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Abstract: Control flow graphs model possible program execution paths and thus are 

essential for static program analysis. Compilers use control flow graphs as a basis for 

their intermediate representations, allowing them to apply optimizations. As each 

method is represented by its control flow graph, the number of control flow graphs that 

a compiler needs to generate and process depends on the program being compiled. For 

reference, modern programs that run on the JVM consist of hundreds of thousands of 

methods. Thus, efficient control flow graph traversal is crucial to provide fast 

compilation. Prior work has shown that breadth-first and depth-first search algorithms 

yield different results depending on the control flow graph structure; however, the 

relationship between control flow graph features and the optimal traversal algorithm 

in terms of traversal speed remains underexplored. In this work, we construct a dataset 

of over 200,000 control flow graphs gathered from modern state-of-the-art JVM 

benchmark suites. Using this dataset, we train a set of ensemble-based machine 

learning models that predict optimal graph traversal algorithms for a given control flow 

graph using a set of lightweight graph features. Our models identify the key features 

that yield accurate predictions and demonstrate that the most informative features can 

be extracted efficiently during the graph construction process itself. 
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1 Introduction 

Graphs are a fundamental abstraction in computer science, commonly used 

to represent data and the relationships between data [1]. Among their broad scope 

of applications, control flow graphs (CFGs) are particularly significant in 

semantic analysis during compilation, or malware detection [2 − 4]. CFG models 

the different paths a program might take during its execution, serving as a 

foundation for various analysis and optimization techniques [5]. In compiler 

ecosystems like GraalVM [6, 7], CFGs are crucial in guiding code transfor-

mations and performance improvements [8]. Given the complexity of modern 

applications, compilers frequently process hundreds of thousands of control flow 

graphs throughout the compilation process [9, 10]. 

Efficient traversal of control flow graphs is a key requirement for optimizing 

compilation performance [11]. Prior research has explored how the structural 

properties of CFGs influence the efficiency of different traversal strategies 

[12 − 14]. Additionally, spectral graph theory has provided valuable 

mathematical tools for capturing and analyzing the complexity of graph 

structures, including CFGs [15, 16]. Recent approaches also leverage machine 

learning techniques to classify CFGs and extract meaningful structural and 

semantic features [17]. While performance trade-offs between traversal 

algorithms such as depth-first search (DFS) and breadth-first search (BFS) have 

been studied in various contexts [18], to the best of our knowledge, no prior work 

has specifically compared these algorithms in the context of CFG traversal for 

Java and Scala programs. Although both DFS and BFS operate in linear time in 

theory, their actual performance can differ significantly based on the topology of 

the CFG being traversed [19]. 

Extracting certain properties of control flow graphs often necessitates 

traversing the graph itself [13]. This presents a fundamental paradox: identifying 

whether DFS or BFS is more efficient for a given control flow graph typically 

requires performing a traversal in the first place. At first glance, this seems 

counterintuitive — if traversal is needed to make the decision, any benefit from 

choosing the optimal strategy appears negated. However, our work challenges 

this assumption by proposing a predictive approach. Instead of analyzing each 

new graph from scratch, we explore whether it is possible to infer the optimal 

traversal strategy based on ML predictions. The predictions are based on CFG 

features that can be obtained without requiring additional graph traversals. This 

transforms what initially appears to be a redundant process into a practical 

optimization tool. This approach is especially valuable in performance-critical 

environments, like compilers and static analysis tools, where even small 

efficiency improvements can accumulate into significant overall speed-ups when 

applied across many CFGs. 
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In this work, we expand our previous findings [14] that introduce an 

ensemble-based machine learning model designed to predict the most efficient 

traversal algorithm, depth-first or breadth-first, for a given control flow graph. 

We describe an extensible pipeline used to extract CFG properties and modify 

our dataset to make it more generic. We provide descriptions of measurement 

techniques that can be used to extract desired target metrics. With these 

techniques, we compiled a labeled dataset containing over 220,000 CFGs derived 

from modern Java and Scala applications [9, 10], used for model training. By 

leveraging machine learning, we not only automate the selection of the optimal 

traversal strategy but also gain valuable insights into which CFG characteristics 

are most influential for this decision. Importantly, we demonstrate that many of 

these features can be gathered during the graph construction phase itself, avoiding 

any redundant overhead. This enables an efficient ahead-of-time prediction for 

static graphs and supports on-the-fly feature extraction for newly generated or 

modified CFGs, making the approach practical for integration into compilers or 

static analysis tools. 

The main contributions of this paper are: 

– An extensible pipeline for extracting CFG features and dataset creation. 

– A set of lightweight features that characterize CFGs and enable accurate 

prediction of graph traversal strategies. 

– A labeled dataset of over 200,000 CFGs extracted from modern JVM-

based applications [20], supporting various types of CFG analyses. 

– A set of ensemble-based machine learning models that predict the optimal 

CFG traversal algorithm based solely on structural graph features. 

– ML-driven insights into CFGs, identifying the number of nodes, average 

in-degree, and the number of non-binary splits as key features for the 

prediction of the optimal graph traversal algorithm. 

2 Background 

CFG analysis [5, 8] enables compilers, static profilers, and a wide range of 

program analysis tools to gain deep insights into the structure and control logic 

of a program without requiring its execution. This form of analysis and 

classification is commonly applied in contexts such as data flow analysis, 

symbolic execution, formal program verification, malware detection, and 

software vulnerability identification [21]. In practice, analyzing a CFG typically 

involves either extracting informative structural features or applying graph 

transformations, both of which inherently require traversing the CFG. 
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2.1 Control flow graphs and graph traversal algorithms 

In a control flow graph, each node represents a basic block — a straight-line 

sequence of instructions with a single entry point and a single exit, containing no 

internal jumps or branches. The edges between these nodes represent the possible 

paths of control flow from one basic block to another.  

Within compiler infrastructures, CFGs serve as a fundamental tool for 

program analysis and optimization, enabling a range of transformations and 

performance improvements. During the compilation process, each method in a 

program is typically converted into its own CFG. The graph starts with a 

designated entry node, corresponding to the beginning of the method, and 

includes one or more exit nodes that capture all possible termination points. CFGs 

can contain cycles when the method contains loops or recursive calls, or be 

acyclic when there are no such control structures. 

Fig. 1 shows the source code of the java.util.DualPivotQuicksort.sort 

method from the Java standard library, while Fig. 2 represents the corresponding 

high-level CFG. The sort method conditionally invokes either the countingSort 

or insertionSort algorithm, depending on the number of elements to be sorted, as 

determined by the if statement. In the CFG, the conditional node serves as the 

common predecessor and has two successor nodes, one invoking countingSort, 

the other insertionSort, which then merge at a single exit node representing the 

method’s end. 

 

Fig. 1 – Source code of a standard Java library method 

java.util.DualPivotQuicksort.sort. 

 

Compiler optimizations often rely on traversing the control flow graph to 

gather relevant information or apply various code transformations. Traversal, in 

this context, means visiting all nodes that are reachable from the graph’s entry 

(start) node. The two most widely used traversal algorithms are DFS and BFS [1], 

both of which operate in linear time with respect to the number of nodes and 

edges in the graph. Despite having identical asymptotic complexity, their 

practical performance can vary significantly depending on the structure and 



ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm … 

5 

characteristics of the CFG, with one traversal method often proving more 

efficient than the other in certain scenarios. 

 

Fig. 2 – An example of a high-level Control Flow Graph corresponding to Fig. 1. 

 

2.2 GraalVM compiler infrastructure 

GraalVM [6, 7] is a powerful and versatile compiler infrastructure that 

combines several advanced components built around Graal [22], a high-

performance, optimizing compiler written in Java. GraalVM supports both Just-

In-Time (JIT) and Ahead-of-Time (AOT) compilation modes, leveraging the 

Graal compiler. The GraalVM Native Image tool [7] performs AOT compilation 

combined with class initialization at build time [23] to generate compact, 

standalone, and platform-specific executables called native images. Native 

images offer reduced startup time and lower memory overhead compared to 

traditional deployments [24], making them especially suitable for resource-

constrained or latency-sensitive environments such as cloud computing [25]. 

At the heart of Graal’s optimization pipeline lies its sea-of-nodes 

intermediate representation (IR) [26], known as GraalIR [22]. This IR merges 

control flow and data flow into a single, unified graph-based structure, enabling 

more powerful and flexible optimizations. In this representation, control flow 

nodes correspond to fixed execution points (such as basic block boundaries), 

while data flow nodes are floating, meaning they are not tied to a specific 

execution order and represent computed values, conditions, and branching logic. 

During the compilation process, Graal builds a CFG for each method, where basic 
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blocks are structured as sequences of GraalIR nodes. Branch instructions at the 

IR level directly map to the edges of the CFG, establishing a clear link between 

data-driven operations and the program’s execution flow. 

2.3 ML background 

Supervised machine learning [27, 28] is a widely used approach in which a 

model learns to associate input features with corresponding output labels by 

training on a labeled dataset. In classification problems, each data instance is 

expressed as a feature vector, and the model's objective is to accurately assign 

new, unseen instances to one of several predefined categories. Before training, 

datasets typically undergo preprocessing steps, such as feature standardization 

and techniques to address class imbalance, including instance weighting, 

oversampling, or undersampling. Once trained, the model's effectiveness is 

assessed using performance metrics such as accuracy, precision, recall, and the 

F1 score, together providing a comprehensive view of predictive quality [29]. 

Tree-based models [30] are well-suited for classification problems involving 

structured, tabular data because of their resilience to noise, ability to model 

complex nonlinear feature interactions, and ease of interpretation. One of the 

most powerful and widely adopted methods in this category is XGBoost (Extreme 

Gradient Boosting) [31, 32], a scalable and highly efficient boosting algorithm 

that sequentially constructs an ensemble of decision trees. XGBoost offers 

several advanced features, including native support for missing values, and 

incorporates both L1 (Lasso) and L2 (Ridge) regularization techniques [33, 34] 

to mitigate the risk of overfitting. Additionally, it is designed for high 

performance, enabling fast and parallelized model training on large datasets [35]. 

One of XGBoost’s key advantages is its ability to offer detailed insights into 

feature importance using metrics such as gain [33]. Gain quantifies the 

improvement in the model’s loss function achieved by splitting on a particular 

feature, with higher gain values indicating that the feature has a greater impact on 

the model’s predictions. This interpretability helps identify which features most 

strongly influence the classification outcome, offering both diagnostic value and 

opportunities for feature engineering. To further enhance model performance, 

hyperparameter tuning is typically performed using grid search [36], which 

systematically explores combinations of parameters and selects the best 

configuration based on validation performance. 

3 CFG Characterization and Feature Extraction 

We integrate the feature extraction and performance measurement pipeline 

directly into the Graal compiler infrastructure by introducing a custom phase into 

the method compilation queue. This newly added phase is designed to carry out 

configurable experiments during compilation, enabling it to extract structural 
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features from the CFG and evaluate the performance of a specific graph traversal 

algorithm. By embedding this functionality within the compiler pipeline, we 

ensure minimal disruption to the existing workflow while enabling systematic 

data collection and analysis at scale. 

To train the machine learning model to learn the connection between a 

control flow graph’s structure and the most efficient traversal algorithm, we 

defined a set of 24 descriptive features. These features, summarized in Table 1, 

are designed to capture key structural aspects of CFGs, including their size, shape, 

branching complexity, and connectivity characteristics. The rationale behind this 

selection is grounded in the observation that the performance of traversal 

algorithms, such as BFS and DFS, is closely influenced by these properties [37]. 

By quantifying these elements, the model can learn patterns that generalize across 

different types of CFGs, enabling it to predict the optimal traversal strategy for 

new, unseen graphs. 

To identify whether BFS or DFS is the more efficient traversal algorithm for 

a given method’s CFG, we measured and compared the average execution times 

of both algorithms over 100 iterations. Each CFG was labeled according to the 

traversal method with the lower average execution time. To ensure accurate and 

consistent timing measurements, we applied a range of system-level 

optimizations: Intel Turbo Boost was disabled, CPU C-states were set to 0, and 

the CPU frequency scaling governor was fixed to performance mode. 

Furthermore, to minimize background interference and context switching, we 

disabled Hyper-Threading and increased the priority of the benchmarking 

process. 

4 Dataset 

To train machine learning models for predicting the optimal traversal 

algorithm for control flow graphs, we constructed a labeled dataset of 221,749 

graphs [20]. CFGs were extracted from programs in the DaCapo [9] and 

Renaissance [10] benchmarking suites. Renaissance includes modern JVM-based 

workloads built on frameworks like Akka, Spark, and ScalaSTM, while DaCapo 

represents traditional Java applications from domains such as web services, 

cryptography, and data analysis. Together, they comprise a dataset used to 

benchmark the GraalVM compiler and provide a diverse set of CFGs in terms of 

depth, width, connectivity, and branching complexity. All benchmarks are 

executed in multiple iterations, where each iteration corresponds to a complete 

execution of a program. Including both Renaissance and DaCapo allowed us to 

collect CFGs from a broad spectrum of workloads, combining contemporary and 

legacy codebases. This diversity supports the training and evaluation of machine 

learning models for predicting traversal strategies across different types of graph 

structures. 
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Table 1 

CFG features contained in the dataset. 

Feature Name Description 

V Number of nodes in the CFG 

E Number of edges in the CFG 

Depth Maximal DFS traversal recursion depth 

Width 
Maximal number of nodes in the BFS queue during the CFG 

traversal 

Binary splits Number of nodes with exactly two successors 

Non-binary splits Number of nodes with more than two successors 

Total splits Number of nodes with more than one successor 

The ratio of nodes to edges V/E; Ratio of vertices to edges, quantifying graph sparsity 

The ratio of edges to nodes 
E/V; Ratio of edges to vertices, quantifying average 

connectivity per node 

Min. degree 
Minimal total degree of a CFG node, including both ingoing 

and outgoing edges 

Max. degree 
Maximal total degree of a CFG node, including both ingoing 

and outgoing edges 

Avg. degree 
The average total degree of a CFG node, including both 

ingoing and outgoing edges 

Coeff. variation degrees 
Relative variability of nodes’ total degrees, indicating 

dispersion in connectivity 

The entropy of the 

distribution degrees 

The randomness in nodes’ total degrees, indicating 

connectivity heterogeneity 

Min. in-degree Minimal number of predecessors of a CFG node 

Max. in-degree Maximal number of predecessor edges of a CFG node 

Avg. in-degree Average number of predecessors of a CFG node 

Coeff. variation in-degrees 
Relative variability of nodes’ in‑degrees, showing 

heterogeneity in incoming‑edge distribution 

The entropy of the 

distribution in-degrees 
Randomness in incoming‑edge distribution 

Max. out-degree Maximal number of outgoing edges of a CFG node 

Coeff. variation out-degrees 
Relative variability of nodes’ out‑degrees, showing 

heterogeneity in incoming‑edge distribution 

The entropy of the 

distribution out-degrees 
Randomness in outgoing‑edge distribution 

Avg. split cardinality  

(including binary splits) 

Average number of successors of nodes with more than one 

successor 

Avg. split cardinality 

(excluding binary splits) 

Average number of successors of nodes with more than two 

successors 

 

Running benchmarks in iterations enables a more accurate estimation of the 

average execution time by aggregating results across repeated program 

executions. Each CFG was processed within the GraalVM compiler infrastructure 
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using a custom phase that extracted structural graph features and measured 

traversal performance for both BFS and DFS. Traversal times were recorded 

across 100 iterations and aggregated using statistics such as mean, standard 

deviation, quartiles, and median. Each dataset instance includes the CFG features, 

the traversal strategy, aggregated performance metrics, and a label indicating 

which strategy was faster on average. 

Fig. 3 illustrates the process of constructing the dataset, and it involves the 

following steps: 

1. Benchmark Preparation — We organize the benchmark sources by 

suite and then by individual benchmark to support structured, batch-based 

processing in subsequent steps. Each benchmark is placed in a predefined 

directory structure, enabling uniform handling during compilation, 

control flow graph extraction, feature collection, and traversal 

measurements. 

2. Parsing and CFG construction — Each benchmark program is 

compiled using the GraalVM compiler. During compilation, a control 

flow graph is constructed for each method. 

3. Traversal Measurement Phase — A custom compiler phase is inserted 

into the Graal compilation pipeline to perform traversal measurements on 

each CFG. For every CFG: 

o Features of the CFG are extracted: f = extractFeatures(c). 

o Each traversal strategy t ∈ {DFS, BFS} is applied. 

o The traversal times are measured over 100 iterations. 

o For each iteration, we record its traversal time. Additionally, we 

record the traversal strategy and CFG features to facilitate the 

aggregation processes in the following steps. 

4. Aggregation of Measurements — For each CFG and traversal strategy, 

we aggregate traversal times measured over 100 iterations using the 

following statistical descriptors: 

o quartiles (Q1, Q2, Q3), 

o minimum and maximum values, 

o mean and standard deviation, 

o median and other summary statistics. 

5. Label Assignment and Dataset Entry Creation — Each CFG is 

represented by a data entry for each traversal algorithm. These entries 

consist of: 

o The extracted features of the CFG 

o The traversal type (DFS or BFS) 

o Aggregated statistics of the traversal time 

o A label indicating which traversal strategy was faster on average. 
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Final Dataset — The final dataset contains over 221,000 entries. Each entry 

corresponds to a unique pair of a CFG and a traversal algorithm, labeled with 

performance data and graph features. This dataset enables the training of machine 

learning models to predict the optimal traversal algorithm based on features of 

the CFG. Label distribution is shown in Fig. 4. The dataset is open and published 

on Zenodo [20]. 

 

Fig. 3 –  Dataset creation pipeline. 

 

Table 2 provides summary statistics for each of the 24 features, including 

the mean, standard deviation, and key quartile values, offering insight into the 

overall distribution and variability of the dataset. The control flow graphs in the 

dataset exhibit considerable structural diversity. The number of nodes of the 

graph ranges from as few as 1 to as many as 5,716, while the number of edges 

spans from 0 to 8,571. On average, graphs contain 17.78 nodes and 23 edges. 

Median values for both the depth and the width of the graph are around 3, 

suggesting that most CFGs are relatively shallow and narrow. The majority of 

branching points involve binary splits, with very few branches having more than 

two splits, leading to an average of 7.26 splits per graph. Although the average 

node degree is low (1.61), some graphs include highly connected nodes, with 

maximum in- or out-degrees reaching as high as 2,857. Additionally, features 

related to degree variability and entropy indicate a broad range of structural 

complexity. This level of heterogeneity is essential for training a machine 

learning model that can generalize well across diverse graph topologies. 
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Table 2 

Summary statistics for extracted CFG features. 

Feature Name Mean Std Min 25% 50% 75% Max 

V 17.78 55.58 1.00 3.00 6.00 16.00 5,716.00 

E 23.00 80.42 0.00 2.00 6.00 19.00 8,571.00 

Depth 6.14 18.34 1.00 1.00 3.00 6.00 2,857.00 

Width 3.29 4.00 1.00 2.00 3.00 4.00 735.00 

Binary splits 7.24 25.28 0.00 1.00 2.00 6.00 2,857.00 

Non-binary splits 0.02 0.17 0.00 0.00 0.00 0.00 18.00 

Total splits 7.26 25.31 0.00 1.00 2.00 6.00 2,857.00 

The ratio of nodes to 

edges 
0.75 0.49 0.00 0.69 0.80 1.00 1.50 

The ratio of edges to 

nodes 
0.82 0.51 0.00 0.67 1.00 1.25 1.98 

Min. degree 0.85 0.56 0.00 1.00 1.00 1.00 2.00 

Max. degree 5.93 21.52 0.00 1.00 3.00 5.00 2,857.00 

Avg. degree 1.61 1.06 0.00 1.00 2.00 2.55 3.96 

Coeff. variation degrees 0.30 0.36 0.00 0.00 0.31 0.41 12.59 

The entropy of the 

distribution degrees 
0.87 0.74 0.00 0.00 1.33 1.48 2.16 

Min. in-degree 0.76 0.43 0.00 1.00 1.00 1.00 1.00 

Max. in-degree 5.70 21.55 0.00 1.00 2.00 5.00 2,857.00 

Avg. in-degree 0.94 0.55 0.00 1.00 1.20 1.33 1.98 

Coeff. variation in-

degrees 
0.54 0.74 0.00 0.00 0.33 0.80 25.19 

The entropy of the 

distribution in-degrees 
0.34 0.32 0.00 0.00 0.37 0.61 1.10 

Max. out-degree 1.58 1.78 0.00 2.00 2.00 2.00 278.00 

Coeff. variation out-

degrees 
0.60 0.46 0.00 0.37 0.57 0.82 11.62 

The entropy of the 

distribution out-degrees 
1.01 0.61 0.00 0.92 1.27 1.52 2.02 

Avg. split cardinality  

(including binary splits) 
0.09 1.52 0.00 0.00 0.00 0.00 232.00 

Avg. split cardinality 

( excluding binary 

splits) 

1.52 0.93 0.00 2.00 2.00 2.00 94.67 
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Fig. 4 – Distribution of labels in the dataset. 

 

5 Model Training and Implementation 

To establish the model training and evaluation pipeline, we randomly divided 

the dataset into two subsets, with 80% of the data allocated for model training. In 

contrast, the remaining 20% was reserved for testing its performance. Given the 

high class imbalance, we apply instance weighting to penalize misclassifications 

of underrepresented instances more heavily. This ensures that the distribution of 

the optimal traversal algorithm (BFS or DFS) remains consistent across the 

training and test sets, which is important for reliable model evaluation. 

We selected XGBoost as the machine learning model for predicting the 

optimal traversal algorithm for each CFG. This choice was motivated by 

XGBoost’s strong performance on structured, tabular data, as well as its 

efficiency and ability to model complex, nonlinear feature interactions. Beyond 

predictive accuracy, XGBoost also offers valuable interpretability through 

feature importance metrics, enabling us to understand which graph features most 

significantly influence the model’s decisions. These characteristics make it 

particularly well-suited for our use case, where both performance and insight into 

the decision process are important. 

To identify the best hyperparameters for the XGBoost model, we performed 

a grid search combined with 5-fold cross-validation on the training dataset. The 

weighted F1 score was used as the evaluation metric, as it accounts for class 

imbalance and ensures balanced predictive performance across both classes. We 

performed a grid search over two key hyperparameters: maximum tree depth and 

ensemble size. We tested tree depths of 10, 20, and 30, along with ensemble sizes 

of 500, 1,000, 2,000, 3,000, and 5,000 trees. The configuration that achieved the 

highest cross-validated performance consisted of 2,000 trees, each of depth 20, 

striking a good balance between model expressiveness and the risk of overfitting. 



ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm … 

13 

This optimal setting was then used to train the final model on the full training 

dataset. 

To handle a class imbalance in the dataset, we employed instance weighting 

during the model training. Multiple models were trained using different 

weighting strategies to evaluate their effect on classification performance. In the 

first training configuration, instance weights were automatically adjusted based 

on the class distribution in the training data, ensuring proportional contribution 

from both the BFS majority class and the less frequent DFS class. In other 

configurations, we manually assigned higher weights to the underrepresented 

DFS class to further amplify its influence during training. This strategy enabled 

us to assess how different weighting schemes affect model sensitivity and 

performance, particularly in correctly predicting the less common traversal 

algorithm. 

6 Evaluation 

In this section, we evaluate and compare different ML models. To do so, we 

compute and report standard evaluation metrics, including accuracy, precision, 

recall, and F1 score. In addition, we present confusion matrices for each model 

to highlight the nature and frequency of misclassifications. Finally, we perform a 

detailed analysis of the handcrafted feature set, examining which features 

contribute most to the model's predictive accuracy and how they influence 

classification outcomes. 

6.1 Balanced instance weights 

To address the class imbalance between the BFS and DFS labels, we train 

the models using a balanced instance weighting strategy. Specifically, we 

calculate class weights based on the inverse class frequency, scaled by the total 

number of training samples and the number of classes. The formula used to 

compute the weight w for class c, denoted as wc, is given as: wc = N / (K * nc), 

where N represents the total number of training samples, K represents the number 

of classes, and nc represents the number of samples in class c. This approach 

ensures that classes with fewer samples receive higher weights, thereby 

penalizing their misclassifications more heavily during training. In our case, the 

BFS class, being more frequent, receives a weight of approximately 0.55, while 

the less frequent DFS class is assigned a significantly higher weight of around 

5.12. 

The large gap between class weights (0.55 for BFS vs. 5.12 for DFS) reflects 

the training dataset’s class imbalance. BFS, as the majority class, is down-

weighted, while the rarer DFS class is boosted to ensure balanced learning; in a 

balanced dataset, both weights would be approximately equal. This weighting 

ensures that the model places more emphasis on correctly learning patterns 
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associated with the underrepresented DFS class, improving overall classification 

balance and reducing bias toward the majority class. 

On the test set, which contains 44,350 instances, the XGBoost model 

achieves an overall accuracy of 78.25%. The model achieved 89.44% precision, 

78.25% recall, and an F1 score of 82.10%. These results indicate strong predictive 

performance, particularly for the majority class. However, the relatively lower 

recall value indicates that the model struggles more with correctly identifying 

DFS instances, reflecting the underlying class imbalance and the greater 

difficulty in learning patterns associated with the less frequent class. Nonetheless, 

the F1 score demonstrates a reasonable trade-off between precision and recall. 

A more detailed view of the model’s classification performance for each 

class is presented in Table 3. To offer a comprehensive assessment of the model’s 

effectiveness, we report both macro and weighted averages of the standard 

evaluation metrics. The macro average, which treats each class equally regardless 

of its frequency, yields a precision of 0.62, a recall of 0.75, and an F1 score of 

0.63. In contrast, the weighted average, which accounts for the class distribution 

in the dataset, reports a precision of 0.89, a recall of 0.78, and an F1 score of 0.82. 

These results highlight the model’s strong performance on the majority class 

(BFS) while also revealing room for improvement in detecting the less common 

DFS class. The gap between macro and weighted scores highlights the effect of 

class imbalance. 

The confusion matrix for the XGBoost model on the test set, presented in 

Fig. 5, provides insight into how the model performs across the two classes. 

Among the 40,016 instances labeled as BFS, 8,400 were incorrectly classified as 

DFS, resulting in a misclassification rate of 21.0% for the BFS class. For the DFS 

class, which comprises 4,334 instances, the model misclassified 1,244 as BFS, 

resulting in a higher misclassification rate of 28.7%. These results indicate that 

while the model is relatively accurate overall, it has more difficulty correctly 

identifying DFS instances, which is consistent with the class imbalance observed 

in the dataset. 

It is important to emphasize that the XGBoost model does not exhibit signs 

of overfitting to the training data. On the training set, the model achieves an 

accuracy of 79.28%, a precision of 90.63%, a recall of 79.28%, and an F1 score 

of 82.99%. These values are very close to the corresponding metrics on the test 

set, with only marginal improvements. This consistency between training and test 

performance indicates that the model generalizes well and maintains stable 

predictive behavior across unseen data, further confirming the robustness of the 

chosen feature set and model configuration. 

The presented results demonstrate that the model performs well overall, 

effectively capturing the majority of instances across both classes. While there is 

still room for improvement, particularly in reducing misclassifications within the 
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underrepresented DFS class, the model demonstrates strong generalization 

capabilities and effectively handles class imbalance. These findings suggest that 

the chosen features and training strategy are effective, though further refinements 

could enhance performance, particularly for the minority class. 

Table 3 

Per-class classification report on test set for the XGBoost  

ML model consisting of 2000 trees with maximal depth of 20. 

Class Precision Recall F1 Score No. of instances 

BFS 0.96 0.79 0.87 40,016 

DFS 0.27 0.71 0.39 4,334 

 

Fig. 5 – Confusion matrix on the test set for the XGBoost model with  

2,000 trees (max depth 20) trained using balanced class weights. 

 

6.2 Feature importance 

The XGBoost model not only offers strong predictive performance but also 

yields valuable insights into the effectiveness of the handcrafted features used to 

characterize CFG blocks. In Fig. 6, we present the most influential features, as 

determined by their gain, a metric that quantifies each feature’s contribution to 

reducing the model’s overall loss during training. Features with higher gain 

values have a more significant impact on guiding the model’s decision-making 

process. This analysis helps identify which structural aspects of the CFGs are 

most relevant for predicting the optimal traversal strategy, offering guidance for 

future feature engineering and model improvements. 

Among all the evaluated features, the number of nodes emerges as the most 

dominant, achieving a gain of 3.12, which far surpasses that of all other features. 

This indicates that the overall size of a CFG is the most influential factor in the 
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model’s prediction of the optimal traversal algorithm. The next most impactful 

features — average in-degree (0.24), number of non-binary splits (0.24), and the 

node-to-edge ratio (0.20) — exhibit substantially lower gains. This disparity 

suggests that size-related characteristics, particularly node count, play a central 

role in the model’s decision-making process. Nonetheless, a range of other 

features, including entropy measures and various degree-based metrics, provide 

moderate contributions. They enrich the model’s understanding by capturing 

more subtle aspects of graph structure. Overall, the distribution of gain values 

indicates that while the model relies heavily on coarse-grained structural 

properties, it also leverages more detailed topological and statistical descriptors 

to refine its predictions. 

 

Fig. 6 – Feature gains derived from the trained XGBoost ensemble. 
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6.3 Improving DFS misclassifications 

To enhance the model’s sensitivity to the underrepresented DFS class, we 

experimented with manually defined instance weights during training. This 

strategy aimed to reduce the misclassification rate for DFS by explicitly 

increasing its influence in the learning process. In one such configuration, we 

assigned a weight of 0.5 to BFS instances and 10.0 to DFS instances - effectively 

placing approximately 1.86 times more emphasis on DFS. As a result, the 

confusion matrix for this model, shown in Fig. 7, revealed an improved balance 

between the classes, with a misclassification rate of 24.88% for BFS and 26.40% 

for DFS. This represents a noticeable improvement in DFS classification 

compared to the baseline, suggesting that targeted weighting can help mitigate 

the effects of class imbalance and lead to more equitable performance across 

classes. 

 

Fig. 7 – Confusion matrix on the test set for the XGBoost model with 2,000 trees  

(max. depth of 20) trained using class weights BFS: 0.5 and DFS 10.0. 

 

As expected, emphasizing the underrepresented DFS class during training 

leads to a slight reduction in overall classification metrics, particularly those that 

treat all classes equally. However, the decrease is not substantial and reflects a 

trade-off aimed at achieving a better balance. The model trained with manually 

assigned weights favoring DFS instances achieves the following unweighted 

performance on the test set: an accuracy of 74.97%, a precision of 89.29%, a 

recall of 74.97%, and an F1 score of 79.73%. These results indicate that, while 

overall performance drops slightly, the model becomes more equitable across 

classes without significantly compromising predictive power. 

When comparing these results to those of the original model, it becomes clear 

that assigning higher weights to DFS instances results in a modest decrease in 
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overall accuracy and F1 score. However, precision remains nearly unchanged, 

indicating that the model maintains a high proportion of correct positive 

predictions. The trade-off between accuracy and recall highlights the effect of 

prioritizing the minority DFS class, resulting in a slight reduction in BFS 

misclassification. 

6.4 Simplified model 

To examine how model complexity affects performance, we trained smaller 

XGBoost models by reducing both the number of trees and the maximum depth 

of each tree. The most effective configuration in this simplified setup comprises 

100 trees, each with a maximum depth of 3 (the confusion matrix is shown in Fig. 

8). Despite its reduced complexity, this model achieved strong results on the test 

set: accuracy of 79.59%, precision of 89.47%, recall of 79.59%, and an F1 score 

of 83.05%. The misclassification rates were 19.35% for BFS and 30.11% for 

DFS. 

Interestingly, these metrics outperform those of the larger ensemble model, 

which has 2,000 trees and a depth of 20. However, this improvement is not 

uniform across classes. While the simpler model reduces the BFS 

misclassification rate by 1.65%, it increases the DFS misclassification rate by 

1.4%, highlighting the trade-off between model simplicity and balanced class 

performance. 

 

Fig. 8 – Confusion matrix on the test set for the XGBoost model with 100 trees 

(max. depth of 3) trained using balanced class weights. 

 

6.5 Discussion 

To the best of our knowledge, this specific problem has not been addressed 

in prior work. As a result, an appropriate baseline for comparison is a simple 



ML-Driven Prediction of Optimal Control Flow Graph Traversal Algorithm … 

19 

model that makes predictions by randomly selecting a class, either with uniform 

probability or with a biased distribution that reflects the dataset's imbalance (e.g., 

0.8 for BFS and 0.2 for DFS). Additionally, given the highly imbalanced nature 

of the dataset, it is also meaningful to compare our trained models to a trivial 

baseline that always predicts the majority class (BFS). These baselines help 

contextualize the performance of our approach and demonstrate that the XGBoost 

models offer significant improvements over naive or uninformed prediction 

strategies. 

Our models significantly outperformed this baseline. An XGBoost model 

with 2,000 trees and maximum depth 20 achieved misclassification rates of 21% 

for BFS and 28.7% for DFS. A model with 100 trees and maximum depth 3 

reached 19.35% for BFS and 30.11% for DFS. Another model with 2,000 trees, 

depth 20, and DFS-weighted training produced balanced misclassification rates 

of 24.88% for BFS and 26.40% for DFS, showing a clear improvement over 

random baselines. 

In a dataset where 80% of instances belong to the majority class and 20% to 

the minority class, a random classifier with uniform class selection achieves an 

overall accuracy of 50%. For the minority class, it yields 9% precision, 50% 

recall, and an F1 score of 15%. For the majority class, the precision is 91%, the 

recall is 50%, and the F1 score is 65%. The confusion matrix for this classifier 

indicates a 50% misclassification rate for both classes, underscoring its limited 

ability to make accurate predictions. 

A random classifier that selects the majority class 80% of the time and the 

minority class 20% of the time achieves a higher overall accuracy of 68%. For 

the minority class, both precision and recall drop to 20%, resulting in an F1 score 

of 20%. In contrast, the majority class sees 80% precision and recall, with an F1 

score of 80%. However, this approach misclassifies 80% of the minority 

instances, highlighting its ineffectiveness in handling class imbalance. These 

results illustrate the limitations of naive or probabilistic classifiers, particularly in 

imbalanced settings. 

A classifier that always predicts the majority class achieves 80% accuracy, 

but this is misleading. It completely fails in the minority class, with 0% precision, 

recall, and F1 score. For the majority class, all three metrics are 100%. The 

confusion matrix confirms 0% misclassification for the majority class and 100% 

for the minority class, illustrating the model’s inability to generalize beyond the 

dominant class. 

Our models substantially outperformed these baseline classifiers. The 

XGBoost model with 2,000 trees and a maximum depth of 20 achieved 

misclassification rates of 21.0% for BFS and 28.7% for DFS, demonstrating 

strong performance across both classes. A more compact model with 100 trees 

and a maximum depth of 3 performed comparably, with 19.35% misclassification 
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for BFS and 30.11% for DFS, highlighting the effectiveness of even low-

complexity models. Additionally, a variant trained with DFS-weighted instance 

balancing (2,000 trees, depth 20) achieved more balanced misclassification rates 

of 24.88% for BFS and 26.40% for DFS. These results clearly demonstrate that 

all trained XGBoost models substantially outperform random or trivial baselines, 

especially in handling class imbalance, and offer meaningful accuracy 

improvements for both the majority and minority classes. 

6.6 General applicability and end-to-end performance considerations 

Although our models are optimized for programs targeting JVM languages 

such as Java or Scala, our approach is reusable and can be incorporated into other 

ecosystems, such as .NET or LLVM. .NET ecosystem provides support for 

similar capabilities as GraalVM, but targeting the set of languages operating on 

the Common Language Runtime and thus using Common Intermediary Language 

(CIL) instead of Java bytecode. Our feature-extraction and dataset creation 

pipeline can be injected as part of .NET NativeAOT compilation tool to extract 

features of method IR graphs. Similarly, LLVM is primarily oriented toward 

C/C++-like languages and utilizes a three-address based intermediate 

representation, from which pertinent features may be extracted. The proposed 

methodology may be integrated within the Clang compilation framework as a 

natural extension of its functionality. 

End-to-end compilation time savings depend not only on the model’s 

accuracy, but also on the time it takes for the ML model to make predictions 

(inference time). In addition, the estimation of the achievable time savings is 

further influenced by the size and shape of the project being compiled. Future 

research efforts should focus on refining the ML model in order to realize 

meaningful end-to-end compilation time savings. Such refinement may be 

pursued through the incorporation of novel and discriminative features, as well 

as through improvements in the quality, diversity, and representativeness of the 

underlying dataset. 

7 Conclusions and Future Work 

In this study, we investigated a set of control flow graph features to 

characterize graph structure and used them to train an ensemble-based XGBoost 

machine learning model capable of predicting the optimal traversal algorithm 

(BFS or DFS) for each graph. Through feature-importance analysis, we found 

that the number of nodes, average in-degree, and number of binary splits were 

among the most informative features for guiding traversal decisions. Importantly, 

these and most other high-impact features can be computed efficiently during the 

CFG construction phase without requiring an additional traversal. This makes the 

approach especially practical for use cases involving static or frequently reused 

graphs, such as those found in library code. The trained model achieves strong 
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overall predictive performance, with balanced coverage of both classes. Although 

occasional misclassifications occur in the minority class, the model successfully 

mitigates the effects of class imbalance and demonstrates good generalization to 

unseen data. 

In addition to using the XGBoost model for prediction, we leveraged it to 

rank the importance of our manually engineered input features. While 

handcrafted features offer interpretability and efficiency, an alternative direction 

involves automatically generating feature representations for each CFG block. 

Prior work in static profiling has explored the use of map-based features to 

describe CFG blocks [38, 39], offering a more flexible and potentially richer 

characterization. Building on this idea, we see an opportunity to extend our 

approach by incorporating automated feature extraction techniques. This could 

enable the application of more expressive machine learning models, such as deep 

neural networks or graph neural networks (GNNs), which are better suited for 

learning from complex graph structures. We plan to explore this direction in 

future work to improve prediction accuracy and model scalability further. 

GNNs are particularly well-suited for modeling the structure of control flow 

graphs, as they operate directly on graph-structured data and can perform tasks 

such as graph-level binary classification. This makes GNNs a promising 

alternative to the XGBoost-based model explored in this work. However, unlike 

tree-based models that rely on global graph features, GNNs require input features 

at the node level, where each node represents a basic block in the CFG. These 

node features can be derived from a subset of the informative features identified 

by XGBoost or from more flexible, map-based descriptors. Designing GNN 

architectures that are both expressive and computationally efficient is critical, 

given that GNNs typically incur higher inference times. Additionally, to fully 

leverage the potential of GNNs and improve their generalization, building a larger 

and more diverse dataset tailored for GNN training and evaluation will be an 

important step in the future. 

In future work, we will focus on fine-tuning the traversals by modifying the 

data structures used in the algorithms and by combining different traversal 

strategies. Additionally, we will investigate how the results extend to traversal 

methods beyond BFS and DFS. We aim to explore the benefits of integrating the 

best-performing models into the Oracle GraalVM Native Image compiler. 
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