FIR architecture, single RNS multiplier-accumulator (MAC)-based 

architecture is applied to each channel FIR filter design. 

The paper is organized as follows. After an introduction about RNS and 

reverse conversion algorithms, the architecture of the constant coefficient FIR 

filters which have been designed for three moduli sets 1{2 1, 2 , 2 1}n n n+

− −  will 

be investigated in the third section. Section 4 discusses a method for binary 

representation into residues, but the MRC architecture of RNS to binary 

conversion in Section 5 is discussed. Finally, in Section 6 the implementation of 

a 27th-order lowpass FIR filter is used to demonstrate design parameters that 

must be considered in designing an RNS filter. 

2 Background 

A residue number system (RNS) is defined in terms of k  integers that are 

relatively-prime. That is 
1 2

{ , , , }
k

m m m m= …  where gcd( , ) 1
i j

m m =  for 

, 1, ,i j k= …  and i j<  and gcd  means the greatest common divisor [6, 11, 12]. 

Any integer X , with 0 X M≤ < , where 
1

k

i i
M m

=

= ∏  is presented in the RNS as 

1 2
( , , , )

k
X x x x= … , where 

i
i mx X= 〈 〉  and 

i
m

X〈 〉  denotes modulo operation. 

Thus RNS is a non-weighted number system which speeds up arithmetic 

operations by dividing them into smaller operations. Since the arithmetic 

operation in each moduli channel are independent of the others moduli channel, 

there is no carry propagation among them and RNS leads to carry-free addition 

and borrow-free subtraction. Magnitude comparison overflow detection and the 

sign test are time consuming in RNS. 
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To perform the residue to binary conversion, that is, to convert the residue 

number 
1 2

( , , , )
k

x x x…  into the integer number X , the Chinese Remainder 

Theorem (CRT) and mixed-radix conversion (MRC) are generally used. 

The CRT is formulated as folows [13 – 15]: 

 
1

i

k

i i m i M

i

X x N M

=

= 〈 〉∑〈 〉 , (1) 

where /
i i

M M m=  and 1

i
i i m

N M
−

= 〈 〉  is the multiplicative inverse of 
i

M  

modulo 
i

m . The main disadvantage of this approach is that it requires 

multiplication by the 
i

M ’s, which are large numbers, and modulo M  

operations. 

By MRC algorithm the residue numbr 
1 2

( , , , )
k

x x x…  can be converted into 

integer number X  as follows: 

 
1

3 1 2 2 1 1

1

k

k i

i

X a M a m m a m a

−

=

= + + + +∏ � , (2) 

where 
i
a  are the mixed-radix digits (MRDs) and they can be obtained from the 

residues by [11] 

 
1 1, 2 2, 1 1,

( (( ) ) )
i

i i i i i i i m
a x a c a c a c

− −

= − − − −〈 〉� �  (3) 

and 
,i j

c  for 1 i j k≤ ≤ <  is the multiplicative inverse of 
i

m  modulo jm , or 

1
jij i m

c m〈 × 〉 = , for 1k >  and 
1 1
a x= . 

3 FIR Filter Architecture 

Traditional N-tap FIR filter with impulse response coefficients 
k
b  can be 

described by 

 
1

0

( ) ( )
N

k

k

y n b x n k
−

=

= −∑ . (4) 

Possible realization of a FIR filter [16, 17] in transposed form is shown in 

Fig. 1. The implementation of N  trap FIR filter requires the implementation of 

N  multiplications and 1N −  additions. Multiplication is very costly regarding 

hardware and computational time because the arithmetic unit performs fixed 

point computation on numbers represented in 2’s complement form. The 

arithmetic unit consists of a dedicated hardware multiplier and an adder 

connected to the accumulator so as to be able to efficiently execute the 

multiply-accumulate operation. 
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Fig. 1 – Traditional FIR filter architecture. 

 

Fig. 3 shows the MAC architecture suitable for set of three moduli. The 

main components of an RNS system are a forward converter, parallel arithmetic 

channels and a reverse converter. The forward converter encodes a binary 

number into a residue represented number, with regard to the moduli set. Each 

arithmetic channel requires modular multiplication and accumulation for each 

modulo of set. The reverse converter decodes a residue represented number into 

its equivalent binary number. The arithmetic channels are working in a 

completely parallel architecture without any dependency, and this results in a 

considerable speed enhancement. 

 

Fig. 2 – RNS based FIR filter architecture for tree modili set. 

 

The architecture has two separate memory spaces which can be accessed 

simultaneously. One of the memories can be used to store coefficients and the 

other to store input data samples both in residue form. FIR filtering is achieved 
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in the RNS domain by using triple modulo FIR filter blocks. The 

implementation is generic and assumes 3 moduli (
1

m , 
2

m , 
3

m ) selected so as to 

meet the desired filter precision requirements. The FIR filtering is performed as 

a series of modulo MAC operations across each moduli 
1

m , 
2

m  and 
3

m . 

3.1 The Multiply-Accumulate Unit 

The associated formula of (4) for RNS FIR filters can be expressed as: 

 
0

( ) ( ) ,  for 1,2,3.
i i i i

N

m k m m m

k

y n b x n k i
=

〈 〉 = 〈 〉 〈 − 〉 =∑〈 〉  (5) 

It is shown that the design of an FIR filter modulo 
i

m , (5) is actually a sum 

of product algorithm, that is, we need one modulo 
i

m  MAC unit. 

Fig. 3 shows the modulo 
i

m  MAC unit, which multiplies two numbers, 

i
k m
b〈 〉  and ( )

i
mx n k〈 − 〉 , and sums the results. Multiply and accumulate 

operation can be performed in single cycle by MAC unit. Suppose, 
i

k m
b〈 〉  and 

( )
i

mx n k〈 − 〉  are two input sequence. In MAC unit (Fig. 3) the inputs are 

multiplied and added with zero which is initially stored in the memory 

(register). The sum is then stored in the memory unit. In the next clock, the next 

inputs are multiplied and added with previous data stored in the memory. Note, 

both operations are modular. 

 

Fig. 3 – Modulo mi MAC unit. 

 

For example, initially the multiplication 
0 0

( )
i i

m mz b x n= 〈 〉 〈 〉  is computed. 

Then the modulo-
i

m  result 
0
z  is added to the residue product 

1
( 1)

i i
m m

b x n〈 〉 〈 − 〉  

to derive the intermediate quantity 
1 0 1

( 1)
i i

m m
z z b x n= 〈 + 〈 〉 〈 − 〉 . The result 

( )
i

my n〈 〉  is recursively derived after N  additions and multiplications. Hence 

the final result ( )y n  is generated by the residue-to-binary conversion of the 

RNS result 
1 2 3

{ ( ) , ( ) , ( ) }m m my n y n y n〈 〉 〈 〉 〈 〉 . 
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In the following text modular adder and modular multiplier which can be 

used for MAC unit implementation will be described. 

3.1.1 Modulo addition 

Modulo (2 1)n

−  (modulo 1
2 1
n+

−  ) addition algorithm that avoids double 

representation of zero is defined by [18]: 

 
2 1 2

1
n nout

i i i i
x y x y C

−

〈 + 〉 = 〈 + + − 〉 , (6) 

where 
out

C  is the carry-out of the addition x y+ . Fig. 4a depicts the ar-

chitecture of the corresponding hardware operator which requires carry-

propagate adder, a NOR gate and decrementer [19]. Fig. 4b shows the internal 

logic circuit schematic of a decrementer, based on the conventional n -bit ripple 

borrow half subtractor. Only n  half subtractors are used for constructing the 

decrement architecture. 

 

Fig. 4 – (a) The modular addition with respect to 2n−1 hardware 

architecture; (b) ripple-borrow decrement stage. 
 

The modulo 2n  adder can be realized directly with n  -bit adder with 

ignored overflow. 

3.1.2 Modulo multiplication 

Modulo 2 1
n

−  (modulo 1
2 1
n+

−  ) multiplication can be formulated as  

 
2 1 2 2 1

div 2
n n n

n

i i i i i i
x y x y x y

− −

〈 × 〉 = 〈 × 〉 + ×〈 〉 , (7) 

where 
2
ni ix y〈 × 〉  corresponds to the low output word and div 2

n

i i
x y×  to the 

high output word of the multiplication 
i i
x y× . Therefore, modulo (2 1)n

−  

multiplication can be accomplished by an n  bit unsigned multiplication 

followed by an n  bit modulo 2 1
n

−  addition. 
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Equation (7) can be rewritten as sum of partial products:  

 
1

,2 1 2 1
0

n n

n

i i i k

k

x y pp

−

− −

=

〈 × 〉 = 〈 〉∑ , (8) 

where:  
, 1 , 2 ,0

, ,i i n i n ix x x x
− −

= … , 

, 1 , 2 ,0i i n i n i
y y y y

− −

= … , and 

, , 1 ,0 , 1 ,
( )

i k k i n k i i n i n k
pp x y y y y

− − − −

= × … � , (implemented using AND gates) 

is the k -th partial product modulo (2 1)n

− . 

Note that all n -bit partial products 
,i kpp  have the same magnitude (as 

opposed to ordinary multiplication, where the partial products have increasing 

magnitude), i.e., the number of partial product bits to add is the same for all bit 

positions. The partial product generation for inputs of four bits wide is as shown 

in Table 1. 

Table 1 

Partial product generation for modulo 24−1. 
 

6
2  

5
2  

4
2  

3
2  

2
2  

1
2  

0
2  

   ,0 ,3i i
x y  

,0 ,2i i
x y  

,0 ,1i i
x y  

,0 ,0 ,0i i i
x y pp=  

  ,1 ,3i i
x y  

,1 ,2i i
x y  

,1 ,1i i
x y  

,1 ,0i i
x y  

,1 ,3 ,1ii i
ppx y =  

 ,2 ,3i i
x y  

,2 ,2i i
x y  

,2 ,1i i
x y  

,2 ,0i i
x y  

,2 ,3i i
x y  

,2 ,2 ,2ii i
ppx y =  

,3 ,3i i
x y  

,3 ,2i i
x y  

,3 ,1i i
x y  

,3 ,0i i
x y  

,3 ,3i i
x y  

,3 ,2i i
x y  

,3 ,1 ,3ii i
ppx y =  

 

In this multiplication, the bits with weight greater than 3
2 , which are to the 

left of the straight line, are repositioned to the right of the line. 

In conventional memory-based technique, the ROM stores the results of the 

multiplication of all possible values. Here, we extended further to obtain a 

memoryless-based implementation. 

The architecture of proposed implementation of modulo (2 1)n

−  

multiplication is shown in Fig. 5a. Assuming the coefficient word length of  

4-bits and input sample word length of 4-bits, in Fig. 5a shows the hierarchical 

decomposition of a 4 4×  Wallace tree logic. For ( 4 4× ) bits, four partial 

products are generated, and are added in parallel. The partial sums are added by 

using two carry save adders (CSA) and a carry propagate adder with end around 

carry (CPA with EAC). 
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Fig. 5 – (a) Architecture of modulo (24−1) multiplier;   (b) partial product generator. 

 

The principe of the proposed memoryless-based implementation of partial 

product generator is shown in Fig. 5b. It consists of n  2-to-1 multiplexers, were 

n  is input sample word length. The partial product is generated by connecting 

zero and coefficient value to the MUX data inputs, input data bits to the select 

input, and circular shifting output of the MUX 1s −  bits left, for 1 s n≤ ≤ . 

Assuming the multiplier Y  and multiplicand 
,3 ,2 ,1 ,0i i i i i

x x x x x=  are words 

length of 4n =  bits, there will be 4 values for partial product. Note, each of the 

MUX consist of n  number of MUX cells (for 2 1
n

−  cannel), or 1n +  number 

of MUX cells (for 
1

2 1
n+

−  cannel) working in parallel. 

Modulo 2n  multiplication can be formulated as 

 
1

,2
0

n

n

i i i k

k

x y pp

−

=

〈 × 〉 =∑ , (9) 

were 
, , 1 , 2 0

( 0 0 0)

k

i k i i n k i n k
pp x y y y

− − − −

= ⋅

���

� � . The partial products are added 

using carry save adders with the carry out bit discarded. 

4 Binary to RNS Conversion 

An integer X  in the range [0, )M , represented in 2n  notation as [20 – 22]: 

 
3 1

2

2 1 0

0

2 2 2

n

i n n

i

i

X X N N N

−

=

= = + +∑  (10) 



Constant-Coefficient FIR Filters Based on Residue Number System Arithmetic 

333 

can be uniquely represented in RNS by the set 
1 2 3

( , , )x x x  for the moduli set 

1, 2 3
{ , }m m m . Three converters are required in order to obtain the RNS 

representation of the integer, one for each base element. 

The simplest one is the converter for the 
1

2
n

m =  channel. The value 
1
x  can 

be obtained by the remainder of the division of X  by 2
n

, which can be 

accomplished by truncating the value X , since: 

 
1 1 2 02

n n n
x X X X X

− −

= 〈 〉 = � . (11) 

For the 2 1
n

−  and 
1

2 1
n+

−  channels the calculation of the corresponding 

residues is more complex, since the final result of the conversion depends on the 

value of all the 
i

X  bits. Instead of using a division operation to calculate the 

2 1
n

−  residue, which is a complex operation and expensive both in terms of 

area and speed, this calculation can be performed as a sequence of additions, as 

described below: 

 2

2 2 1 02 1 2 1
2 2

n n

n n

x X N N N
− −

= 〈 〉 = 〈 + + 〉 . (12) 

By taking the equation: 

 
2 1

2 1
n

n

−

〈 〉 = , (13) 

(12) can be rewritten as: 

 
2 2 1 0 2 1

n
x N N N

−

= 〈 + + 〉 . (14) 

Thus the conversion of X  to moduli 2 1
n

−  can be performed simply by 

adding modulo 2 1
n

−  the 
i

N  components of X . 

In an identical manner, the 1
2 1
n+

−  residue can be calculated as:  

 
1 1

1

2( 1) 1

3 2 1 02 1 2 1

3 2 1 0 2 1

2 2 ,

,

n n

n

n n

x X N N N

x N N N

+ +

+

+ +

− −

−

′ ′ ′= 〈 〉 = 〈 + + 〉

′ ′ ′= 〈 + + 〉
 (15) 

where 
0

N ′ , 
1

N ′  and 
2

N ′  ar 1n +  bit numbers. 

5 RNS to Binary Conversion 

Given RNS number 
1 2 3

( , , )y y y  with respect to the moduli set 
1{2 ,2 1,2 1})n n n+

− − , the proposed algorithm compute binary equivalent of the 

RNS number using MRC technique. For proposed moduli set 3k =  then the (2) 

reduces to: 
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3 2 1 2 3 3 1

4 3 1 5 1

2 (2 1) 2 ( 2 )2 ,

( )2 2 .

n n n n n

n n

y a a a a a a a

y a a a a a

= − + + = + − +

= − + = +

 (16) 

The various multiplicative inverse for proposed moduli set are: 
12

1c = , 

13
2c =  and 

23
2c = −  [9]. Mixed-radix digits are computed using (3): 

 

1

1 1

2 2 1 2 1

3 2 3 1 2 1

,

,

( 2( ))2 .

n

n

a y

a y y

a a y y
+

−

−

=

= 〈 − 〉

= 〈 − − 〉

 (17) 

Binary number 
4

a  is only concatenation of MRDs 
2
a  and 

3
a , were 

3
a  is 

MSB and 
2
a  is LSB, 

 
4 2 3

2
n

a a a= + . (18) 

Finally, 
5
a  is traditional subtraction of MDRs 

4
a  and 

3
a : 

 
5 4 3
a a a= − . (19) 

The proposed architecture of RNS-to-binary number conversion is depicted 

in Fig. 6a. It contains two modulo 1
2 1
n+

−  subtractors, one modulo 2 1
n

−  and 

one traditional borrow propagation subtractor (BPS). 

The modulo (2 1)n

−  subtraction can be expressed as follows: 

 
2 1 2
n nout

x y x y B
−

〈 − 〉 = 〈 − − 〉 . (20) 

The borrow out signal (
out

B ), which results from the subtraction of both x  

and y , can be used in the process of computing modulo 2 1
n

−  subtraction. This 

is due to the following observations: 

 
1 if ,

0 if .

out

out

B x y

B x y

= <

= ≥
 (21) 

Then modulo 2n  subtractor with borrow out feed back into the borrow 

input (to achieve end-around-borrow), can be used to implement modulo 2 1
n

−  

subtractor (20). This type of subtractor is also known as the Borrow-Propagate-

Subtractor wit End-Around-Borrow (BPS with EAB). Note, that proposed 

modulo (2 1)n

−  subtraction algorithm, which avoids the double representation 

of the zero, cover whole dynamic range while modulo subtractor based on the 

CPA with EAC does not [9]. For example, the the residue-to binary converter, 

that uses modulo 2 1
n

−  subtractor based on the CPA with end-around carry, 

generate wrong results for 
1 2 3
y y y= = . For 6n =  and 

1 2 3
62y y y= = =  
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residue-to-binary converter generate 512126y =  instead of 62y = . It can be 

concluded, subtractor based on the CPA with end around carry reduce dynamic 

range to 
12 2 (2 1)2 (2 1)n n n n

y
+

− < < − − . 

 

Fig. 6 – (a) The MRC architecture for the moduli set {2n, 2n−1, 2n+1−1}; 

(b) modulo 2n−1 subtractor based on the Borrow Propagate Subtractor 

with End Around Borrow (BPS with EAB). 

 

If modulo subtractor is performed as an ordinary subtractor with end 

around borrow (EAB), where the borrow output depends on the borrow input, a 

combinational logic is created to eliminate an unwanted race condition. Modulo 

subtractor based on the BPS with EAB is shown on Fig. 6b, but one solution for 

decrementer is shown in Fig. 4b. 

Since 
12

1c = , mixed-radix digit 
2
a  is available after modulo subtraction 

2 1
y y− . Next, 

3
a  is obtained after four operations: the first operation is modulo 
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subtraction 
3 1
y y− , a second operation is resulting difference left circular 

shifting by 1 bit (since 
13

2c = ), a third operation is modulo subtraction with 
2
a  

as minuend and results of circular shifting as subtrahend, and a last operation is 

carried out by left circular shifting by 1 bit (since 
23

2c = − ) in the result. 

Suppose that MRDs 
1
a , 

2
a  and 

3
a  have binary representations as follows  

 

1 1, 1 1, 2 1,0

2 2, 1 2, 2 2,0

3 3, 3, 2 3,0

n n

n n

n n

a a a a

a a a a

a a a a

− −

− −

−

=

=

=

�

�

�

 (22) 

As shown in (18) and (19), the three operand to be added to obtain 
5
a . 

These three operands is simplified as two (2n + 1)-bit word 
4
a  and 

5
a  since 

2
a  

and 
3
2
n

a  together have zeros in all (2n + 1)-bit positions: 

 

2 2, 1 2, 2 2,0

1

3 3, 3, 1 3,0

1

0 0 0 ,

2 0 0 0.

n n

n
n

n

n n

n
n

a a a a

a a a a

− −

+

−

+

=

=

� �
����������

� �
����������

 (23) 

Thus 

 
4 3, 3, 1 3,0 2, 1 2, 2 2,0n n n n
a a a a a a a

− − −
= � � . (24) 

The subtraction 
5 4 3
a a a= −  can be realized with traditional BPS. Finally, 

after bits of organization (concatenation), based on the (16) we get the final 

result as a binary number 
5 1
2
n

y a a= +  after bit organization:  

 
5,2 5,2 1 5,0 1, 1 1, 2 1,0

2 1

n n n n

n n

y a a a a a a
− − −

+

= � �

��������������

. (25) 

6 Filter Performance 

The design and numerical computation of an FIR filter was done using 

MATLAB using Parks-McClellan algorithm [23] in a two-step process. The 

first is to use the firpmord command to estimate the order of the optimal 

Parks- McClellan FIR filter to meet design specifications. The syntax of the 

command is as follows: [N,fo,mo,w]=firpmord(f,m,dev), where 

f=[0.4 0.5] is the vector of band frequencies, vector m=[1 0] contains 

the desired magnitude response values at the passbands and the stopbands of the 

filter, and the vector dev=[0.01 0.1] has the maximum allowable 

deviations of the magnitude response of the filter from the desired magnitude 
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response. The second step is the actual design of the filter, using the firpm 

command b=firpm(N,fo,mo) to find the impulse response bi of the Parks-

McClellan FIR filter for our design. 

The filter coefficients are shown in Table 2 for double precision and for  

9-bit precision, including the sign bit, in integer notation. 

Integer value in the third column in Table 2 are transformed from floating 

point value (second column) in two steps. The first step is the conversion of 

floating point filter coefficients b in binary string b binary using two MatLAB 

functions, Q_1=quantizer(’round’,Format) and b_binary= 

num2bin(Q_1,b). Value Format in quantizer MatLAB function creates 

parameters of binary numbers: [wordlength,fractionlength] for 

signed fixed-point mode. For 9-bit precision format are wordlength=9 and 

fractionlength=8. 

Table 2 

The 27th-order FIR lowpass filter coefficients for 

mouli set (2n−1, 2n, 2n+1−1}, with n = 6. 

 

 

The second step is the conversion of binary string b binary into integer 

value using two new MATLAB functions: q_1=quantizer(’round’, 

Format) and b_int=bin2num(q_1,b_binary). In this case value 

Format fractionlength is equal zero, i.e. Format=[9, 0]. At last, integer 

values of filter coefficients are transformed in RNS number. For coefficients 

forward conversion MATLAB function mod can be used. 
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This paper investigates binary to residue converter for the modulo set 

{64,63,127} . In the following example we describe the fixed point-to-residue 

number system conversion of coefficient 
1
b . Double precision of filter 

coefficient 
1
b  is 0.023540422135223−  which is converted to binary number 

b_binary=111111010, than to integer number b_int=-6, and at last to 

RNS number b_RNS=(58, 57, 121). 

The simulation, which is done in MATLAB, depicts the effects of this 

design approach on the filter. Fig. 7 shows a plot of the ideal filter (dotted line) 

and the actual output. It is shown, the residue number based FIR filter to have a 

satisfactory attenuation performance. 
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Fig. 7 – Attenuation response (top) and quantization error 

from filter coefficient rounding to 9-bits (bottom). 

 

Assume that the data sequence is quantized to 10-bits (including sign) and 

that filter must be implemented without rounding error. An absolute upper 

bound on filter response | ( ) |y n  is given by (26): 

 
30

1

| ( ) | max{| ( ) |} | | 476718 18.86 bits
k

k

y n x n b
=

≤ = ≈∑ . (26) 

The moduli set {63,64,127}  provides a dynamic range of 18.96 bits, which 

is adequate for most practical situations since the bound of 18.86 bits given by 

(26) is extremely pessimistic. 

Fig. 8 shows the impulse response of RNS channels. The coefficient values 

of the first and the second subfilter must be stored in 6 bit word, but the values 
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of the third subfilter must be stored in 7 bit word. In {64,63,127}  residue umber 

system unit sample is 

 
(63,15,7) if 0,

( )
(0,0,0) if 0.

n

n

n

=⎧
δ = ⎨

≠⎩
 (27) 
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Fig. 8 – The impulse response of the RNS channels: 

(2n−1) above; 2n in themiddle; (2n+1−1) down. 
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Fig. 9 – Impulse response of the RNS lowpass filter (above); 

quantization error for impulse response (below). 
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For the impulse response of whole filter we can use the mixed-radix 

conversion technique in order to convert a number, presented in the residue 

system, in the conventional number system, as shown in Fig. 6. The impulse 

response for this digital filter is shown in Fig. 9. 

The quantization error in the impulse response, resulting from quantizing 

the coefficients to 9 bits, is shown in Fig. 9 below. It can be seen that 9 bits is 

sufficient to maintain error which is less than 2
2 10

−

⋅ . 

7 Conclusion 

The Residue Number System has been recognized as one of the efficient 

alternative number systems which can be used to high-speed hardware 

implementation of Digital Signal Processing computation algorithms. However, 

forward and reverse converters are needed to act as interfaces between RNS and 

the conventional binary digital systems. The overhead of these converters can 

frustrate the speed efficiency of RNS, and due to this a lot of research has been 

done to design efficient reverse converters. 

This paper presents a study on the state-of-the-art digital signal processing 

which have been designed for the recently introduced large dynamic range RNS 

three-moduli sets. 

The applications of RNS to constant coefficient FIR filters has not been 

thoroughly researched yet in the literature, therefore based on our preliminary 

research, we propose to develop (i) new residue number systems that balance 

inter-channel slack therefore maximize the use of the clock cycle; (ii) residue 

channels architectures that exploit slack balancing for low power; and (iii) 

characterized prototype circuit. 
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