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Episodic Reinforcement Learning Control 

Approach for Biped Walking 

Duško Katić1
 

Abstract: This paper presents a hybrid dynamic control approach to the 

realisation of humanoid biped robotic walk, focusing on the policy gradient 

episodic reinforcement learning with fuzzy evaluative feedback. The proposed 

structure of controller involves two feedback loops: a conventional computed 

torque controller and an episodic reinforcement learning controller. The 

reinforcement learning part includes fuzzy information about Zero-Moment-

Point errors. Simulation tests using a medium-size 36-DOF humanoid robot 

MEXONE were performed to demonstrate the effectiveness of our method. 

Keywords: Humanoid robot, Motion Control, Reinforcement Learning, Fuzzy 

evaluative feedback. 

1 Introduction 

The contemporary humanoid robots are becoming more complex and more 

intelligent because of the need to be able to function autonomously in changing 

task environments. Therefore, there is an increasing need for robots to adapt 

their parameters and control performance autonomously. On the other hand, 

practical biped needs to be more like a human, i.e. capable of switching between 

different known gaits on familiar terrain and learning new gaits when presented 

with an unknown terrain. In this case, even if stable trajectories are used, the 

existence of impulse disturbances on foot’s sole can make the robot unstable. In 

some particular case of applications, there is often some degree of uncertainty 

regarding the state of the system, hence it is difficult to derive an accurate 

model of the humanoid robot and its interaction with the environment, to enable 

its more efficient control.  

Hence, the inherent walking patterns have to be acquired through the 

development and refinement by repeated learning and practice as one of 

important properties of intelligent control of humanoid robots. Learning enables 

the robot to adapt to the changing conditions, and it is critical to achieving 

autonomous behavior of the robot. Learned behavior should be acquired by the 

robots themselves in a human-like way, not programmed manually. Humans 
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learn actions by repetitive trial and error procedure or by emulating someone 

else's actions. Thus, because of its resemblance to this human's way of learning, 

reinforcement learning (RL) could be applied for the control of humanoid 

robots, based on the experience gained in their interactions with the 

environment. Another approach to learning control of biped gait involves an 

open/closed-loop learning control algorithm [1]. 

RL methods have been applied to a variety of robot learning problems, as 

well as in complex learning tasks involving many degrees of freedom (DOFs), 

such as learning of locomotion [2 – 10]. Traditional representations of motor 

behavior in robotics are mostly based on the synthesis of desired trajectories. 

The resulting control policies, generated from a tracking controller of desired 

trajectories, are not robust towards unforeseen disturbances, and they do not 

easily generalize to new behavioral situations without complete recomputing of 

desired trajectories. Hence, there are two different application of reinforcement 

learning: first for traditional representations, and the second for dynamic motor 

primitives (DMP). The second approach to learnable dynamical systems 

originated from the desire to model elementary motor behaviors, called motor 

primitives, in humanoid robots as attractor systems [11]. The recent algorithm 

related to the DMP framework, called Policy Improvement with Path Integrals 

(PI2) [10], appeared to work well in robotic applications. This method takes a 

simple form with no open tuning parameters besides the exploration noise, and 

performs numerically robustly in high-dimensional learning problems, as it case 

in humanoid robotics.  

The objective of this paper is to present a new integrated hybrid control 

strategy (model-based control together with learning control) for bipedal 

walking, using traditional representations. The biped trajectory tracking 

problem is considered as a repetitive control task by using non-learning 

parametric rigid body model-based dynamic control along with non-parametric 

episodic reinforcement learning from long-term rewards. The basic non-

learning part of the control algorithm represents computed torque control 

method. The second control part consists of the inclusion of reinforcement 

learning part, but only for the compensation joints. The hybrid control strategy 

is chosen because the available prior knowledge from robot modeling can entail 

valuable information for robot learning that may result in a faster learning 

speed, higher accuracy, and better generalization. On the other hand, it is known 

that semiparametric learning methods outperform with high accuracy and better 

generalization, parametric rigid body dynamics methods [12]. 

The proposed reinforcement learning part is based on the application of 

Episodic Natural Actor Critic Method [13] as a well-known policy gradient 

method. This approach is different from similar methods based on real-time 

learning from immediate rewards [9]. The policy-gradient method is a kind of 
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reinforcement learning method which maximizes the average reward with 

respect to parameters controlling action rules, known as the policy. In 

comparison with most standard value function-based reinforcement learning 

methods, this type of method has particular features suited to robotic 

applications. The use of gradient-policy enables smooth changes of parameters, 

stability of algorithm, incorporation of prior and incomplete information in the 

control process. The autonomous tuning of control parameters was modeled as 

an episodic reinforcement learning task, with parameter tuning after each 

walking epoch. The reinforcement signal was simply defined as a fuzzy 

measure of Zero-Moment-Point (ZMP) error.  

2 Dynamic Model of the System and Control Requirements 

2.1 Model of the robot’s mechanism 

The studies were performed on a typical biped locomotion mechanism, 

MEXONE Humanoid Robot [14, 15] , whose spatial model is shown in Fig. 1. 

  

Fig. 1 – MEXONE humanoid robot. 

 

The mechanism possesses 36 DOFs. The overall dynamic model of the 

locomotion mechanism can be represented in the following vector form: 
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 ( ) = ( ) ( , )TP J q F H q q h q q+ +�� � , (1) 

where 1nP R ×∈  is the vector of driving torques at the humanoid robot joints; 

6 1XF R∈  is the vector of external forces and moments acting at the particular 

points of the mechanism; 
n nH R ×∈  is the square matrix that describes ‘full’ 

inertia matrix of the mechanism: 
1nh R ×∈  is the vector of gravitational, 

centrifugal and Coriolis moments acting at n mechanism joints; 6 nJ R ×∈  is the 

corresponding Jacobian matrix of the system; 1nq R ×∈  is the vector of internal 

coordinates; 1nq R ×∈�  is the vector of internal velocities. Exactly, the relation (1) 

represents the model of a biped mechanism relying on the absolutely rigid 

environment. 

2.2 Gait phases and indicator of dynamic balance 

The robot's bipedal gait consists of several phases (see Fig. 2) that are 

periodically repeated [16]. Hence, depending on whether the system is 

supported on one or both legs, two macro-phases can be distinguished, viz.: 

(i) single-support phase (SSP) and (ii) double-support phase (DSP). The DSP 

has two micro-phases: (i) weight acceptance phase (WAP) or heel strike, and 

(ii) weight support phase (WSP). 

 

Fig. 2 – Phases of biped gait. 
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Fig. 3 – Zero-Moment Point. 

 

The indicator of the degree of dynamic balance is the ZMP, i.e. its relative 

position with respect to the footprint of the supporting foot of the locomotion 

mechanism. The ZMP is defined [16] as the specific point under the robotic 

mechanism foot at which the effect of all the forces acting on the mechanism 

chain can be replaced by a unique force and all the rotation moments about the x 

and y axes are equal zero. Figs. 3a and 3b show details related to the 

determination of ZMP position and its motion in a dynamically balanced gait. 

The ZMP position is calculated based on measuring reaction forces iF , 

= 1,2,3,4i , under the robot foot. Force sensors are usually placed on the foot 

sole in the polygonal framework. Sensors’ positions are defined by the 

geometric quantities 1l , 2l  and 3l . If the point 0zmp  at the center of the foot is 

assumed to be the nominal ZMP position (Fig. 3a), then the following equations 

determine the relative ZMP position with respect to its nominal: 

 ( )( ) 0 03
2 4 2 4= ( )

2

zmp

x

l
M F F F F⎡ ⎤Δ + − + −⎣ ⎦ ( ) 0 03

1 3 1 3( )
2

l
F F F F⎡ ⎤+ − +⎣ ⎦ , 

 ( )( ) 0 0

2 3 4 3 4= ( )zmp
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where iF  and 0

iF , = 1,2,3,4i , are the measured and nominal values of the 

ground reaction force; ( )zmp

xMΔ  and ( )zmp

yMΔ  are the deviations of the moments 



D. Katić 

236 

of ground reaction forces around the axes passing through the 0zmp ; ( )z

rF  is the 

resultant force of ground reaction in the vertical z-direction, while ( )zmpxΔ  and 
( )zmpyΔ  are the displacements of the ZMP position from its nominal 0zmp . The 

deviations ( )zmpxΔ  and ( )zmpyΔ  of the ZMP position from its nominal position in 

the x and y directions are calculated from the previous relation. The instantane-

ous position of ZMP is the best indicator of dynamic balance of the robot 

mechanism. The quality of the robot’s balance control can be measured by the 

success of keeping the ZMP trajectory within the mechanism support polygon, 

as explained above. 

3 Dynamic Control Algorithm with Policy 

Gradient Reinforcement Structure 

In order to enable the balancing controller we proposed the application of 

the so-called integrated hybrid dynamic control. The control algorithm involves 

the summation of two parts: (i) basic dynamic controller 1P  for trajectory 

tracking that acts on all joints, and (ii) dynamic controller 2P  tuned by episodic 

reinforcement learning structure, but acting only on the chosen compensation 

joints. 

3.1 Dynamic controller of trajectory tracking 

The controller of trajectory tracking of the locomotion mechanism has to 

ensure the realization of a desired motion of the humanoid robot. There are 

various control techniques  as in paper [17], while in  our approach, the 

controller for robotic trajectory tracking was adopted using the well-known 

computed torque method in the space of internal coordinates of the mechanism 

joints based of the robot dynamic model. The proposed dynamic control law has 

the following form: 

 1 0 0 0
ˆ= ( )[ ( ) ( )]v pP H q q K q q K q q+ − + −�� � � ˆ ˆ( , ) ( )Th q q J q F+ −� , (3) 

where Ĥ , ĥ  and Ĵ  are the corresponding estimated values of the inertia 

matrix, vector of gravitational, centrifugal and Coriolis forces and moments, 

and Jacobian matrix. The matrices n n

pK R ×∈  and n n

vK R ×∈  are the 

corresponding matrices of position and velocity gains of the controller. The gain 

matrices = { }i

p pK diag k , = { }i

v vK diag k , = 1,2, ,i n… , can be chosen in the 

diagonal form, by which the system is decoupled into n  independent 

subsystems. 
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3.2 Compensator of dynamic reactions 

based on reinforcement learning structure 

The main idea pursued in this paper is to include the reinforcement learning 

control component based on a constant qualitative evaluation of the biped 

walking performance. The evaluation of the control action based on the ZMP 

error, rather than on the numerical error of state variables, can be very 

convenient for searching of optimal and balanced biped walking. This 

reinforcement control part 2P  is realized only for the six special compensation 

joints. The quantity 2P  is the vector of compensation control torques at the 

selected compensation joints (ankle, knee and hip joints). 

The proposed reinforcement learning structure is based on policy gradient 

method called Episodic Natural Actor Critic (ENAC) algorithm [13]. It is a 

stochastic gradient-descent method, in which the, parameters of control policy 

are improved upon each episode e  (exactly, an episode corresponds to every 

two-phase humanoid step). The control signal in every time instant 

2 = = M

kk P u U R− ∈  is defined by the parameterized stochastic control policy 

: ( | )k k ku u xθπ  with the parameters KRθ∈ , while the input of the control policy 

is the state variable = Nx X R∈  with the transition probability distribution 

1 1: ( | , )k k k kx p x x u+ + . The practical implementation of parameterized control 

policy is realized through an ACTOR fuzzy-neural network, with the aim to 

select/tune the best network parameters. It searches the action space using a 

Stochastic Real Valued  unit at the output. The unit's action uses a Gaussian 

random number generator. There are five layers: input layer. antecedent part 

with fuzzification, rule layer, consequent layer, output layer with 

defuzzification. This system is based on the fuzzy rule base generated by the 

expert knowledge with 25 rules. The partition of input variables is defined by 

five linguistic variables: NEGATIVE BIG, NEGATIVE SMALL, ZERO, 

POSITIVE SMALL and POSITIVE BIG. The member functions are chosen in 

triangular form. 

SAM (Stochastic Action Modifier) uses the recommended control torque 

from ACTOR and reinforcement signal r  to produce the final commanded 

control torque 2P . It is defined by a Gaussian random function in which the 

recommended control torque is the mean, while the standard deviation is 

defined by the following equation: 

 ˆ ˆ( ( 1)) = 1 exp( | ( 1) |)r t r tσ + − − + . (4) 

Once the system has learned an optimal policy, the standard deviation of 

the Gaussian converges toward zero, thus eliminating the randomness of the 

output. The learning process (tuning of the antecedent and consequent layers of 

the ACTOR) is accomplished by natural gradient changes (back propation 
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defined by the reinforcement signal, learning constants and current 

recommended control torques). The total number of tuned parameters of the 

ACTOR is 62. The general aim of policy optimization in reinforcement learning 

is to optimize the control parameters policy in such a way that the expected 

return 

 
=0

( ) = { }
H

i

k

k

J E rθ γ∑  (5) 

is optimized, where [0,1]iγ ∈  is a discount factor; ir  is the reward or 

reinforcement signal; H  is the number of time instants during one episode. It is 

important to notice that for biped motion, abrupt changes of the control 

parameter are not acceptable, but smooth parameter changes are required. 

Hence, the policy gradient method based on episodic natural actor critic 

gradient [13] is chosen. 

In order to estimate natural gradient, the functional approximator is defined by: 

 ( , ) = log ( | ) .T

wf x u u x wπ
θ∇ π  (6) 

The practical realization of the ENAC algorithm includes the calculation of 

the values =P ψ  and R  according to the following equations: 

 
=0

= log ( | )
H

k

k k

k

u xθψ γ ∇ π∑ , (7) 

 
=0

= ( , )
H

k

k k

k

R r x uγ∑ , (8) 

 w P R= ⋅ . (9) 

 ( )J Rθ = . (10) 

 

Algorithm ENAC 
 

Input: Parametrized policy ( | ) = ( | , )u x p u xπ θ  with the initial parameters 

0=θ θ , policy derivatives log ( | )u xθ∇ π , and the function 

approximators ( , )w k kf x uπ . 

for = 1,2,3,...e  

Execute Rollout: 

Draw initial state 0 0: ( )x p x . 

for = 0,1,2,...,k H  

Draw action : ( | )k k ku u xπ , observe next state 

1 1: ( | , )k k k kx p x x u+ + , and reward = ( , )t k kr r x u . 

end 
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Critic evaluation: Determine the criterion function ( )J θ  and 

gradient estimate w . 

Determine 
=0

= log ( | )
H k

k kk
u xθψ γ ∇ π∑  and reward statistics 

=0
= ( , )

H k

k kk
R r x uγ∑ . 

Form the matrix P  and vector R . 

Calculate the gradient estimate w  and performance ( )J θ . 

Actor-Update: 

When the gradient is converged, 1( , )e ew w+ −τ ≤ ε ,  

update the policy parameters: 1 1=e e e ew+ +θ θ + α . 

end 
 

Output: Trained policy parameters θ . 
 

3.3 Fuzzy reinforcement signal 

The detailed and precise training data for learning are often hard to obtain 

or may not be available at all in the process of biped control synthesis. 

Furthermore, a more challenging aspect of this problem is that the only 

available feedback signal (a failure or success signal) is obtained only when a 

failure (or near failure) occurs, that is, the biped robot falls down (or almost 

falls down). But for human biped walking, we usually use linguistic critical 

signals, such as “near fall down”, “almost success”, “slower”, “faster” and etc., 

to evaluate the walking gait. In this case, the use of fuzzy evaluation feedback is 

much closer to the learning environment in the real world [18]. It is possible to 

use scalar critic signal, but as one of solutions, the reinforcement signal was 

considered as a fuzzy number ( )R t . We also assume that ( )R t  is the fuzzy 

signal available at the time step t and caused by the input and action chosen at 

the time step 1t − , or even affected by earlier inputs and actions. For more 

effective learning, an error signal that gives more detailed balancing 

information should be given instead of a simple “go/no-go” scalar feedback 

signal. As an example we give the following fuzzy rules that can be used to 

evaluate the biped balancing according to the Table 1. 

Table 1 
Fuzzy rules for reinforcement. 

( )zmpxΔ  SMALL MEDIUM HUGE 

( )zmpyΔ     

SMALL EXCELLENT GOOD BAD 

MEDIUM GOOD GOOD BAD 

HUGE BAD BAD BAD 
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The linguistic variables for the ZMP deviations ( )zmpxΔ  and ( )zmpyΔ  and for 

the reinforcement R  are defined using the membership functions that are 

defined in Fig. 4.  

Small Medium Huge

0.3 0.6

[m]

� �x , y
ZMP ZMP

1

0

Small Medium Huge

0.3 0.6

[m]

� �x , y
ZMP ZMP

1

0

                 

1

0

1

0

R(t)

ExcellentGoodBad

0.5  

Fig. 4 – The membership functions for ZMP deviations and reinforcement. 

 

4 Simulation Results 

The proposed control algorithm for biped walking was verified by the 

corresponding simulation experiments. For this purpose, the parameters of the 

36-DOF (4 at the binocular head, 4 for each hand, 5 for each arm, 2 at pelvis, 

and 6 at each leg) MEXONE biped robot [14, 15] of 1.026 m height and 8.36 kg 

weight were assumed. The corresponding Matlab/Simulink HRSP software 

toolbox [19] was applied to simulate robot’s kinematics and dynamics. In the 

simulation experiments we assumed the robot’s planar motion in the sagital 

direction with a forward speed of 0.60 m/s, 0.40 m step size, and 0.075 m height 

of the swing leg. 

Some special simulation experiments were performed in order to validate 

the proposed hybrid dynamic learning control approach. The simulation results 

were analyzed corresponding to the duration of one two-phase step of the 

locomotion mechanism in the swing phase, including the free (landing) foot 

strike instant. Initial conditions of the simulation examples (initial deviations of 

joints' angles and joints' angular velocities) were chosen to be the same in all 

simulation experiments. The process of learning was realized in more than 100 

learning epochs (episodes). 

Fig. 5 shows the values of return or reinforcement through the episodic 

process of the walk. It is clear that the task of walking within desired ZMP 

tracking error limits is achieved in a good fashion. 

A comparison of the simulation results for ZMP errors in the coordinate 

directions during the learning episodes is given in Figs. 6 and 7. 

R(t)
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Episodes                                           ×10 

Fig. 5 – The acquired return during learning episodes. 

 

 
Time [ms] 

Fig. 6 – ZMP error in the x-direction during the learning episodes. 
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Time [ms] 

Fig. 7 – ZMP error in the y-direction during the learning episodes. 

 

These figures show how the basic dynamic controller, together with the 

reinforcement learning control structure, is able to compensate for the 

deviations of dynamic reactions in the presence of the system  uncertainties. 

Finally, the joint and velocity tracking errors converge to zero values in the 

given time interval (Figs. 8 and 9). This means that the controller ensures good 

tracking of the desired trajectory after a sufficient number of learning episodes. 
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Fig. 8 – Convergence of the joint angles errors for position joints. 
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Fig. 9 – Convergence of the joint velocities errors for the compensation joints. 

 

5 Conclusion 

The paper presented a hybrid approach for acquiring biped motion focussed 

on conventional control algorithm together with learning a control policy. It 

demonstrated the possibility of acquiring dynamic motions through reinfor-

cement learning using ENAC policy gradient method. The algorithm is based on 

the fuzzy evaluative feedback that is obtained from human intuitive balancing 

knowledge. The reinforcement learning with fuzzy evaluation feedback is much 

closer to the human biped walking evaluation than the original one with scalar 

feedback. The proposed intelligent control scheme fulfills the preset control 

criteria. Its application ensures the desired precision of robot's motion and 

maintaining of dynamic balance of the locomotion mechanism during the 

motion. The developed intelligent dynamic controller can be potentially applied 

in combination with robotic vision, to control biped locomotion mechanisms in 

the course of fast walking, running, and even in the phases of jumping, 

The proposed hybrid control algorithm is planned to be experimentally 

implemented using the MEXONE biped robot. In the future research, the 

alternative ideas will be the representation for control policy based on Gaussian 

Regression Kernel, Pi2 algorithm, and Covariance matrix adaptation evolution 

strategies. 

Δq
 [
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