SERBIAN JOURNAL OF ELECTRICAL ENGINEERING
Online-firs, 2025, 1-24

DOI: https://doi.org/10.2298/SJEE250828003R

Original scientific paper

Machine Learning-Driven Prediction of Optimal
Control Flow Graph Traversal Strategy

Ivan Ristovi¢'2, Milan Cugurovi¢!?, Strahinja Stanojevi¢!2,
Marko Spasi¢!?, Vesna Marinkovi¢!, Milena VujoSevi¢ Janicié¢!2

Abstract: Control flow graphs model possible program execution paths and thus are
essential for static program analysis. Compilers use control flow graphs as a basis for
their intermediate representations, allowing them to apply optimizations. As each
method is represented by its control flow graph, the number of control flow graphs that
a compiler needs to generate and process depends on the program being compiled. For
reference, modern programs that run on the JVM consist of hundreds of thousands of
methods. Thus, efficient control flow graph traversal is crucial to provide fast
compilation. Prior work has shown that breadth-first and depth-first search algorithms
yield different results depending on the control flow graph structure; however, the
relationship between control flow graph features and the optimal traversal algorithm
in terms of traversal speed remains underexplored. In this work, we construct a dataset
of over 200,000 control flow graphs gathered from modern state-of-the-art JVM
benchmark suites. Using this dataset, we train a set of ensemble-based machine
learning models that predict optimal graph traversal algorithms for a given control flow
graph using a set of lightweight graph features. Our models identify the key features
that yield accurate predictions and demonstrate that the most informative features can
be extracted efficiently during the graph construction process itself.

Keywords: Compilers, Machine Learning, Control Flow Graphs, Graph Traversals,
GraalVM.

'Faculty of Mathematics, University of Belgrade, Serbia
milan.cugurovic@matf.bg.ac.rs, https://orcid.org/0009-0003-4149-5820
ivan.ristovic@matf.bg.ac.rs, https://orcid.org/0000-0002-1679-3848
strahinja.stanojevic@matf.bg.ac.rs, https://orcid.org/0009-0007-6076-3586
marko.spasic@matf.bg.ac.rs, https://orcid.org/0009-0000-0392-0935
vesna.marinkovic@matf.bg.ac.rs, https://orcid.org/0000-0003-0526-899X
milena.vujosevic.janicic@matf.bg.ac.rs, https://orcid.org/0000-0001-5396-0644
2Oracle Labs, Belgrade, Serbia
*An earlier version of this paper was presented at the 12" International Conference on Electrical, Electronic and
Computing Engineering (IcCETRAN), Cagak, Serbia, June 2025.

Colour versions of the one or more of the figures in this paper are available online at https://sjee.ftn.kg.ac.rs

©Creative Common License CC BY-NC-ND

mailto:npsubbu@yahoo.com
https://sjee.ftn.kg.ac.rs/

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

1 Introduction

Graphs are a fundamental abstraction in computer science, commonly used
to represent data and the relationships between data [1]. Among their broad scope
of applications, control flow graphs (CFGs) are particularly significant in
semantic analysis during compilation, or malware detection [2 — 4]. CFG models
the different paths a program might take during its execution, serving as a
foundation for various analysis and optimization techniques [5]. In compiler
ecosystems like GraalVM [6, 7], CFGs are crucial in guiding code transfor-
mations and performance improvements [8]. Given the complexity of modern
applications, compilers frequently process hundreds of thousands of control flow
graphs throughout the compilation process [9, 10].

Efficient traversal of control flow graphs is a key requirement for optimizing
compilation performance [11]. Prior research has explored how the structural
properties of CFGs influence the efficiency of different traversal strategies
[12 — 14]. Additionally, spectral graph theory has provided valuable
mathematical tools for capturing and analyzing the complexity of graph
structures, including CFGs [15, 16]. Recent approaches also leverage machine
learning techniques to classify CFGs and extract meaningful structural and
semantic features [17]. While performance trade-offs between traversal
algorithms such as depth-first search (DFS) and breadth-first search (BFS) have
been studied in various contexts [18], to the best of our knowledge, no prior work
has specifically compared these algorithms in the context of CFG traversal for
Java and Scala programs. Although both DFS and BFS operate in linear time in
theory, their actual performance can differ significantly based on the topology of
the CFG being traversed [19].

Extracting certain properties of control flow graphs often necessitates
traversing the graph itself [13]. This presents a fundamental paradox: identifying
whether DFS or BFS is more efficient for a given control flow graph typically
requires performing a traversal in the first place. At first glance, this seems
counterintuitive — if traversal is needed to make the decision, any benefit from
choosing the optimal strategy appears negated. However, our work challenges
this assumption by proposing a predictive approach. Instead of analyzing each
new graph from scratch, we explore whether it is possible to infer the optimal
traversal strategy based on ML predictions. The predictions are based on CFG
features that can be obtained without requiring additional graph traversals. This
transforms what initially appears to be a redundant process into a practical
optimization tool. This approach is especially valuable in performance-critical
environments, like compilers and static analysis tools, where even small
efficiency improvements can accumulate into significant overall speed-ups when
applied across many CFGs.

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

In this work, we expand our previous findings [14] that introduce an
ensemble-based machine learning model designed to predict the most efficient
traversal algorithm, depth-first or breadth-first, for a given control flow graph.
We describe an extensible pipeline used to extract CFG properties and modify
our dataset to make it more generic. We provide descriptions of measurement
techniques that can be used to extract desired target metrics. With these
techniques, we compiled a labeled dataset containing over 220,000 CFGs derived
from modern Java and Scala applications [9, 10], used for model training. By
leveraging machine learning, we not only automate the selection of the optimal
traversal strategy but also gain valuable insights into which CFG characteristics
are most influential for this decision. Importantly, we demonstrate that many of
these features can be gathered during the graph construction phase itself, avoiding
any redundant overhead. This enables an efficient ahead-of-time prediction for
static graphs and supports on-the-fly feature extraction for newly generated or
modified CFGs, making the approach practical for integration into compilers or
static analysis tools.

The main contributions of this paper are:
— An extensible pipeline for extracting CFG features and dataset creation.

— A set of lightweight features that characterize CFGs and enable accurate
prediction of graph traversal strategies.

— A labeled dataset of over 200,000 CFGs extracted from modern JVM-
based applications [20], supporting various types of CFG analyses.

— A set of ensemble-based machine learning models that predict the optimal
CFG traversal algorithm based solely on structural graph features.

— ML-driven insights into CFGs, identifying the number of nodes, average
in-degree, and the number of non-binary splits as key features for the
prediction of the optimal graph traversal algorithm.

2 Background

CFG analysis [5, 8] enables compilers, static profilers, and a wide range of
program analysis tools to gain deep insights into the structure and control logic
of a program without requiring its execution. This form of analysis and
classification is commonly applied in contexts such as data flow analysis,
symbolic execution, formal program verification, malware detection, and
software vulnerability identification [21]. In practice, analyzing a CFG typically
involves either extracting informative structural features or applying graph
transformations, both of which inherently require traversing the CFG.

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

2.1 Control flow graphs and graph traversal algorithms

In a control flow graph, each node represents a basic block — a straight-line
sequence of instructions with a single entry point and a single exit, containing no
internal jumps or branches. The edges between these nodes represent the possible
paths of control flow from one basic block to another.

Within compiler infrastructures, CFGs serve as a fundamental tool for
program analysis and optimization, enabling a range of transformations and
performance improvements. During the compilation process, each method in a
program is typically converted into its own CFG. The graph starts with a
designated entry node, corresponding to the beginning of the method, and
includes one or more exit nodes that capture all possible termination points. CFGs
can contain cycles when the method contains loops or recursive calls, or be
acyclic when there are no such control structures.

Fig. 1 shows the source code of the java.util. DualPivotQuicksort.sort
method from the Java standard library, while Fig. 2 represents the corresponding
high-level CFG. The sort method conditionally invokes either the countingSort
or insertionSort algorithm, depending on the number of elements to be sorted, as
determined by the if statement. In the CFG, the conditional node serves as the
common predecessor and has two successor nodes, one invoking countingSort,
the other insertionSort, which then merge at a single exit node representing the
method’s end.

sort([1 a low high) {
(high low MIN_BYTE_COUNTING_SORT_SIZE) {
countingSort(a, low, high);
i i

insertionSort(a, low, high);

Fig. 1 — Source code of a standard Java library method
Java.util. DualPivotQuicksort.sort.

Compiler optimizations often rely on traversing the control flow graph to
gather relevant information or apply various code transformations. Traversal, in
this context, means visiting all nodes that are reachable from the graph’s entry
(start) node. The two most widely used traversal algorithms are DFS and BFS [1],
both of which operate in linear time with respect to the number of nodes and
edges in the graph. Despite having identical asymptotic complexity, their
practical performance can vary significantly depending on the structure and

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

characteristics of the CFG, with one traversal method often proving more
efficient than the other in certain scenarios.

if (high - low >

MIN_BYTE_

COUNTING_
SORT)

true ‘ false

! i

countingSort insertionSort
(a, low, high) (a, low, high)

(implicit)
return

Fig. 2 — An example of a high-level Control Flow Graph corresponding to Fig. 1.

2.2 GraalVM compiler infrastructure

GraalVM [6, 7] is a powerful and versatile compiler infrastructure that
combines several advanced components built around Graal [22], a high-
performance, optimizing compiler written in Java. GraalVM supports both Just-
In-Time (JIT) and Ahead-of-Time (AOT) compilation modes, leveraging the
Graal compiler. The GraalVM Native Image tool [7] performs AOT compilation
combined with class initialization at build time [23] to generate compact,
standalone, and platform-specific executables called native images. Native
images offer reduced startup time and lower memory overhead compared to
traditional deployments [24], making them especially suitable for resource-
constrained or latency-sensitive environments such as cloud computing [25].

At the heart of Graal’s optimization pipeline lies its sea-of-nodes
intermediate representation (IR) [26], known as GraallR [22]. This IR merges
control flow and data flow into a single, unified graph-based structure, enabling
more powerful and flexible optimizations. In this representation, control flow
nodes correspond to fixed execution points (such as basic block boundaries),
while data flow nodes are floating, meaning they are not tied to a specific
execution order and represent computed values, conditions, and branching logic.
During the compilation process, Graal builds a CFG for each method, where basic

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

blocks are structured as sequences of GraallR nodes. Branch instructions at the
IR level directly map to the edges of the CFG, establishing a clear link between
data-driven operations and the program’s execution flow.

2.3 ML background

Supervised machine learning [27, 28] is a widely used approach in which a
model learns to associate input features with corresponding output labels by
training on a labeled dataset. In classification problems, each data instance is
expressed as a feature vector, and the model's objective is to accurately assign
new, unseen instances to one of several predefined categories. Before training,
datasets typically undergo preprocessing steps, such as feature standardization
and techniques to address class imbalance, including instance weighting,
oversampling, or undersampling. Once trained, the model's effectiveness is
assessed using performance metrics such as accuracy, precision, recall, and the
F1 score, together providing a comprehensive view of predictive quality [29].

Tree-based models [30] are well-suited for classification problems involving
structured, tabular data because of their resilience to noise, ability to model
complex nonlinear feature interactions, and ease of interpretation. One of the
most powerful and widely adopted methods in this category is XGBoost (Extreme
Gradient Boosting) [31, 32], a scalable and highly efficient boosting algorithm
that sequentially constructs an ensemble of decision trees. XGBoost offers
several advanced features, including native support for missing values, and
incorporates both L1 (Lasso) and L2 (Ridge) regularization techniques [33, 34]
to mitigate the risk of overfitting. Additionally, it is designed for high
performance, enabling fast and parallelized model training on large datasets [35].

One of XGBoost’s key advantages is its ability to offer detailed insights into
feature importance using metrics such as gain [33]. Gain quantifies the
improvement in the model’s loss function achieved by splitting on a particular
feature, with higher gain values indicating that the feature has a greater impact on
the model’s predictions. This interpretability helps identify which features most
strongly influence the classification outcome, offering both diagnostic value and
opportunities for feature engineering. To further enhance model performance,
hyperparameter tuning is typically performed using grid search [36], which
systematically explores combinations of parameters and selects the best
configuration based on validation performance.

3 CFG Characterization and Feature Extraction

We integrate the feature extraction and performance measurement pipeline
directly into the Graal compiler infrastructure by introducing a custom phase into
the method compilation queue. This newly added phase is designed to carry out
configurable experiments during compilation, enabling it to extract structural

6

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

features from the CFG and evaluate the performance of a specific graph traversal
algorithm. By embedding this functionality within the compiler pipeline, we
ensure minimal disruption to the existing workflow while enabling systematic
data collection and analysis at scale.

To train the machine learning model to learn the connection between a
control flow graph’s structure and the most efficient traversal algorithm, we
defined a set of 24 descriptive features. These features, summarized in Table 1,
are designed to capture key structural aspects of CFGs, including their size, shape,
branching complexity, and connectivity characteristics. The rationale behind this
selection is grounded in the observation that the performance of traversal
algorithms, such as BFS and DFS, is closely influenced by these properties [37].
By quantifying these elements, the model can learn patterns that generalize across
different types of CFGs, enabling it to predict the optimal traversal strategy for
new, unseen graphs.

To identify whether BFS or DFS is the more efficient traversal algorithm for
a given method’s CFG, we measured and compared the average execution times
of both algorithms over 100 iterations. Each CFG was labeled according to the
traversal method with the lower average execution time. To ensure accurate and
consistent timing measurements, we applied a range of system-level
optimizations: Intel Turbo Boost was disabled, CPU C-states were set to 0, and
the CPU frequency scaling governor was fixed to performance mode.
Furthermore, to minimize background interference and context switching, we
disabled Hyper-Threading and increased the priority of the benchmarking
process.

4 Dataset

To train machine learning models for predicting the optimal traversal
algorithm for control flow graphs, we constructed a labeled dataset of 221,749
graphs [20]. CFGs were extracted from programs in the DaCapo [9] and
Renaissance [10] benchmarking suites. Renaissance includes modern JVM-based
workloads built on frameworks like Akka, Spark, and ScalaSTM, while DaCapo
represents traditional Java applications from domains such as web services,
cryptography, and data analysis. Together, they comprise a dataset used to
benchmark the GraalVM compiler and provide a diverse set of CFGs in terms of
depth, width, connectivity, and branching complexity. All benchmarks are
executed in multiple iterations, where each iteration corresponds to a complete
execution of a program. Including both Renaissance and DaCapo allowed us to
collect CFGs from a broad spectrum of workloads, combining contemporary and
legacy codebases. This diversity supports the training and evaluation of machine
learning models for predicting traversal strategies across different types of graph
structures.

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

Table 1

CFG features contained in the dataset.

Feature Name

Description

\% Number of nodes in the CFG
E Number of edges in the CFG
Depth Maximal DFS traversal recursion depth
Width Maximal number of nodes in the BFS queue during the CFG
traversal
Binary splits Number of nodes with exactly two successors

Non-binary splits

Number of nodes with more than two successors

Total splits

Number of nodes with more than one successor

The ratio of nodes to edges

V/E; Ratio of vertices to edges, quantifying graph sparsity

The ratio of edges to nodes

E/V; Ratio of edges to vertices, quantifying average
connectivity per node

Minimal total degree of a CFG node, including both ingoing

Min. degree .
and outgoing edges

Max. degree Maximal total degree of a CFQ node, including both ingoing
and outgoing edges

Ave. degree The average total degree of a CFG node, including both

ingoing and outgoing edges

Coeff. variation degrees

Relative variability of nodes’ total degrees, indicating
dispersion in connectivity

The entropy of the
distribution degrees

The randomness in nodes’ total degrees, indicating
connectivity heterogeneity

Min. in-degree

Minimal number of predecessors of a CFG node

Max. in-degree

Maximal number of predecessor edges of a CFG node

Avg. in-degree

Average number of predecessors of a CFG node

Coeff. variation in-degrees

Relative variability of nodes’ in-degrees, showing
heterogeneity in incoming-edge distribution

The entropy of the
distribution in-degrees

Randomness in incoming-edge distribution

Max. out-degree

Maximal number of outgoing edges of a CFG node

Coeff. variation out-degrees

Relative variability of nodes’ out-degrees, showing
heterogeneity in incoming-edge distribution

The entropy of the
distribution out-degrees

Randomness in outgoing-edge distribution

Avg. split cardinality

Average number of successors of nodes with more than one

(including binary splits) successor
Avg. split cardinality Average number of successors of nodes with more than two
(excluding binary splits) successors

Running benchmarks in iterations enables a more accurate estimation of the
average execution time by aggregating results across repeated program
executions. Each CFG was processed within the Graal VM compiler infrastructure

8

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

using a custom phase that extracted structural graph features and measured
traversal performance for both BFS and DFS. Traversal times were recorded
across 100 iterations and aggregated using statistics such as mean, standard
deviation, quartiles, and median. Each dataset instance includes the CFG features,
the traversal strategy, aggregated performance metrics, and a label indicating
which strategy was faster on average.

Fig. 3 illustrates the process of constructing the dataset, and it involves the
following steps:

1. Benchmark Preparation — We organize the benchmark sources by
suite and then by individual benchmark to support structured, batch-based
processing in subsequent steps. Each benchmark is placed in a predefined
directory structure, enabling uniform handling during compilation,
control flow graph extraction, feature collection, and traversal
measurements.

2. Parsing and CFG construction — Each benchmark program is
compiled using the GraalVM compiler. During compilation, a control
flow graph is constructed for each method.

3. Traversal Measurement Phase — A custom compiler phase is inserted
into the Graal compilation pipeline to perform traversal measurements on
each CFG. For every CFG:

o Features of the CFG are extracted: f = extractFeatures(c).

o Each traversal strategy ¢ € {DFS, BFS} is applied.

o The traversal times are measured over 100 iterations.

o For each iteration, we record its traversal time. Additionally, we
record the traversal strategy and CFG features to facilitate the
aggregation processes in the following steps.

4. Aggregation of Measurements — For each CFG and traversal strategy,
we aggregate traversal times measured over 100 iterations using the
following statistical descriptors:

o quartiles (Q1, Q2, Q3),

o minimum and maximum values,

o mean and standard deviation,

o median and other summary statistics.

5. Label Assignment and Dataset Entry Creation — Each CFG is
represented by a data entry for each traversal algorithm. These entries
consist of:

o The extracted features of the CFG

o The traversal type (DFS or BFS)

o Aggregated statistics of the traversal time

o A label indicating which traversal strategy was faster on average.

9

M. éugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

Final Dataset — The final dataset contains over 221,000 entries. Each entry
corresponds to a unique pair of a CFG and a traversal algorithm, labeled with
performance data and graph features. This dataset enables the training of machine
learning models to predict the optimal traversal algorithm based on features of
the CFG. Label distribution is shown in Fig. 4. The dataset is open and published
on Zenodo [20].

[
I Renaissance and DaCappo

class Program { benchmarking suite of
void run() {
. programs

Control Flow Graphs

Traversal Measuring Phase

foreach c in CFGs:
f = extractFeatures(c)
foreach t in [BFS, DFS]:
foriin0..100:
m = measure(t(c, 1))
save(i. t, f. m)

Graal |

V4

Dataset .
Assign Aggregate
Labels Iterations JSON

Fig. 3 — Dataset creation pipeline.

Table 2 provides summary statistics for each of the 24 features, including
the mean, standard deviation, and key quartile values, offering insight into the
overall distribution and variability of the dataset. The control flow graphs in the
dataset exhibit considerable structural diversity. The number of nodes of the
graph ranges from as few as 1 to as many as 5,716, while the number of edges
spans from 0 to 8,571. On average, graphs contain 17.78 nodes and 23 edges.
Median values for both the depth and the width of the graph are around 3,
suggesting that most CFGs are relatively shallow and narrow. The majority of
branching points involve binary splits, with very few branches having more than
two splits, leading to an average of 7.26 splits per graph. Although the average
node degree is low (1.61), some graphs include highly connected nodes, with
maximum in- or out-degrees reaching as high as 2,857. Additionally, features
related to degree variability and entropy indicate a broad range of structural
complexity. This level of heterogeneity is essential for training a machine
learning model that can generalize well across diverse graph topologies.

10

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

Table 2
Summary statistics for extracted CFG features.
Feature Name Mean Std Min 25% 50% 75% Max
\Y% 1778 | 5558 | 1.00 | 3.00 | 6.00 | 16.00 | 5,716.00
E 23.00 | 8042 | 000 | 2.00 | 6.00 | 19.00 | 8,571.00
Depth 6.14 | 1834 | 1.00 | 1.00 | 3.00 | 6.00 | 2,857.00
Width 329 | 400 | 1.00 | 200 | 3.00 | 4.00 | 735.00
Binary splits 724 | 2528 | 000 | 1.00 | 200 | 6.00 | 2,857.00
Non-binary splits 002 | 017 | 000 | 0.00 | 000 | 0.00 18.00
Total splits 726 | 2531 | 000 | 1.00 | 200 | 6.00 | 2,857.00
Theratio of nodesto | 25 | 649 | 000 | 069 | 080 | 100 | 150
edges
Theratio of edgesto | g5 | 51 | 000 | 067 | 1.00 | 125 1.98
nodes
Min. degree 085 | 056 | 000 | 1.00 | 1.00 | 1.00 2.00
Max. degree 593 | 2152 | 000 | 1.00 | 300 | 500 | 2857.00
Avg. degree 1.61 1.06 | 0.00 | 1.00 | 2.00 | 255 3.96
Coeff. variation degrees 0.30 0.36 0.00 0.00 0.31 0.41 12.59
The entropy of the 087 | 074 | 000 | 000 | 133 | 148 | 216
distribution degrees
Min. in-degree 076 | 043 | 000 | 1.00 | 1.00 | 1.00 1.00
Max. in-degree 5.70 21.55 | 0.00 1.00 2.00 5.00 | 2,857.00
Avg. in-degree 094 | 055 | 000 | 1.00 | 120 | 1.33 1.98
Coeff. variation in- 054 | 074 | 000 | 000 | 033 | 080 | 25.19
degrees
The entropy of the 034 | 032 | 000 | 000 | 037 | 061 1.10
distribution in-degrees
Max. out-degree 1.58 1.78 0.00 2.00 2.00 2.00 278.00
Coeff. variationout- | &5 | 546 | 000 | 037 | 057 | 082 | 11.62
degrees
The entropy of the

distribution out-degrees 1.01 0.61 0.00 0.92 1.27 1.52 2.02

Avg. split cardinality

(including binary splits) 0.09 1.52 0.00 0.00 0.00 0.00 232.00

Avg. split cardinality
(‘excluding binary 1.52 0.93 0.00 2.00 2.00 2.00 94.67
splits)

11

M. Cugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

Label Distribution
250000
200081
200000
150000

100000

Number of graphs

50000 21668

0
BFS DFS

Fig. 4 — Distribution of labels in the dataset.

5 Model Training and Implementation

To establish the model training and evaluation pipeline, we randomly divided
the dataset into two subsets, with 80% of the data allocated for model training. In
contrast, the remaining 20% was reserved for testing its performance. Given the
high class imbalance, we apply instance weighting to penalize misclassifications
of underrepresented instances more heavily. This ensures that the distribution of
the optimal traversal algorithm (BFS or DFS) remains consistent across the
training and test sets, which is important for reliable model evaluation.

We selected XGBoost as the machine learning model for predicting the
optimal traversal algorithm for each CFG. This choice was motivated by
XGBoost’s strong performance on structured, tabular data, as well as its
efficiency and ability to model complex, nonlinear feature interactions. Beyond
predictive accuracy, XGBoost also offers valuable interpretability through
feature importance metrics, enabling us to understand which graph features most
significantly influence the model’s decisions. These characteristics make it
particularly well-suited for our use case, where both performance and insight into
the decision process are important.

To identify the best hyperparameters for the XGBoost model, we performed
a grid search combined with 5-fold cross-validation on the training dataset. The
weighted F1 score was used as the evaluation metric, as it accounts for class
imbalance and ensures balanced predictive performance across both classes. We
performed a grid search over two key hyperparameters: maximum tree depth and
ensemble size. We tested tree depths of 10, 20, and 30, along with ensemble sizes
of 500, 1,000, 2,000, 3,000, and 5,000 trees. The configuration that achieved the
highest cross-validated performance consisted of 2,000 trees, each of depth 20,
striking a good balance between model expressiveness and the risk of overfitting.

12

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

This optimal setting was then used to train the final model on the full training
dataset.

To handle a class imbalance in the dataset, we employed instance weighting
during the model training. Multiple models were trained using different
weighting strategies to evaluate their effect on classification performance. In the
first training configuration, instance weights were automatically adjusted based
on the class distribution in the training data, ensuring proportional contribution
from both the BFS majority class and the less frequent DFS class. In other
configurations, we manually assigned higher weights to the underrepresented
DEFS class to further amplify its influence during training. This strategy enabled
us to assess how different weighting schemes affect model sensitivity and
performance, particularly in correctly predicting the less common traversal
algorithm.

6 Evaluation

In this section, we evaluate and compare different ML models. To do so, we
compute and report standard evaluation metrics, including accuracy, precision,
recall, and F1 score. In addition, we present confusion matrices for each model
to highlight the nature and frequency of misclassifications. Finally, we perform a
detailed analysis of the handcrafted feature set, examining which features
contribute most to the model's predictive accuracy and how they influence
classification outcomes.

6.1 Balanced instance weights

To address the class imbalance between the BFS and DFS labels, we train
the models using a balanced instance weighting strategy. Specifically, we
calculate class weights based on the inverse class frequency, scaled by the total
number of training samples and the number of classes. The formula used to
compute the weight w for class ¢, denoted as w, is given as: w. =N/ (K * n.),
where N represents the total number of training samples, K represents the number
of classes, and n. represents the number of samples in class ¢. This approach
ensures that classes with fewer samples receive higher weights, thereby
penalizing their misclassifications more heavily during training. In our case, the
BFS class, being more frequent, receives a weight of approximately 0.55, while
the less frequent DFS class is assigned a significantly higher weight of around
5.12.

The large gap between class weights (0.55 for BES vs. 5.12 for DFS) reflects
the training dataset’s class imbalance. BFS, as the majority class, is down-
weighted, while the rarer DFS class is boosted to ensure balanced learning; in a
balanced dataset, both weights would be approximately equal. This weighting
ensures that the model places more emphasis on correctly learning patterns

13

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

associated with the underrepresented DFS class, improving overall classification
balance and reducing bias toward the majority class.

On the test set, which contains 44,350 instances, the XGBoost model
achieves an overall accuracy of 78.25%. The model achieved 89.44% precision,
78.25% recall, and an F1 score of 82.10%. These results indicate strong predictive
performance, particularly for the majority class. However, the relatively lower
recall value indicates that the model struggles more with correctly identifying
DFS instances, reflecting the underlying class imbalance and the greater
difficulty in learning patterns associated with the less frequent class. Nonetheless,
the F1 score demonstrates a reasonable trade-off between precision and recall.

A more detailed view of the model’s classification performance for each
class is presented in Table 3. To offer a comprehensive assessment of the model’s
effectiveness, we report both macro and weighted averages of the standard
evaluation metrics. The macro average, which treats each class equally regardless
of its frequency, yields a precision of 0.62, a recall of 0.75, and an F1 score of
0.63. In contrast, the weighted average, which accounts for the class distribution
in the dataset, reports a precision of 0.89, a recall of 0.78, and an F1 score of 0.82.
These results highlight the model’s strong performance on the majority class
(BFS) while also revealing room for improvement in detecting the less common
DFS class. The gap between macro and weighted scores highlights the effect of
class imbalance.

The confusion matrix for the XGBoost model on the test set, presented in
Fig. 5, provides insight into how the model performs across the two classes.
Among the 40,016 instances labeled as BFS, 8,400 were incorrectly classified as
DFS, resulting in a misclassification rate of 21.0% for the BFS class. For the DFS
class, which comprises 4,334 instances, the model misclassified 1,244 as BFS,
resulting in a higher misclassification rate of 28.7%. These results indicate that
while the model is relatively accurate overall, it has more difficulty correctly
identifying DFS instances, which is consistent with the class imbalance observed
in the dataset.

It is important to emphasize that the XGBoost model does not exhibit signs
of overfitting to the training data. On the training set, the model achieves an
accuracy of 79.28%, a precision of 90.63%, a recall of 79.28%, and an F1 score
of 82.99%. These values are very close to the corresponding metrics on the test
set, with only marginal improvements. This consistency between training and test
performance indicates that the model generalizes well and maintains stable
predictive behavior across unseen data, further confirming the robustness of the
chosen feature set and model configuration.

The presented results demonstrate that the model performs well overall,
effectively capturing the majority of instances across both classes. While there is
still room for improvement, particularly in reducing misclassifications within the

14

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

underrepresented DFS class, the model demonstrates strong generalization
capabilities and effectively handles class imbalance. These findings suggest that
the chosen features and training strategy are effective, though further refinements
could enhance performance, particularly for the minority class.

Table 3
Per-class classification report on test set for the XGBoost
ML model consisting of 2000 trees with maximal depth of 20.

Class Precision Recall F1 Score No. of instances
BFS 0.96 0.79 0.87 40,016
DFS 0.27 0.71 0.39 4,334

Confusion Matrix

BFS 8,400
2
o
(1]
2
=
DFS 1,244 3,090
BFS DFS

Predicted label

Fig. 5 — Confusion matrix on the test set for the XGBoost model with
2,000 trees (max depth 20) trained using balanced class weights.

6.2 Feature importance

The XGBoost model not only offers strong predictive performance but also
yields valuable insights into the effectiveness of the handcrafted features used to
characterize CFG blocks. In Fig. 6, we present the most influential features, as
determined by their gain, a metric that quantifies each feature’s contribution to
reducing the model’s overall loss during training. Features with higher gain
values have a more significant impact on guiding the model’s decision-making
process. This analysis helps identify which structural aspects of the CFGs are
most relevant for predicting the optimal traversal strategy, offering guidance for
future feature engineering and model improvements.

Among all the evaluated features, the number of nodes emerges as the most
dominant, achieving a gain of 3.12, which far surpasses that of all other features.
This indicates that the overall size of a CFG is the most influential factor in the

15

M. Cugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

model’s prediction of the optimal traversal algorithm. The next most impactful
features — average in-degree (0.24), number of non-binary splits (0.24), and the
node-to-edge ratio (0.20) — exhibit substantially lower gains. This disparity
suggests that size-related characteristics, particularly node count, play a central
role in the model’s decision-making process. Nonetheless, a range of other
features, including entropy measures and various degree-based metrics, provide
moderate contributions. They enrich the model’s understanding by capturing
more subtle aspects of graph structure. Overall, the distribution of gain values
indicates that while the model relies heavily on coarse-grained structural
properties, it also leverages more detailed topological and statistical descriptors
to refine its predictions.

number of nodes 3.1187

avg in degree 0.2421

number of non bina_ry 0.2393
splits
ratio nodes edges 0.2000

coefficient variation out

0.1667
degrees

max degree 0.1652

ratio edges nodes 0.1612
entropy of distributions

0.1517
out degrees

entropy of distributions @ ;45
in degrees

entropy of distributions 0.1320
degrees

coefficient variation in 0.1242
degrees

min degree 0.1230

avg degree 0.1212

coefficient variation
degrees

width 0.1148

0.1197

0.0000 1.0000 2.0000 3.0000
Gain

Fig. 6 — Feature gains derived from the trained XGBoost ensemble.

16

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

6.3 Improving DFS misclassifications

To enhance the model’s sensitivity to the underrepresented DFS class, we
experimented with manually defined instance weights during training. This
strategy aimed to reduce the misclassification rate for DFS by explicitly
increasing its influence in the learning process. In one such configuration, we
assigned a weight of 0.5 to BFS instances and 10.0 to DFS instances - effectively
placing approximately 1.86 times more emphasis on DFS. As a result, the
confusion matrix for this model, shown in Fig. 7, revealed an improved balance
between the classes, with a misclassification rate of 24.88% for BFS and 26.40%
for DFS. This represents a noticeable improvement in DFS classification
compared to the baseline, suggesting that targeted weighting can help mitigate
the effects of class imbalance and lead to more equitable performance across
classes.

Confusion Matrix

BFS 9,955
@
o
Ic)
(1]
=
E
DFS 1,144 3,190
BFS DFS

Predicted label

Fig. 7 — Confusion matrix on the test set for the XGBoost model with 2,000 trees
(max. depth of 20) trained using class weights BF'S: 0.5 and DFS 10.0.

As expected, emphasizing the underrepresented DFS class during training
leads to a slight reduction in overall classification metrics, particularly those that
treat all classes equally. However, the decrease is not substantial and reflects a
trade-off aimed at achieving a better balance. The model trained with manually
assigned weights favoring DFS instances achieves the following unweighted
performance on the test set: an accuracy of 74.97%, a precision of 89.29%, a
recall of 74.97%, and an F1 score of 79.73%. These results indicate that, while
overall performance drops slightly, the model becomes more equitable across
classes without significantly compromising predictive power.

When comparing these results to those of the original model, it becomes clear
that assigning higher weights to DFS instances results in a modest decrease in

17

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

overall accuracy and F1 score. However, precision remains nearly unchanged,
indicating that the model maintains a high proportion of correct positive
predictions. The trade-off between accuracy and recall highlights the effect of
prioritizing the minority DFS class, resulting in a slight reduction in BFS
misclassification.

6.4 Simplified model

To examine how model complexity affects performance, we trained smaller
XGBoost models by reducing both the number of trees and the maximum depth
of each tree. The most effective configuration in this simplified setup comprises
100 trees, each with a maximum depth of 3 (the confusion matrix is shown in Fig.
8). Despite its reduced complexity, this model achieved strong results on the test
set: accuracy of 79.59%, precision of 89.47%, recall of 79.59%, and an F1 score
of 83.05%. The misclassification rates were 19.35% for BFS and 30.11% for
DEFS.

Interestingly, these metrics outperform those of the larger ensemble model,
which has 2,000 trees and a depth of 20. However, this improvement is not
uniform across classes. While the simpler model reduces the BFS
misclassification rate by 1.65%, it increases the DFS misclassification rate by
1.4%, highlighting the trade-off between model simplicity and balanced class
performance.

Confusion Matrix

BFS 7,745
2
o
(1]
=
E
DFS 1,305 3,029
BFS DFS

Predicted label

Fig. 8 — Confusion matrix on the test set for the XGBoost model with 100 trees
(max. depth of 3) trained using balanced class weights.

6.5 Discussion

To the best of our knowledge, this specific problem has not been addressed
in prior work. As a result, an appropriate baseline for comparison is a simple

18

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

model that makes predictions by randomly selecting a class, either with uniform
probability or with a biased distribution that reflects the dataset's imbalance (e.g.,
0.8 for BFS and 0.2 for DFS). Additionally, given the highly imbalanced nature
of the dataset, it is also meaningful to compare our trained models to a trivial
baseline that always predicts the majority class (BFS). These baselines help
contextualize the performance of our approach and demonstrate that the XGBoost
models offer significant improvements over naive or uninformed prediction
strategies.

Our models significantly outperformed this baseline. An XGBoost model
with 2,000 trees and maximum depth 20 achieved misclassification rates of 21%
for BFS and 28.7% for DFS. A model with 100 trees and maximum depth 3
reached 19.35% for BFS and 30.11% for DFS. Another model with 2,000 trees,
depth 20, and DFS-weighted training produced balanced misclassification rates
of 24.88% for BFS and 26.40% for DFS, showing a clear improvement over
random baselines.

In a dataset where 80% of instances belong to the majority class and 20% to
the minority class, a random classifier with uniform class selection achieves an
overall accuracy of 50%. For the minority class, it yields 9% precision, 50%
recall, and an F1 score of 15%. For the majority class, the precision is 91%, the
recall is 50%, and the F1 score is 65%. The confusion matrix for this classifier
indicates a 50% misclassification rate for both classes, underscoring its limited
ability to make accurate predictions.

A random classifier that selects the majority class 80% of the time and the
minority class 20% of the time achieves a higher overall accuracy of 68%. For
the minority class, both precision and recall drop to 20%, resulting in an F1 score
of 20%. In contrast, the majority class sees 80% precision and recall, with an F1
score of 80%. However, this approach misclassifies 80% of the minority
instances, highlighting its ineffectiveness in handling class imbalance. These
results illustrate the limitations of naive or probabilistic classifiers, particularly in
imbalanced settings.

A classifier that always predicts the majority class achieves 80% accuracy,
but this is misleading. It completely fails in the minority class, with 0% precision,
recall, and F1 score. For the majority class, all three metrics are 100%. The
confusion matrix confirms 0% misclassification for the majority class and 100%
for the minority class, illustrating the model’s inability to generalize beyond the
dominant class.

Our models substantially outperformed these baseline classifiers. The
XGBoost model with 2,000 trees and a maximum depth of 20 achieved
misclassification rates of 21.0% for BFS and 28.7% for DFS, demonstrating
strong performance across both classes. A more compact model with 100 trees
and a maximum depth of 3 performed comparably, with 19.35% misclassification

19

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

for BFS and 30.11% for DFS, highlighting the effectiveness of even low-
complexity models. Additionally, a variant trained with DFS-weighted instance
balancing (2,000 trees, depth 20) achieved more balanced misclassification rates
of 24.88% for BFS and 26.40% for DFS. These results clearly demonstrate that
all trained XGBoost models substantially outperform random or trivial baselines,
especially in handling class imbalance, and offer meaningful accuracy
improvements for both the majority and minority classes.

6.6 General applicability and end-to-end performance considerations

Although our models are optimized for programs targeting JVM languages
such as Java or Scala, our approach is reusable and can be incorporated into other
ecosystems, such as .NET or LLVM. .NET ecosystem provides support for
similar capabilities as GraalVM, but targeting the set of languages operating on
the Common Language Runtime and thus using Common Intermediary Language
(CIL) instead of Java bytecode. Our feature-extraction and dataset creation
pipeline can be injected as part of NET NativeAOT compilation tool to extract
features of method IR graphs. Similarly, LLVM is primarily oriented toward
C/C++-like languages and utilizes a three-address based intermediate
representation, from which pertinent features may be extracted. The proposed
methodology may be integrated within the Clang compilation framework as a
natural extension of its functionality.

End-to-end compilation time savings depend not only on the model’s
accuracy, but also on the time it takes for the ML model to make predictions
(inference time). In addition, the estimation of the achievable time savings is
further influenced by the size and shape of the project being compiled. Future
research efforts should focus on refining the ML model in order to realize
meaningful end-to-end compilation time savings. Such refinement may be
pursued through the incorporation of novel and discriminative features, as well
as through improvements in the quality, diversity, and representativeness of the
underlying dataset.

7 Conclusions and Future Work

In this study, we investigated a set of control flow graph features to
characterize graph structure and used them to train an ensemble-based XGBoost
machine learning model capable of predicting the optimal traversal algorithm
(BFS or DFS) for each graph. Through feature-importance analysis, we found
that the number of nodes, average in-degree, and number of binary splits were
among the most informative features for guiding traversal decisions. Importantly,
these and most other high-impact features can be computed efficiently during the
CFG construction phase without requiring an additional traversal. This makes the
approach especially practical for use cases involving static or frequently reused
graphs, such as those found in library code. The trained model achieves strong

20

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

overall predictive performance, with balanced coverage of both classes. Although
occasional misclassifications occur in the minority class, the model successfully
mitigates the effects of class imbalance and demonstrates good generalization to
unseen data.

In addition to using the XGBoost model for prediction, we leveraged it to
rank the importance of our manually engineered input features. While
handcrafted features offer interpretability and efficiency, an alternative direction
involves automatically generating feature representations for each CFG block.
Prior work in static profiling has explored the use of map-based features to
describe CFG blocks [38, 39], offering a more flexible and potentially richer
characterization. Building on this idea, we see an opportunity to extend our
approach by incorporating automated feature extraction techniques. This could
enable the application of more expressive machine learning models, such as deep
neural networks or graph neural networks (GNNs), which are better suited for
learning from complex graph structures. We plan to explore this direction in
future work to improve prediction accuracy and model scalability further.

GNNss are particularly well-suited for modeling the structure of control flow
graphs, as they operate directly on graph-structured data and can perform tasks
such as graph-level binary classification. This makes GNNs a promising
alternative to the XGBoost-based model explored in this work. However, unlike
tree-based models that rely on global graph features, GNNs require input features
at the node level, where each node represents a basic block in the CFG. These
node features can be derived from a subset of the informative features identified
by XGBoost or from more flexible, map-based descriptors. Designing GNN
architectures that are both expressive and computationally efficient is critical,
given that GNNs typically incur higher inference times. Additionally, to fully
leverage the potential of GNNs and improve their generalization, building a larger
and more diverse dataset tailored for GNN training and evaluation will be an
important step in the future.

In future work, we will focus on fine-tuning the traversals by modifying the
data structures used in the algorithms and by combining different traversal
strategies. Additionally, we will investigate how the results extend to traversal
methods beyond BFS and DFS. We aim to explore the benefits of integrating the
best-performing models into the Oracle GraalVM Native Image compiler.

8 Acknowledgments

This work is supported by the Ministry of Science, Technology and
Innovation of the Republic of Serbia, under agreement No. 451-03-47/2023-
01/200104, as well as through the research project provided by Oracle America,
Inc.

21

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

(10]

[11]

[13]

[14]

[15]
[16]

References

0. Ore: Graphs and their Uses, Mathematical Association of America, Washington, 1990.

K. Bobrovnikova, S. Lysenko, B. Savenko, P. Gaj, O. Savenko: Technique for [oT Malware
Detection Based on Control Flow Graph Analysis, Radioelectronic and Computer Systems,
No. 1, 2022, pp. 141-153.

Z.Ma, H. Ge, Y. Liu, M. Zhao, J. Ma: A Combination Method for Android Malware Detection
Based on Control Flow Graphs and Machine Learning Algorithms, IEEE Access, Vol. 7,
January 2019, pp. 21235-21245.

D. Bruschi, L. Martignoni, M. Monga: Detecting Self-Mutating Malware Using Control-Flow
Graph Matching, Proceedings of the 3rd International Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), Berlin, Germany, July 2006, pp. 129—143.

F. E. Allen: Control Flow Analysis, ACM SIGPLAN Notices, Vol. 5, No. 7, July 1970, pp. 1
-19.

T. Wiirthinger, C. Wimmer, A. WoB, L. Stadler, G. Duboscq, C. Humer, G. Richards, D.
Simon, M. Wolczko: One VM to Rule them All, Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Indianapolis, USA, October 2013, pp. 187—204.

Graal VM: Build Faster, Smaller, Leaner Applications, Available at:
https://www.graalvm.org/

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman: Compilers-Principles,
Techniques and Tools, 2" Edition, Pearson Education, Inc., Boston, San Francisco, New
York, 2007.

S. M. Blackburn et al.: The DaCapo Benchmarks: Java Benchmarking Development and
Analysis, ACM SIGPLAN Notices, Vol. 41, No. 10, October 2006, pp. 169—190.

A. Prokopec et al., Renaissance: Benchmarking Suite for Parallel Applications on the JVM,
Proceedings of the 40" ACM SIGPLAN Conference on Programming Language Design and
Implementation, Phoenix, USA, June 2019, pp. 31-47.

A. Kanuparthi, J. Rajendran, R. Karri: Controlling Your Control Flow Graph, Proceedings of
the IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
McLean, USA, May 2016, pp. 43—-48.

J. Wang, C. Zhang, L. Chen, Y. Rong, Y. Wu, H. Wang, W. Tan, Q. Li, Z. Li: Improving ML-
Based Binary Function Similarity Detection by Assessing and Deprioritizing Control Flow
Graph Features, Proceedings of the 33" USENIX Security Symposium, Philadelphia, USA,
August 2024, pp. 4265—-4282.

Z. Zhao: A Virus Detection Scheme Based on Features of Control Flow Graph, Proceedings
of the 2" International Conference on Artificial Intelligence, Management Science and
Electronic Commerce (AIMSEC), Deng Feng, China, August 2011, pp. 943—-947.

M. Cugurovi¢, I. Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. Vujosevi¢ Janigié:
ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm in Modern
Applications, Proceedings of the 12th International Conference on Electrical, Electronic and
Computing Engineering (IcCETRAN), Cacak, Serbia, June 2025, pp. 1 — 6.

F. R. K. Chung: Spectral Graph Theory, American Mathematical Society, Providence, 1997.

Q. Sun, E. Abdukhamidov, T. Abuhmed, M. Abuhamad: Leveraging Spectral Representations
of Control Flow Graphs for Efficient Analysis of Windows Malware, Proceedings of the ACM

22

[17]

(21]

[22]

(23]

[24]

(25]

[26]

ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm ...

on Asia Conference on Computer and Communications Security, Nagasaki, Japan, May 2022,
pp. 1240—-1242.

S. Mitra, S. A. Torri, S. Mittal: Survey of Malware Analysis through Control Flow Graph
Using Machine Learning, Proceedings of the IEEE 22nd International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), Exeter, UK, November
2023, pp. 1554—-1561.

R. Mercado, E. J. Bjerrum, O. Engkvist: Exploring Graph Traversal Algorithms in Graph-
Based Molecular Generation, Journal of Chemical Information and Modeling, Vol. 62, No. 9,
May 2022, pp. 2093-2100.

1. Ristovié¢, M. Cugurovic’, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. Vujosevi¢ Janici¢:
Efikasan obilazak grafova kontrole toka, Proceedings of the 30th National Conference on
Information and Communication Technologies (YU INFO), Kopaonik, Serbia, March 2024,
pp- 89-94.

M. Spasié, S. Stanojevi¢, 1. Ristovié, M. éugurovié, V. Marinkovié¢, M. Vujosevi¢ Jani¢ié:
Control Flow Graphs (CFGs) for JVM Applications/Benchmarks Compiled with GraalVM
Native Image, Zenodo, July 2025, version v2.

K. Zhu, Y. Lu, H. Huang, L. Yu, J. Zhao: Constructing More Complete Control Flow Graphs
Utilizing Directed Gray-Box Fuzzing, Applied Sciences, Vol. 11, No. 3, February 2021, p.
1351.

G. Duboscq, T. Wiirthinger, L. Stadler, C. Wimmer, D. Simon, H. Mdssenbdck: An
Intermediate Representation for Speculative Optimizations in a Dynamic Compiler,
Proceedings of the 7" ACM Workshop on Virtual machines and Intermediate Languages,
Indianapolis, USA, October 2013, pp. 1-10.

C. Wimmer, C. Stancu, P. Hofer, V. Jovanovi¢, P. Wogerer, P. B. Kessler, O. Pliss, T.
Wiirthinger: Initialize Once, Start Fast: Application Initialization at Build Time, Proceedings
of the ACM on Programming Languages, Vol. 3, No. OOPSLA, October 2019, pp. 184.

R. Bruno, S. Ivanenko, S. Wang, J. Stevanovi¢, V. Jovanovié: Graalvisor: Virtualized Polyglot
Runtime for Serverless Applications, arXiv:2212.10131v1 [cs.DC], December 2022, pp. 1—-17.
GraalOS: High-Performance Serverless Application Deployment Platform, Available at:
https://graal.cloud/graalos/

C. Click, M. Paleczny: A Simple Graph-Based Intermediate Representation, ACM SIGPLAN
Notices, Vol. 30, No. 3, March 1995, pp. 35—49.

C. Bishop, Nasrabadi, M. Nasser, Pattern Recognition and Machine Learning, Information
Science and Statistics, Springer New York, NY, 2006, pp. 179—181.

T. Hastie, R. Tibshirani, J. Friedman: Model Inference and Averaging, Ch. 3, The Elements
of Statistical Learning, 1st Edition, Springer, New York, 2001.

M. Sokolova, G. Lapalme: A Systematic Analysis of Performance Measures for Classification
Tasks, Information Processing & Management, Vol. 45, No. 4, July 2009, pp. 427—-437.

L. Breiman, M. Last, J. Rice: Random Forests: Finding Quasars, Ch. 16, Statistical Challenges
in Astronomy, 1st Edition, Springer, New York, 2003.

C. Bentéjac, A. Csorgd, G. Martinez-Mufioz: A Comparative Analysis of Gradient Boosting
Algorithms, Artificial Intelligence Review, Vol. 54, 2021, pp. 1937—-1967.

T. Chen, C. Guestrin: XGBoost: A Scalable Tree Boosting System, Proceedings of the 22"
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
'16), San Francisco, CA, USA, August 13-17, 2016, 785—794.

23

M. C‘ugurovié, L Ristovié, S. Stanojevi¢, M. Spasié, V. Marinkovi¢, M. VujosSevi¢ Janici¢

(33]

[34]

[33]

[36]

[37]

[38]

[39]

A. E. Hoerl, R. W. Kennard: Ridge Regression: Biased Estimation for Nonorthogonal
Problems, Technometrics, Vol. 12, No. 1, February 1970, pp. 55—-67.

R. Tibshirani: Regression Shrinkage and Selection Via the Lasso, Journal of the Royal Statistical
Society, Series B: Statistical Methodology, Vol. 58, No. 1, January 1996, pp. 267—-288.

D. Nielsen: Tree Boosting with XGBoost — Why Does XGBoost Win ,,Every” Machine
Learning Competition?, MSc Thesis, Norwegian University of Science and Technology,
Trondheim, 2016.

J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D. D. Cox: Hyperopt: A Python Library for
Model Selection and Hyperparameter Optimization, Computational Science & Discovery,
Vol. 8, No. 1, January 2015, p. 014008.

C. S. M. Ali, I. M. Ibrahim: A Review of Graph Traversal Algorithms: Techniques and
Applications in Network Analysis, Asian Journal of Research in Computer Science, Vol. 18,
No. 3, February 2025, pp. 61-72.

M. Cugurovié, M. Vujoevi¢ Jani¢i¢, V. Jovanovié, T. Wiirthinger: GraalSP: Polyglot,
Efficient, and Robust Machine Learning-Based Static Profiler, Journal of Systems and
Software, Vol. 213, July 2024, p. 112058.

L. Miliki¢, M. Cugurovié, V. Jovanovié: GraalNN: Context-Sensitive Static Profiling with
Graph Neural Networks, Proceedings of the 23" ACM/IEEE International Symposium on
Code Generation and Optimization, Las Vegas, USA, March 2025, pp. 123-136.

24

