
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING 
Vol. 9, No. 2, June 2012, 131-169 

131 

Dynamic Model Reduction: 
An Overview of Available Techniques 

with Application to Power Systems 

Savo D. Đukić1, Andrija T. Sarić2 

Abstract: This paper summarises the model reduction techniques used for the 
reduction of large-scale linear and nonlinear dynamic models, described by the 
differential and algebraic equations that are commonly used in control theory. 
The groups of methods discussed in this paper for reduction of the linear 
dynamic model are based on singular perturbation analysis, modal analysis, 
singular value decomposition, moment matching and methods based on a 
combination of singular value decomposition and moment matching. Among the 
nonlinear dynamic model reduction methods, proper orthogonal decomposition, 
the trajectory piecewise linear method, balancing-based methods, reduction by 
optimising system matrices and projection from a linearised model, are 
described. Part of the paper is devoted to the techniques commonly used for 
reduction (equivalencing) of large-scale power systems, which are based on 
coherency, synchrony, singular perturbation analysis, modal analysis and 
identification. Two (most interesting) of the described techniques are applied to 
the reduction of the commonly used New England 10-generator, 39-bus test 
power system. 

Keywords: Dynamic system, Model reduction, Equivalencing, Control theory, 
Power system. 

1 Introduction 
In many engineering situations and application, the model of the dynamic 

system under study can be rather complex. High order and complicated 
mathematical models accurately represent the problem at hand, but are 
unsuitable for the desired application; for instance, for analysis, optimization or 
control design. Due to limited computational, accuracy and storage capabilities, 
simplified models that capture the main features of the original dynamic 
systems have evolved [1, Preface]. 

In large-scale settings, the system dimension makes the computation 
infeasible due to memory and time limitations as well as the ill-conditioning. 
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One approach to overcoming this problem is through model reduction [2]. It 
must be stressed that achieving faster simulation and optimization times is not 
the only goal for applying the model reduction. It is just as important to gain 
insight into the true cause of the observable dynamics of a system [3]. 
Sometimes, it is most important to get the model with the lowest number of 
variables [4]. 

For example, world-wide power systems increase in size and complexity 
year-by-year due to the rapid growth of widespread interconnections and much 
higher penetration of distributed resources. Today, the interconnected power 
systems cover large geographical areas and comprise thousands of devices, so 
the dimension of the models may easily reach the order of several thousands of 
state variables or more. For such large-scale power and other systems and their 
full detailed models, it is neither practical nor necessary to perform dynamic 
studies, such as the electromagnetic transient analysis, on-line dynamic security 
assessment, off-line stability studies, trajectory sensitivity analysis, design of 
different controls etc. [5, 6]. 

When approximating the system, one must be aware of the characteristics 
and properties that should be preserved in the reduced model. In certain 
applications one is interested in the behaviour of an autonomous dynamic 
system, that is one with no external inputs driving the system. However, in the 
case of controlled systems, one is concerned with modelling the relationship 
between the system behaviour and the system inputs and outputs, or actuators 
and sensors [7]. 

Model reduction involves a trade-off between model order and the degree 
to which the characteristics of the system are reflected by the model. Because 
the relative importance of various system characteristics is highly dependent 
upon the application, there can be no universal model reduction algorithm. The 
best one can hope for is a good set of tools and some reliable guidelines for 
using them [8]. When performing the model reduction for any system, it is 
important to keep in mind the limitations of the reduced model. Strictly 
speaking, the reduced model is valid only over the range of conditions used to 
generate it [4]. 

The problem of model reduction is to replace a given mathematical model 
of a system or process by a model that is much smaller than the original ones, 
yet still describes (at least approximately) certain aspects of the system or 
process (in control theory that is input-output behaviour of the system). If the 
approximation error is within a given tolerance, only the smaller system’s 
model needs to be simulated, which will in general take much less time and 
computer memory than the original large-scale system would do [9, Part I, 
Paper 6].  

Model reduction involves a number of interesting issues [10, Part I, Paper 8]: 
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• First and foremost is the issue of selecting the appropriate approximation 
schemes that allow the definition of suitable reduced-order models. It is 
important that an appropriate dimension of the reduced model is found and 
that the states that should be retained are identified.  

• In addition, it is often important that the reduced-order model preserves 
certain crucial properties of the original system.  

• Other issues include the characterization of the quality of the models, the 
extraction of the data from the original model that is needed to actually 
generate the reduced-order models, and the efficient and numerically stable 
computation of the models. 

The model reduction problem can also be defined as follows [1, Chapter 1, 
2]: given the dynamic system, find a reduced order model such that the 
following properties are satisfied: (1) the approximation error is small, and 
there exists a global error bound; (2) system properties (like stability or 
passivity) are preserved; (3) the procedure is computationally stable and 
efficient. Model reduction resolves redundancies and replaces less relevant 
quantities by the most significant ones. Solving lower dimensional problems 
one can get the statements on the system’s performance more quickly [9, 
Preface]. The reduced model might be used to replace the original system as a 
component in a large simulation, or it might be used to develop a low 
dimensional controller suitable for real-time applications [2]. In model 
reduction process we must to be careful, because if we are reducing them too 
much one cannot trust the results anymore. 

There are some interesting issues concerning the model reduction. It would 
be of interest to be able to predict the error on reducing a system, i.e., how 
“small” can the approximate model be and yet accurately represent the process? 
One reliable method is a straightforward comparison of the time responses of 
the reduced system with the original system [11]. An important question also is 
how to assess the accuracy of methods, or how can we guarantee that the 
reduced model is a sufficiently accurate approximation of the original model [9, 
Part I, Paper 1]? Next question in model reduction is the choice of the order of 
the approximation, since it affects the quality of the approximation. Sometimes 
it is possible to choose the order during the construction of the reduced order 
model, and sometimes quality measures (like the Hankel singular values 
(HSVs)) can be evaluated in advance [10, Part I, Paper 5]. 

Much work has been done on obtaining the low-order models for large-
scale systems, and many methods have been proposed, particularly in the areas 
of electrical and mechanical engineering, control design and computational fluid 
dynamics. Industry applied systems usualy are nonlinear and therefore methods 
addressing nonlinear system approximation should be primarily considered. 
However, all physical systems are locally linear; in applications typically one 
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linearizes around an operating point of interest. Also, linear theory is reach and 
extensive and offers a coherent picture. There are attempts in developing a 
nonlinear approximation theory, but they remain mostly ad hoc [1, Chapter 1]. 

Some methods retain the important eigenvalues or states of the system, but 
some of them determine the reduced model in such a manner that it is, in some 
sense, an optimum approximation of the original system, without the constraints 
of matching eigenvalues or states [12 and references therein]. Some methods 
reduce the model utilising a subset of the original state variables, but some of 
them use a modified set of state variables, where the new system states lose 
their original interpretation. In computer simulation studies of physical systems, 
the need to retain the physical interpretation of the states is usually pre-eminent 
[13]. The loss of the physical significance of the states also leads to some 
difficulties when the original model is a part of a larger system. Such a situation 
occurs quite frequently in modelling the large-scale power systems [12]. Some 
methods are suitable for reduction of stable, others for reduction of unstable 
systems. Methods for effective reduction of very high-order systems are also 
developed. Much progress in this area has been made in the field of fluid 
dynamics [4 and references therein]. 

Sometimes, the different disciplines have a preferred model reduction 
technique, as modal analysis (MA) and Guyan reduction in structural dynamics, 
proper orthogonal decomposition (POD) in computational fluid dynamics, Padé 
and Padé-like approximation techniques based on Krylov methods (KMs) in 
circuit simulation and microsystem technology, etc. [10, Part I, Paper 1]. Model 
reduction is a flourishing field of research, both within systems and control and 
in numerical mathematics. Future developments need mathematical methods 
from a wide variety of fields. 

This paper focuses on methods used in control theory, that can be applied 
to reduce the large-scale power system dynamic models. Two of these methods 
are applied to the dynamic models of New England 10-generator, 39-bus power 
system, to illustrate the way these methods could be applied to power system 
models. 

The paper is organized as follows: problem that is elaborated in paper is 
formulated in Section 2. Sections 3 and 4 give an overview of model reduction 
techniques commonly used in control theory, for linear and nonlinear models, 
respectively. In Section 5, techniques used to reduce large-scale power system 
models are presented. Well-known the New England 10-generator, 39-bus 
power system is used in Section 6 to illustrate two of the described techniques. 
The last Section 7 is devoted to concluding remarks and future work. 
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2 Problem Formulation 
Model of power system is a simplified representation of the power system 

suitable for being expressed in terms of mathematical equations and translated 
into computer programing code [14, Chapter 1]. The individual models of the 
generators, automatic voltage regulators (AVRs), turbine–governor systems, 
dynamic loads, etc., are given by the differential and algebraic equations, where 
the transmission and/or distribution networks are modelled by the algebraic 
equations. These equations together form a complete mathematical model of the 
system [15, Chapter 13]. 

A power system can be generally described by the following set of 
differential and algebraic equations, respectively [14, Chapter 1]: 
 ( , , , , )t=x f x y uη ;   ( , , , , )t= g x y u0 η , (1) 

where:  
x  − vector of state variables;  
y  − vector of algebraic variables; 
η  − vector of discrete variables; 
u  − vector of contrallable (input) variables;  
t  − time; 
f, g − set of differential and algebraic equations, respectively. 
The most convenient power system model for transient stability analysis is 

a set of differential algebraic equations (DAEs) [14, Chapter 8]: 
 ( , , )t=x f x y ,   ( , , )t= g x y0 ,   0 0( )t =x x ,   0 0( )t =y y . (2) 

Small signal stability analysis studies use the properties of equilibria, or 
stationary points (x0, y0) that satisfies [14, Chapter 7]: 
 0 0( , )= f x y0 ;   0 0( , )= g x y0 , (3) 

through an eigenvalue analysis of the state matrix (AS) of the system. This 
matrix is obtained by manipulating the complete Jacobian matrix (AC), that is 
defined by the linearization of the DAEs at the equilibrium point [14, Chapter 7]: 

 
Δ Δ Δ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x y
C

x y

f fx x x
A

g g y y0
. (4) 

The state matrix (AS) is obtained by eliminating the algebraic variables (it is 
implicitly assumed that gy is not singular) and, thus, one obtain [14, Chapter 7]: 
 1−= −S x y y xA f f g g ; (5) 

 Δ = ΔSx A x . (6) 
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Model reduction consists of replacing the original system (given by (1), (2), 
(4) or (6)) with one of a much smaller dimension according to the following 
guidelines [5]:  

(1) The reduced system must be an accurate representation of the original 
one for the analysis performed.  

(2) The cost of generating the reduced model must be much smaller than the 
cost of performing the analysis using the original model. 

3 Dynamic Model Reduction of Linear Systems 
In this section, techniques for the reduction of linear models, commonly 

used in control theory, are considered. Most model reduction methods focus on 
linear time-invariant (LTI) continuous-time and discrete-time systems. LTI 
continuous-time systems (time-invariant means that matrices A, B, C and D in 
(7) are time independent) are described by the following equations [10, Part I, 
Paper 1]: 
 ( ) ( ) ( )t t t= +x Ax Bu ,   ( ) ( ) ( )t t t= +y Cx Du ,   0 0( )t =x x , (7) 

where: 
x(t) − vector of state variables;  
u(t) − vector of inputs;  
y(t) − vector of outputs;  
x0 − initial values of vector of state variables;  
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m;  
n, m, p − order of the system, number of input and output variables, 

respectively.  
The associated transfer function matrix (the Laplace transform of the 

impulse response) obtained from Laplace transforms in (7) and assuming x0 = 0 
is [10, Part I, Paper 1]: 

 ( ) 1( )s s −= − +G C I A B D . (8) 

The task of model reduction is to find a reduced-order LTI system 
(described by equations (7)) of order r (r ≤ n) and associated transfer function 
matrix ˆ ( )sG  which approximates ( )sG . 

Set of DAEs given by (7) is called a standard state-space system. A 
descriptor system or generalized state space system has the form [10, Part I, 
Paper 3]: 
 ( ) ( ) ( )t t t= +Ex Ax Bu ,   ( ) ( ) ( )t t t= +y Cx Du ,   0 0( )t =x x . (9) 
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Most methods of model reduction focus on linear systems, which, in many 
cases, provide accurate descriptions of the physical systems. 

Depending on the properties of the original system that are retained in the 
reduced model, there are different model reduction methodologies. Hence, there 
are techniques based on:  

• Singular Perturbations Analysis (SPA). 
• Modal Analysis (MA), such as Modal Truncation (MT).  
• Singular Value Decomposition (SVD), such as balanced truncation 

(BT), Hankel norm approximation, etc.  
• Moment Matching (MM), known as Krylov Methods (KMs), such as 

Lanczos method, Arnoldi method, etc. 
• Combination of SVD and MM, known as SVD-Krylov Methods, such as 

ADI-type and Smith-type methods. 

Many of the model reduction methods can be classified as projection 
based, such as MT, BT, MM methods, etc. These methods construct a reduced 
order model via the Petrov–Galerkin (Galerkin) projection using two (one) 
projection matrices whose columns form bases for relevant subspaces of the 
state-space. Projection methods differ in the way the projection matrices are 
chosen. These also determine which properties are preserved after reduction [9, 
Part II, Paper 12]. 

3.1 Singular Perturbations Analysis (SPA) 
The interaction of fast and slow phenomena in dynamic systems results in 

’stiff’ numerical problems which require expensive integration routines. One of 
the most famous methods which alleviates both dimensionality and stiffness 
difficulties and is applicable for both linear and nonlinear systems is singular 
perturbation [16, 17]. This method is based on the assumption that the system 
equations can be separated into two parts, so-called fast and slow modes. This 
method decreases the order of the model, first by ignoring the fast modes of the 
system, then it improves the quality of the approximation by reintroducing their 
effect as ’boundary layer’ corrections calculated in separate time scales. In this 
method, the concept of dominant subspace is bypassed by assuming that in 
modelling of some dynamic systems, there are some fast and slow modes and 
instead of just trimming the nondominant part, its steady state effect is taken 
into account [18]. Some issues, like initial value problems, boundary value 
problems and stability of reduced model are discussed in [16]. 

3.2 Modal Analysis (MA) 
Model reduction methods based on MA identify and preserve certain 

modes of interest. MT is probably one of the oldest model reduction techniques 
[11, 19]. The basic idea of MT is to project the dynamics of the LTI system onto 
an A-invariant subspace corresponding to the dominant modes of the system 
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(poles of G(s), eigenvalues of A). An obvious, though certainly not always 
optimal, choice of dominant modes is to select those eigenvalues of A having 
the nonnegative, or small negative real parts. Basically, these eigenvalues 
dominate the long-term dynamics of the solution (solution components 
corresponding to large negative real parts decay rapidly and mostly play a less 
important role). Such a view may not be the best as it neither takes into account 
the transient behaviour of the dynamic system nor the oscillations caused by 
large imaginary parts or the sensitivity of the eigenvalues with respect to small 
perturbations. An advantage of MT is that the poles of the reduced-order system 
are also poles of the original system [10, Part I, Paper 1]. 

In [11] is proposed a method for reducing linear systems by constructing a 
system of lower order which has the same dominant eigenvalues and 
eigenvectors as the original system. The principle of the method is to neglect 
eigenvalues of the original system which are farthest from the origin and retain 
only dominant eigenvalues and hence dominant time constants of the original 
system in the reduced model. The relevant variables with respect to that 
principle are kept and the remaining variables are expressed in terms of those 
variables. In [20] author is interested in determining which modes to retain in a 
reduced-order model for essential states. In [21] modes are used to determine 
the order of an accurate reduced model and the states which should be retained. 
In [13] a method of essential-state selection is proposed. First the dominant 
modes are identified, and then these are used to identify the essential states in 
which these modes make a significant contribution. 

3.3 Singular Value Decomposition (SVD) based methods 
Moore in [8] introduced balancing (balanced realization) with the aim of 

using it as a tool for model reduction. The main idea is that the singular values 
of the controllability Gramian correspond to the amount of energy that has to be 
put into the system in order to move the corresponding states. For the 
observability Gramian, its singular values refer to the energy that is generated 
by the corresponding states. If a linear system is in the balanced form, the HSVs 
provide a measure for the importance of the states, because the state with the 
largest singular value is the one which is the most affected by control moves 
and the output is the most affected by a change of this state. Therefore, the 
states corresponding to the largest singular values the most influence to the 
input–output behaviour [3]. Truncation of the states corresponding to the 
smaller singular values will result in a model whose input-output behaviour 
closely approximates the behaviour of the original model. As the model is 
reduced further, the larger deviations are expected between the behaviour of the 
original model and the reduced one for a given input [22]. 

Balanced Truncation (BT) is probably the most popular projection and 
SVD-based method. This is mainly due to its simplicity: the construction is 



Dynamic Model Reduction: An Overview of Available Techniques with Application... 

139 

based on simple linear algebra decompositions and there is no need to first 
choose a set of essential parameters [10, Part I, Paper 5]. To apply balanced 
reduction, first the system is transformed to a basis where the states which are 
difficult to reach are simultaneously difficult to observe. This is achieved by 
simultaneously diagonalizing the reachability (controllability) and the 
observability Gramians, which are solutions to the reachability (controllability) 
and the observability Lyapunov equations. Positive decreasing diagonal entries 
of diagonal Gramians are called the HSVs of the system. The reduced model is 
obtained by truncating the states corresponding to the (n − r) smallest HSVs. 
The result is a system which contains fewer states than the original system. The 
number of states that can be truncated depends on the system itself and on the 
accuracy that is required for the system behaviour [3].  

One property of BT, is that the approximation of the dynamic system is 
explicitly based on its input-output properties [9, Part II, Paper 14]. BT 
preserves several system properties, like stability and passivity and provides a 
bound on the approximation error [10, Part I, Paper 1]. The existence of a priory 
error bounds allows an adaptive choice of the state space dimension of the 
reduced model depending on how accurate the approximation is needed [10, 
Part I, Paper 3]. The existence of computable error bounds essentially 
distinguishes the BT technique from other model reduction approaches [9, Part 
I, Paper 3]. BT results in a good approximation to the original system over the 
whole frequency range. The disadvantage of this approach is that it does not 
preserve the steady state behaviour of the original system. If it is important to 
maintain the steady state behaviour of the original system, residualization can 
provide better results than truncation. Residualization is based on the idea that 
the derivatives of the states corresponding to small HSVs can be approximated 
to zero, while the rest of the system is retained [3]. 

Model reduction by BT requires balancing the whole system, followed by 
truncation. This approach may turn out to be numerically inefficient and ill-
conditioned, especially for large-scale problems. The reason is that often 
Gramians have numerically low rank (compared to n). In many cases this is due 
to the rapid decay of the HSVs. Therefore, it is important to avoid formulaes 
involving the matrix inverses. In [1, Chapter 7] several algorithms for balancing 
and BT are given. Although in theory these methods are similar, in practice the 
algorithms have quite different numerical properties. Also, in a series of papers 
[23 – 26] the underlying numerical algorithms for BT have been presented. The 
extension of BT model reduction to descriptor systems has been considered in 
[27 – 29]. 

Besides the basic (Lyapunov) balancing method, other types of balancing 
exist such as: stochastic balancing, bounded real balancing, positive real 
balancing, linear quadratic Gaussian (LQG) balancing, frequency weighted 
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balancing, etc. The stochastic balancing method was first proposed in [30] for 
balancing stochastic systems and later generalized in [31]. The relative error 
bound for stochastic balancing is discussed in [31]. Unlike the Lyapunov 
balancing method, the stochastic balancing algorithm requires solving one 
Lyapunov and one Riccati equation. A closely related to the balancing method 
is positive real balancing [30], which is applied for model reduction of positive 
real (passive) systems as an important subclass of dynamic systems. The 
positive real balancing method can be viewed as the stochastic balancing 
method applied to the spectral factor of the given passive system and requires 
solving two positive real Riccati equations. Another method which also requires 
solving two Riccati equations is bounded real balancing which is applied to the 
bounded real systems. This method, together with the absolute error bound, was 
first introduced in [32]. LQG balancing, also referred as the closed-loop 
balancing first introduced in [33], is mainly used for reduced-order controller 
design. Several ways of frequency weighted balancing have been introduced in 
the literature. Most of these methods need input and output weights [34 – 38], 
which are usually not explicitly specified, and try to find a reduced-order model 
which minimizes the weighted error. However, often the original problem is to 
approximate the transfer function over a frequency interval [ω1, ω2] and no 
input or output weights are provided. In [39] type of weighted balanced 
reduction where for a given frequency band [ω1, ω2], the construction of the 
weights are avoided, simply by using the frequency domain representation of 
the Gramians. Although the method works quite efficiently in practice, stability 
is not guaranteed and no error bound exists. Similarly to the band-limited 
frequency weighted balancing method, a time-limited balancing method where 
the Gramians are computed over a finite time interval [t1, t2], is also introduced 
in [39]. 

In [1, Chapter 7] balancing of unstable systems is discussed. BT method is 
able to handle the reduction of unstable systems either via modal decomposition 
or coprime factorization techniques [10, Part I, Paper 9 and references therein]. 
In [10, Part I, Paper 3] a survey on BT model order reduction for linear time-
invariant continuous-time descriptor systems is presented. In [40] the BT 
approach to model reduction is considered for linear discrete-time periodic 
systems with time-varying dimensions. 

A model reduction technique closely related to BT and HSVs is Hankel 
norm approximation, which is based on a remarkable result of three Russian 
mathematicians (Arov, Adamjan and Krein) [1, Foreword]. When applied to the 
stable dynamic systems, this approach guaranteed to preserve stability and 
provides bounds on the approximation error [41]. 
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3.4 Krylov Methods (KMs) (or Moment Maching (MM) methods) 
The starting point for model reduction in the electronics industry is usually 

attributed to a method termed Asymptotic Waveform Evaluation (AWE) [42]. 
The underlying idea of this method is simple, approximating the moments of the 
transfer function of the system. The idea being that moments will decay, so that 
calculating a sufficient, but finite, number of moments will eventually lead to an 
accurate approximation of the transfer function. Soon after its publication, it 
was realized that the method suffers from numerical problems. In order to 
overcome these numerical difficulties associated with AWE, use of KMs is 
proposed in [43]. The method was termed Padé-via-Lanczos (PVL), and shown 
to match the moments of the transfer function. It demonstrated that KMs, 
developed mainly in the area of numerical linear algebra, can also be used to 
perform model order reduction [9, Part I, Paper 1]. 

The property of MM methods is the leading coefficients of a power series 
expansion of the transfer function of the reduced system around a user-defined 
point that have to match those of the original system transfer function. While 
SVD-based methods are shown to yield excellent global approximation in the 
frequency domain, MM techniques have good performance in a limited range of 
frequencies. Nevertheless, MM methods present less computational effort and 
less storage requirements, requiring little empirical parameter adjusting [5]. 

In [1, Chapter 11] a set of KMs is introduced. KMs can be iteratively 
implemented. The iterative process is usually stopped when the difference 
between subsequent iterations is below a certain threshold [9, Part I, Paper 1]. 
These schemes were originally developed for computing eigenvalues and 
eigenvectors, but can be applied to model reduction via moment matching 
(MM). Typically, these methods require only of the order of n2 operations and 
MM is achieved without computation of moments. KMs are attractive for large-
scale sparse systems, since only matrix-vector multiplications are required, and 
they can easily be generalized for descriptor systems [10, Part I, Paper 3]. Their 
disadvantage, however, is that they lack global error bounds, depend 
significantly on the choice of certain parameters, the resulting reduced models 
have only locally good approximation properties and they have difficulties 
when special system properties, such as stability or passivity, are to be 
preserved by the reduced model (usually post-processing is needed to realize 
these properties [9, Part I, Paper 3]). Broader list of properties of KMs is given 
in [1, Chapter 11]. 

In [44] KMs are discussed and three algorithms are proposed: 1) dual 
rational Arnoldi, 2) rational Lanczos and 3) rational power KM. Techniques for 
choosing the matching frequencies, estimating the modeling error, insuring the 
model’s stability, treating multiple input and multiple output systems, 
implementing parallelism etc. are examined to various degrees. 
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3.5 Singular Value Decomposition-Krylov methods (SVD-KMs) 
Both SVD-based methods and KMs have their own set of advantages and 

disadvantages, as mentioned earlier. To be applied to large-scale problems SVD 
approximation methods need to be combined with iterative methods which can 
be implemented by means of vector-matrix multiplications exclusively. This 
leads to KMs. Methods that combine the best attributes of both SVD-based 
methods and KMs are called SVD-KMs [1, Chapter 12]. 

For small-to-medium scale problems, the BT can be implemented 
efficiently using the Bartels-Stewart [45] method, as modified by Hammarling 
[46], to solve the two Lyapunov equations. However, the method results in 
O(n3) arithmetic operations and O(n2) storage. For large-scale sparse problems, 
iterative methods are preferred, since they retain the sparsity of the problem and 
are much more suitable for parallelization. The Smith method [47], the 
alternating direction implicit (ADI) iteration method [48], and the Smith(l) 
method [49] are the most popular iterative schemes developed for large sparse 
Lyapunov equations. Unfortunately, even though the number of arithmetic 
operations is reduced, all of these methods compute the solution in dense form 
and hence require O(n2) storage [10, Part I, Paper 2]. 

It is well-known that the Gramians often have low numerical rank (i.e. the 
eigenvalues of Gramians decay rapidly). One must take advantage of this low-
rank structure to obtain approximate solutions in low-rank factored form. Most 
low-rank methods, such as [50 – 53], are KMs based. As stated in [49], even 
though these methods reduce the memory requirement, they usually fail to yield 
approximate solutions of high accuracy. To reach accurate approximate 
solutions, one usually needs a large number of iterations, and therefore obtain 
approximations with relatively high numerical ranks; see [49]. For large-scale 
sparse Lyapunov equations, a more efficient low-rank scheme based on the ADI 
iteration was introduced, independently in [49] and [54]. The method was called 
the low-rank ADI iteration (LR-ADI) in [49] and the Cholesky factor ADI 
iteration (CF-ADI) in [54]. Even though LR-ADI and CF-ADI are theoretically 
the same, CF-ADI is less expensive and more efficient to implement. Indeed, 
LR-ADI can be considered as an intermediate step in deriving the CF-ADI 
algorithm. Another low-rank scheme based on the ADI iteration was also 
introduced in [49]. The method is called the cyclic low-rank Smith (LR-
Smith(l)) method and is a special case of LR-ADI, where l number of shifts are 
re-used in a cyclic manner. While solving the Lyapunov equation, where B has 
m columns, the LR-ADI and the LR-Smith(l) methods add m and (m × l) 
columns respectively to the current solution at each step. Therefore, for slowly 
converging iterations and for the case where m is too big, e.g. m = 10, the 
number of columns of the approximate low-rank Cholesky factor can exceed 
manageable memory capacity. To overcome this, a Modified LR-Smith(l) 
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method that prevents the number of columns from increasing arbitrarily at each 
step is introduced in [55]. In fact, the method only requires the number of 
columns r which are needed to meet the pre-specified BT tolerance. Due to the 
rapid decay of the HSVs, this r is usually quite small relative to n. 
Consequently, the memory requirements are drastically reduced. Because these 
low-rank methods produce the Cholesky factor of the solution to the Lyapunov 
equation, they are especially well-suited to be used in conjunction with 
approximate BT to reduce large-scale linear systems [10, Part I, Paper 2]. 

Ref. [10, Part I, Paper 2] surveys Smith-type and ADI-type methods used 
for solving large-scale sparse Lyapunov equations and consequently for BT of 
the underlying large sparse dynamic system. These allow the computation of the 
factors at a computational cost and a memory requirement proportional to the 
number of nonzeros in matrix A. Thus, implementations of BT based on these 
ideas are in the same complexity class as Padé-approximation and POD [10, 
Part I, Paper 1]. Connections between different Smith-type and ADI-type 
methods, convergence results, and upper bounds for the approximation errors 
are discussed in [10, Part I, Paper 2]. 

In [41] a comparative study of seven algorithms for model reduction is 
presented: BT, approximate BT, SPA-based method, Hankel norm approxi-
mation, Arnoldi procedure, Lanczos procedure and Rational KM. 

3.6 Other methods 
In [12] a criterion is proposed for selecting the most important states of a 

large-scale linear system to be retained in a reduced model. The effective 
participation of each state is estimated by evaluating its contribution to the total 
impulse response energy at the output of the system and a procedure for 
obtaining the reduced model, based on this criterion, is described. The states of 
the reduced model retain their physical meaning. The method may be regarded 
as the combination of SPA and aggregation [56]. 

In [4] a method that combines POD (see Subsection 4.1) and concepts from 
balanced realization theory, for performing a reduction of a large-scale linear 
system is presented. The method is particularly effective when a small number 
of outputs is of interest. 

In [57] both particle swarm and genetic algorithm optimization are 
employed for finding reduced models of single-input-single-output (SISO) 
large-scale linear systems. For the given criteria, parameters of the transfer 
function approximation are optimized. Both the techniques guarantee stability 
of reduced order model if the original model is stable. It was shown that the 
steady state responses of both the proposed reduced order models were exactly 
matching with that of the original model, and that the transient responses of 
evolutionary reduced models were very close to that of original model. 
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4 Dynamic Model Reduction of Nonlinear Systems 
A nonlinear dynamic system with its control can be generally described by 

the following set of DAEs [15, Chapter 1]: 
 ( )( ), ( )t t=x f x u ,   ( )( ), ( )t t=y g x u ;   0 0( )t =x x , (10) 

where: 
x(t) − vector of system state variables;  
u(t) − vector of control signals which affect the system to achieve a desired 

behaviour (input vector);  
y(t) − vector of output signals which serve to assess whether the control 

achieved the desired goal (output vector);  
x0 − initial value;  
f, g − sets of differential and algebraic equations, respectively, which 

describe the relationship between input, state and output variables, respectively.  
Goal is to replace the original model (10) with one less complex, such that 

the input-output behaviour of the system is sufficiently well approximated. 
Methods and supporting theories for the reduction of linear models are well 

established in the past. For nonlinear systems no complete theory for model 
reduction currently exists [3]. Since the days of 19th century mathematician 
Henri Poincaré, we have known that it is impossible to find general analytical 
solutions to nonlinear systems. Furthermore, the development of nonlinear 
dynamics has proven that such systems, even when they have very few state 
variables, can produce highly complex and intricate behaviour that would be 
impossible to anticipate, let alone analyse, directly from their structure. Thus, in 
the absence of a “grand unified theory” of dynamic systems, we shall always 
have to rely on simulation to discover the dynamics implied by the structure 
[58]. 

When transferring approaches from model reduction of linear systems, 
especially projection based methods, fundamental differences emerge (for 
details see [9, Part II, Paper 17]). With respect to computation time no reduction 
will be obtained unless additional measures are taken or other strategies are 
pursued [9, Part II, Paper 17]. One might be sceptical that a method derived 
from linear systems theory may have any use for the nonlinear models found in 
system dynamics [58]. 

Despite considerable progress in model reduction techniques over the last 
few decades, robust general procedures for nonlinear model reduction have not 
become available yet. It cannot be expected that truly very large scale nonlinear 
systems will easily be reduced unless the system have a specific simplifying 
structure [9, Part II, Paper 18]. Larger nonlinear systems can only be tackled by 
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using specific information about the underlying nonlinear system. It is to be 
expected that successfully generated reduced order models must also make use 
of huge numbers (millions) of measured or simulated results [9, Part I, Paper 1]. 
 There has been a surge of interest in reduced-order modelling of nonlinear 
systems, but still there exist only a few group of methods that have turned out to be 
useful in practical applications, like: 

• Proper Orthogonal Decomposition (POD) (Karhunen–Loève decompo-
sition). 

• Trajectory Piecewise Linear (TPWL) method. 
• Balancing-based methods. 
• Reduction by optimizing system matrices. 
• Projection from a linearized model. 
One of the most popular methods for reducing nonlinear systems is POD. It 

generates matrix of snapshots (in time), then calculates the correlation matrix 
and its singular value decomposition. The vectors corresponding to the largest 
singular values are used to form a basis for solutions. The TPWL is also very 
popular. However, care has to be taken when POD and TPWL are being 
applied, as the approaches seem to be very sensitive to various heuristics [9, 
Part II, Paper 17]. In the area of dynamical systems and control, methods 
developed by Fujimoto and Scherpen [59] and Verriest [60] are promising, 
although so far the methods are limited to small nonlinear systems [9, Part I, 
Paper 1]. 

4.1 Proper Orthogonal Decomposition (POD) 
The POD is method widely used to determine efficient bases to construct 

the projection matrix. In this method for a fixed input the state variables 
trajectories at certain instances of time are measured (sampled) and saved in the 
matrix of snapshots. If the singular values of this matrix decrease rapidly, this 
matrix could be approximated by a low-order matrix. Dominant subspace in the 
sense of POD is the part of the state space which absorbs the most energy from 
specific inputs [18]. It does not take the state-to-output behaviour into account 
[61]. 

The range over which the sampling is performed is determined by assessing 
the important frequency range in the problems at hand. To determine the 
specific snapshot locations within this range, one uses a combination of 
experience and intuition. Often, the required density of snapshots will be 
determined a posteriori from the performance of the reduced model. If the 
desired dynamics cannot be accurately captured, more snapshots must be 
included in the POD process and the basis vectors recalculated [4]. 

The POD essentially provides an orthonormal basis for representing the 
given data in a certain least squares optimal sense. Truncation of the optimal 
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basis provides a way to find optimal lower dimensional approximations of the 
given data. In addition to being optimal in a least squares sense, the POD has 
the property that it uses a modal decomposition that is completely data 
dependent and does not assume any prior knowledge of the process that 
generates the data [62]. 

The POD does not provide reduced model, but only the basis for the 
solution space. Combined with the Galerkin projection procedure, it provides a 
powerful method for generating lower dimensional models of dynamic systems 
[62], [1, Chapter 9], [10, Part I, Paper 10]. Error analysis for nonlinear dynamic 
systems and the relationship with balancing have been discussed in [10, Part I, 
Paper 10 and references therein], [1, Chapter 9]. The sensitivity of the results of 
POD to perturbations in the data used to form the reduced model, as well as 
computational efficiency gained in using POD in model reduction, are studied 
in [62]. 

4.2 Trajectory Piecewise Linear (TPWL) method 
The TPWL method applied to nonlinear DAEs is a promising technique. 

The idea of TPWL method is to reproduce the typical behaviour of the full 
nonlinear system by a varying combination of a set of order reduced linear 
models. For this purpose a training input is chosen that drives the system into 
typical states, i.e., situations. A transient simulation with the chosen input yields 
a collection of points approximating the trajectory at timepoints. On the 
trajectory, points are chosen around which the nonlinear functions are 
linearized. The linear models are reduced individually. This delivers local 
reduced subspaces. A common subspace is constructed that describes the 
primary information of all local subspaces. All linear models are projected on 
this space. Finally a weighting is used to select linear models which are valid in 
a certain situation [9, Part II, Paper 17]. 

The first crucial point in TPWL method is to decide when to add a linear 
substitute for the nonlinear problem automatically during the training simulation 
(selection of linearization points). Too many linear models could make the final 
model slow, too few could make it inaccurate. To have minimum complexity 
one aims at having to deal with a combination of just a small number of linear 
models. Hence, the weighting function is chosen such that only a few (in the 
ideal case just one) dominant linear models are chosen. When reducing the 
linear models any linear model reduction technique can be applied. However, 
the reduction of linear models has the effect on the overall accuracy of the 
approximation [9, Part II, Paper 17 and references therein]. 

The TPWL method has several advantages compared to other methods. 
First it can speed up a simulation, because only small linear systems to 
approximate original system are solved. Then the well-developed linear model 
reduction techniques can be used. The properties of the TPWL model can be 
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increased if a very good weighting procedure is constructed. The TPWL method 
has also the very nice property that it is scalable. This means that by using a 
different linear model reduction techniques and weighting methods, one can 
change the method from a very fast, but not so accurate, to a slower, but also 
much more accurate method. This means that the user himself can decide what 
he desires: speed or accuracy [63, Chapter 7]. 

4.3 Balancing-based methods 
Another well-known method is nonlinear balancing which is an extension 

of balancing for linear systems (see Subsection 3.3) in the sense that it is based 
on extended definition of balancing and Hankel singular functions [64]. This 
method similarly to the concept of balancing for linear systems finds a 
coordinate transformation that balances the system due to extended definition of 
balancing for nonlinear systems. Some related results are given in [65, 66]. As it 
is apparent, on the one hand, the procedure for nonlinear balancing presents 
computational difficulties, which restricts its application to very low order 
nonlinear systems. On the other hand it finds a very meaningful coordinate 
transformation as a point of view of dynamic systems which specifies the 
dominant subspace of state space by assuming the effect of input and state 
variables on output in the sense of energy [18]. 

The main drawback of the procedure proposed in [64] is its extensive 
numerical requirement even for small systems [67]. The only numerical 
implementation of method presented in [64], which uses a Monte Carlo 
approach, is given in [67]. However, after the coordinate transformation is 
applied and even without reduction of the model, the transformed system does 
not exhibit the same input-output behaviour as the original system, because of 
the approximations that were applied during the computational procedure [22]. 

An approximation to balancing of nonlinear systems via the concept of 
empirical Gramians has been introduced in [68, 3, 7]. The empirical Gramians 
capture some of the nonlinear behaviour of the system, while being simple to 
compute [3, 7]. They are calculated using data from either simulation or 
experiment (for different values of inputs and initial conditions) to identify the 
dynamics relevant to the input-output map of the system and then balanced by 
the same procedure as is used for linear systems. The balancing transformation 
is used within a Galerkin projection in order to transform the nonlinear system 
into balanced form. The resulting nonlinear equations can be reduced using 
different truncation or residualization methods. The number of remaining states 
can be adjusted by a trial and error procedure to achieve optimum performance. 

In [22, 69] controllability and observability covariance matrices have been 
proposed as an extension of the empirical Gramians. Covariance matrices are 
determinated from data collected in the operating region of the process and have 
some advantages over empirical Gramians. These covariance matrices can be 
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used to compute a balancing-like transformation followed by a model reduction 
step via truncation or residualization [61]. The procedure will result in a model 
of reduced size that describes the input-output behaviour locally, but no 
conclusions can be drawn about the global behaviour of the reduced system 
[22]. The reason the reduced model does not describe the global behaviour of 
the original one is that the covariance matrices are only locally defined. 
However, the information captured in the covariance matrices gives a better 
reflection of the system dynamics in this operating region than would result 
from linearizing the model at the operating point. 

In [9, Part II, Paper 17 and references therein] BT in nonlinear model 
reduction is discussed. 

In [63] several options for reducing a nonlinear differential-algebraic model 
are investigated: POD, TPWL, Empirical balanced truncation and Volterra 
series. Complexity analysis of these techniques, choice of the optimal 
linearization points and weighting procedure are also discussed. 

4.4 Reduction by optimizing system matrices 
Model reduction by optimizing system matrices is another method for 

reduction of nonlinear systems with specific structure [70]. In this method 
determination of dominant state state variables (dominant subspace) plays a 
significant role in the quality of model reduction. The first idea for pointing out 
the dominant state variables is engineering impression, which could be helpful 
in many practical problems but for complex technical systems, choosing 
dominant state variables usually is not a straightforward task and some more 
advanced methods are required [18]. Once the dominant variables are 
determined, the system matrices of the reduced model are determined by 
solving optimization problems, defined to minimize the difference in the 
behaviour of the original and reduced model. 

4.5 Projection from a linearized model 
In methods belonging to this group, the reduced model is found from 

analysing a linear model, calculated by linearizing the original nonlinear system 
at some operating points. Because the linearized model is a good approximation 
of the original system for the points close to the operating point, the linear 
reduced system found in this way approximates the behaviour of the original 
model only for a range around the operating point. This range can be extended 
by adding some nonlinearities to the reduced model. This can be done by first 
representing the linear reduction procedure by a projection and calculate the 
projection matrices. Then, the projection is directly applied to the original 
nonlinear system. Although the approach uses the linearization of the nonlinear 
model, the final reduced system is nonlinear. However, that finding a linearized 
model can be difficult [71 and references therein]. 
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4.6 Other methods 
In model reduction of linear systems, KMs construct order reduced models 

of the system, such that the moments of the transfer functions of full and 
reduced problem match up to a certain order. As there is no direct counterpart of 
the transfer function for the nonlinear problem, KMs are applied to two types of 
systems derived from the general problem: bilinear systems and linear 
periodically time-varying systems [9, Part II, Paper 17]. 

In [72] a procedure, where the linear transformation is found from a 
covariance matrix that is computed from data collected along system 
trajectories, is investigated. These trajectories represent the system behaviour 
under a constant input, but starting from different initial conditions. In [73] this 
model reduction approach to models described by differential-algebraic 
equation (DAE) systems is extended. The method consists of generating state 
trajectories, computing a covariance matrix from data, extracting the principal 
components of the covariance matrix and performing a projection on the 
original system. The case of trajectories generated by different initial conditions 
under constant inputs as well as the case where the trajectories start at the 
steady-state operating point and are generated by step changes in the inputs to 
the system are investigated. While similarities exist between these methods and 
balanced model reduction, it should be pointed out that the emphasis of these 
two methods is not to retain or approximate the input-output behaviour of the 
system [22]. 

The model reduction procedure presented in [61] combines elements from 
balanced model reduction with system identification techniques in order to 
reduce the differential and the algebraic equations, while retaining the control-
relevant properties of the model. The procedure consists of three major steps. In 
a first step of the procedure, transformations are applied to both differential and 
algebraic equations. The transformation for the differential equations is 
computed via balancing of the covariance matrices or via POD, while the 
transformation matrix for the algebraic equations is obtained by singular value 
decomposition (SVD) of the state covariance matrix computed for different 
excitations of the system. In a second step, both differential and algebraic 
equations of the transformed system can then be reduced via a truncation 
procedure. The model is further reduced (third step) by replacing the algebraic 
equations with an identified model. A comparison of the results obtained from 
POD and balancing indicates that balancing performs better than POD since the 
input-to-state and the state-to-output behaviours are simultaneously taken into 
account while POD only uses the input-to-state behaviour. 

In [18] a procedure for the order reduction of nonlinear systems by 
combining linear balancing with an optimization procedure is proposed. The 
method consists of the following steps: production of the snapshots, 
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linearization of the nonlinear system, finding the dominant subspace and 
application of system matrices optimization method. 

In [71] a approach to the model order reduction of nonlinear systems, 
which does not need a simulation of the original system, is presented. By 
separating the linear and nonlinear parts of the original nonlinear model, the 
idea is to consider the nonlinearities of the resulting system as additional inputs. 
The results confirm that simulation-free reduction can deliver acceptable results, 
while being fast and simple to implement.  

5 Dynamic Model Reduction in Power Systems 
The problem of modelling a large-scale power system arises for a number 

of reasons including [15, Chapter 14]: 
• Practical limitations on the size of computer memory. 
• The excessive computing time required by large-scale power systems, 

particularly when running dynamic simulation and stability programs. 
• Parts of the system far away from a disturbance have little effect on the 

system dynamics and it is therefore unnecessary to model them with 
great accuracy. 

• Often parts of large interconnected systems belong to different utilities, 
each having its own control centre which treats the other parts of the 
system as external subsystems. 

• In some countries private utilities compete with each other and are 
reluctant to disclose detailed information about their business. This 
means that vital data regarding the whole system may not be available. 

• Even assuming that full system data are available, maintaining the 
relevant databases would be very difficult and expensive. 

Power system dynamic model is difficult to analyze because of its size, 
complexity and nonlinearity (in general). The dynamic equivalent is an 
important tool in power systems to deal with size and complexity, since it 
provides a reduced representation of the system, while preserving, with 
reasonable accuracy, the dynamic characteristics of interest. The problem of 
obtaining an equivalent representation of a portion of a system modeled by the 
nonlinear model is difficult, because of the lack of general analytical methods 
for dealing with the nonlinear equations required to describe them [74]. 

The desired characteristics of the reduced model will depend on its 
application and use. Although it seems that a large number of variables can be 
involved in the problem of interest, typically only a subset of these variables is 
essential. System contains information that is not vital for the problem of 
interest. Also, a reduced power system model provides better insight into the 
system characteristics of interest. 



Dynamic Model Reduction: An Overview of Available Techniques with Application... 

151 

The key component in model reduction is knowing how far the model 
reduction can be taken without destroying the accuracy of the reduced order 
model vis-a-vis the unreduced or "full" model [75]. Given the complexity of the 
context in which dynamic equivalencing is carried out, the real validation of any 
approach to it has to lie in the quality of the results one obtains in practice, and 
the ease with which these results are obtained [76]. 

While analyzing a large system, the engineers are usually interested in the 
behaviour of a certain part of the system. Such a part of the large system is 
called internal or study (sub)system (area) and the rest of the system is referred 
to as external (sub)system (area). Model reduction or equivalencing is the 
process of reducing the complexity of external system model while retaining its 
effect on the study system [6]. The study system is kept untouched. A reduced 
model of the external system is created assuming that the disturbance occurs 
only inside the internal system. The border nodes between the internal and 
external system are sometimes referred to as the boundary nodes [15, Chapter 
14]. 

The methods by which the equivalent of a system can be produced can be 
broadly divided into two groups, depending on whether or not they require any 
knowledge of the configuration and parameters of the system itself. Methods 
that do not require any knowledge of the system are used for online security 
assessment and typically use the measurement of certain electrical quantities to 
form the equivalent. Methods that do require knowledge of the system are used 
for off-line system analysis [15, Chapter 14]. 

The bulk of model reduction techniques in power systems are tailored for 
the tasks of control design and transient/small signal stability analysis [5]. 
Concepts like:  

• Coherency treated in [74, 77, 78, 79, 80, 81], 
• Synchrony introduced in [82, 83], 
• Singular Perturbations Analysis (SPA) given in [84 – 87], 
• Modal Analysis (MA) presented in [88, 89, 90, 85, 91, 92, 93], and 
• Identification used in [94 – 103, 6] 

form the basis for a wide variety of model reduction tools developed.  
Among existing software tools for equivalencing are DIgSILENT, 

DYNRED and PSS/E [6]. 

5.1 Coherency 
A well-known concept for dynamic equivalencing of power systems is 

coherency. Generator coherency describes the similarity of generator responses 
following disturbances [104]. A coherent group of generating units, for a given 
perturbation, is a group of generators oscillating with the same angular speed, 
and terminal voltages in a constant complex ratio [105]. It is usually possible to 
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find groups of coherent generators because some groups of generators in the 
system have a natural tendency to swing together [15, Chapter 14]. One hopes 
that for a sufficiently wide range of disturbances, say all faults that are 
electrically far away, the composition of these groups can be considered 
constant [74]. 

Each coherent group of machines can be replaced by a large equivalent 
machine. The dynamic equivalent is a single generating unit that exhibits the 
same speed, voltage and total mechanical and electrical power as the group 
during any perturbation where those units remain coherent [105]. The 
equivalent generator is usually represented by the classical model with constant 
equivalent transient electromotive force and by the swing equation. If more 
detailed models are used, then parameters of the equivalent unit can be found by 
matching the frequency response characteristics of the equivalent unit to the 
characteristics of the aggregated units. Details can be found in [105, 106]. 

A set of sufficient conditions for theoretical coherency consists of [107]: 
(1) identical machine and control device models, parameters, and power output 
levels; (2) identical admittances connecting the generator buses to each 
boundary bus. If the theoretical coherency conditions are satisfied, a disturbance 
will not provoke any relative motions between the machines in the area. To an 
observer, the motions of these machines are seen as if they were originated from 
one single machine [107]. In MA, this corresponds to a situation where modal 
variables representing the swinging of generator rotors inside the coherent 
group are not excited by disturbances. Disturbances excite only that modal 
variable that represents the swinging of the whole coherent group with respect 
to the rest of the system [15, Chapter 14]. In real-world power systems (apart 
from the trivial case of identical generating units operating in parallel on the 
same busbar) the exact coherency practically does not appear, but the definition 
is useful for theoretical considerations. Inaccuracy of coherency means that all 
the dynamic properties of the original (unreduced) model will be maintained 
only to some degree by the equivalent (reduced) model. Hence it may be 
expected that also eigenvalues and eigenvectors of the equivalent model will be 
only approximately equal to eigenvalues and eigenvectors of the original model. 
It is important here that the equivalent model maintains as precisely as possible 
those modal variables that are strongly excited by disturbances in the internal 
system and which therefore have the strongest influence on power swings in the 
internal system (dominant modal variables) [15, Chapter 14]. 

Analytical conditions for coherency are discussed in [108 – 112]. 
Approximated coherency has been studied in [81, 80]. Slow coherency, or 
coherency in the slowest modes of the system is discussed in [110, 113]. Slow 
coherency concept clusters generators based on the a priori assumption that the 
equivalent should retain only the slowest system modes. 
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The process to reduce the dynamic model of a power system using the 
concept of coherency can be divided into three stages: 1) coherency 
identification, 2) the aggregation of the coherent generators and their control 
devices, and 3) network reduction. In the literature, different methods have been 
proposed for coherency identification [114, 115, 116, 80, 117, 118, 119, 120, 
121. To construct equivalent systems, various methods have been developed 
[79, 113, 122]. In 1993, EPRI released the dynamic reduction software package 
(DYNRED), which includes a range of coherency determination and dynamic 
reduction options [122, 123, 124. Ref. [125] describes the authors’ experience 
with the application of DYNRED to perform dynamic reductions on three large 
power systems with significantly different characteristics for the purpose of 
studying transient and small-signal stability. In [126] a software tool, that 
simplifies and speed-up the computation involved in three mains steps of the 
dynamic equivalent determination procedure based on coherency, is presented. 

Coherency equivalents do not need any special interfacing with the study 
system model, because the equivalent is in the form of a model of an actual 
physical component. The coherency technique has been found to be cost-
efficient and reasonably accurate. Nonlinearities can be introduced in the 
equivalent machine model, thus extending the validity of the coherency 
equivalents to large disturbances. However the coherency technique suffers 
from the disadvantage of being a purely empirical. The quality of the equivalent 
obtained is dependent on the perturbation chosen to determine coherency, but it 
is difficult to lay down guidelines for choosing the most appropriate 
perturbation [127]. Generator coherency is also dependent on system 
conditions, and coherency information obtained under one particular condition 
might not be applicable to another condition [104]. For a new operating 
condition, generator coherency behaviour needs to be re-evaluated. This process 
is time-consuming, especially for large interconnected power systems. In [104] 
a systematic approach on the basis of eigen-sensitivity, to predicting the 
changing patterns of generator slow coherency for different operating 
conditions and forming an appropriate study area boundary by including the 
critical generators in the external area that become strongly coherent with the 
study area, is presented. Since the coherency impose the regions into which the 
network can be divided, it is not always possible to reduce a given part of the 
network [6]. Approaches that are able to retain a given part of the network are 
[128, 129, 95]. 

Another important observation in the simulation of power system dynamic 
response concerns the influence of the coherency error of a group of generators 
aggregated in the external system on the simulation accuracy of the internal 
system. The more the group of aggregated generators is remote from the 
internal system, the smaller is the influence of the coherency error on the 
simulation accuracy of dynamic response in internal system [15, Chapter 14]. 
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5.2 Synchrony 
Another well-known concept for dynamic equivalencing of power systems, 

which generalizes the concept of slow-coherency, synchrony, is introduced in 
[82]. Synchrony is defined with respect to a selected subset of modes of a 
linearized model. Such a subset is called a chord. Two generators are termed 
exactly or approximately synchronic in a chord (ν), or are ν-synchronic, if their 
angular variations are exactly or approximately in constant proportion for any 
transient in which only the modes in ν are excited. In contrast, ν-coherency 
requires exact or approximate equality of the angular variations, and slow-
coherency further restricts ν to contain only the slowest electromechanical 
modes of the system. A (maximal) set of ν-synchronic generators constitutes a 
synchronic group, or a synchronic area [130]. An algorithm to identify such 
areas and assign a reference machine to each area, is proposed in [82]. 

Ref. [131] elaborates synchrony and outlines how it can form the basis for 
efficient construction of dynamic equivalents by aggregation. An approach for 
selecting the inter-area modes that are to be represented by the aggregate model 
is described. An algorithm for recognizing the approximate synchrony is 
presented, and improvements over the standard slow-coherency recognition 
algorithm are noted. 

In [83] a method for dynamic equivalencing, termed synchronic modal 
equivalencing (SME), based on synchrony and modal equivalencing, is 
proposed, and algorithms for constructing effective dynamic equivalents for 
classical swing-equation models are presented. [130] generalizes the framework 
to obtain dynamic equivalents for detailed models described in structure-
preserving, DAE form. The objectives of [76] are to summarize certain 
extensions and simplifications of SME and layout of the recommended SME 
procedure. 

The SME procedure for constructing a dynamic equivalent, as proposed in 
[76], occurs in three stages. The first stage involves preparation of the various 
dynamic models that are necessary or useful for the process. The second stage is 
devoted to analysis of the modal structure of a simple, low-order, linearized, 
electromechanical model of the system, such as a linearized, undamped, swing-
equation model. This analysis leads to the selection of a suitable chord, and to 
the decomposition of the model into synchronic groups, each associated with a 
distinct basis (reference) generator. One of these synchronic groups (or possibly 
the union of several synchronic groups) is selected as a study group. In the third 
stage procedure returns to the original, large, unreduced, nonlinear model of the 
system, to impose on it the structural decomposition suggested by the preceding 
analysis of the simplified model. The models of all the generators of the study 
group and of all the basis generators external to the study group are retained in 
full nonlinear detail. Each of the remaining „less-relevant“ generator models is 
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replaced by a simple nondynamic linear circuit that contains a dependent 
current source driven by the motions of the basis generators. Impedance-load 
buses that interconnect only the replaced generators can be eliminated, with 
their effects being accounted for by including the bus voltages of the replaced 
generators as additional driving variables for the dependent current sources. The 
remainder of the network is left unmodified. 

The SME is aimed at structure-preserving dynamic equivalencing of large 
power system models. It is motivated by the slow-coherency method for system 
partitioning and aggregation, but its formulation and associated computational 
algorithms are more general in some important aspects [76]. 

5.3 Singular Perturbations Analysis (SPA)  
Power system dynamic analysis encompasses a wide time span of 

responses, ranging from lightning phenomena in microseconds to automatic 
generation control over periods of minutes. Within the time span of stability 
analysis, there are also time scales arising from the various speeds of responses 
of different devices such as synchronous machines and excitation systems, as 
well as from the interconnections within large power systems [87]. The natural 
time scale separations resulted in time scale modelling and SPA. 

Singular perturbations are most conveniently performed on two-time-scale 
systems in the explicit form elaborated in [16, 17]. Not all models of power 
systems with time scales are in the explicit form. Thus the first task of time 
scale modelling is to identify singular perturbation parameter (the ratio of the 
time-scales of the slow and fast phenomena [85]), which could be due to ratios 
of small and large time constants, stray and linkage inductances, weak and 
strong connections, etc., and to formulate physical transformations to obtain the 
slow and fast variables. Once the two-time-scale system is in the explicit form, 
a slow subsystem can be obtained by setting singular perturbation parameter 
equal to zero, while a fast subsystem can be obtained to model the fast 
transients of vector of fast variables from its ’quasi-steady’ state. The 
subsystems can then be used for analysis in separate time scales [87]. 

In [85] it is shown how other important forms of singularly perturbed 
systems can be reduced to the explicit form. In [87] the two-time-scale 
modelling technique is applied to several modelling problems occurring in 
power systems. The results described in [87] illustrate the role of singular 
perturbations as an analytical tool in power system modelling at both the device 
and system level. They also illustrate how additional insights into power system 
dynamics can be obtained in the process. 

5.4 Modal Analysis (MA) 
In MA, the complex nonlinear model of the system (2) is reduced to a 

linear form of state equation representation (4). The MA technique requires the 
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computation of eigenvalues of matrix AS defined by (5), which is time-
consuming, and provides a reduced system of differential equations which 
cannot be interpreted, in general, as representing models of physical units 
(equivalents do not have structural identity) [105]. However, MA methods have 
a rigorous mathematical basis and provide a good insight into the various modes 
of oscillations present in the system. In contrast to the coherency equivalent, the 
quality of the modal equivalent does not depend on the appropriateness of the 
perturbation chosen to construct the equivalent [127]. The MA has been proven 
efficient, yet the determination of the full set of truly dominant modes of the 
system is not a completely resolved question, although significant progress has 
been made [91, 92]. 

The modal-coherency method [132, 133, 134, 135, 127] is developed for 
deriving the dynamic equivalents combining the advantages of modal and 
coherency analysis. A modal-coherent equivalent can preserve not only the 
coherent groups of the original system model, but also some original modes of 
oscillations. A modal-coherent equivalent represents a valuable tool for 
transient stability analysis since it is constructed only once for a given utility 
and can then be used in the transient stability study of any disturbance that 
might occur in the utility. 

5.5 Identification 
Identification based approaches are based on parametric identification 

techniques. The objective is to estimate a set of parameters belonging to a 
model that is assumed to represent some part of a power system, based on 
measurements of important signals. This kind of technique has the attraction of 
not needing detailed information of the subsystem to be identified. So, the 
essence of system identification consists of matching signals from a real system 
that is undergoing a random perturbation, with the values of these signals 
calculated on a model of the system, and adjusting the model to reduce the 
difference [102]. 

5.6 Other methods 
Well-established solutions for the reduction of dynamic models exist in 

control theory based on the so-called balanced realization (see Subsection 3.3). 
However, a direct application of this approach to the case of power systems 
faces two major difficulties [136]. First, the reduced model should preserve the 
structure of the physical system, i.e., differential equations for generators and 
their regulations and algebraic equations for the grid. Thus, nonphysical state 
variables are not appropriate. Next, the size of the problem is important when 
large-scale power systems are addressed. 

In [137] balanced realization theory is combined with modal-coherency 
analysis to provide accurate estimates for dynamic equivalents for use in 
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transient stability studies based on coherency aggregation techniques. 
Relationship between modal-coherency and balanced realization theory is 
investigated. A method of estimating the feasible order reduction using the 
theory of balanced realizations is proposed. This estimate of order reduction is 
used to determine when to stop the aggregations dictated by the modal-coherent 
analysis. This approach is appropriate for moderate sized power systems [138]. 
In this reference also an alternative approach appropriate for larger systems, 
based on the intergenerator coherency ranking table, is discussed and compared 
to the balanced realization approach. Ref. [75] presents the theoretical results 
that establish an analytical bridge between coherency and balanced realizations. 
Analytical connections that relate coherent behaviour (perfect coherency) of 
generators to redundancy in the Gramians (redundancy in the states) of the 
linear model of the power system are determined. 

In [136], the construction of the newly defined border synchrony chord was 
combined with the aggregation techniques [11, 56] to provide a structure-
preserving reduced model by balancing techniques. The relation between 
synchrony and the lack of controllability and observability is investigated in the 
general context of power systems. The vision obtained fills the gap between the 
two approaches and makes a bridge between several existing characterizations 
of the redundancy in power systems, like the synchrony and the slow-coherency 
and the recent reduction principles of the control system theory. The main 
advantage against the classical balanced-reduction is that the result is a physical 
power system and not only a mathematical object (state-space realization with 
state-variables with no physical meaning). In [139] a method to construct power 
system dynamic equivalents for day-ahead stability studies is proposed. The 
notion of synchrony with respect to a given border introduced in [136] was 
used. It allows one to determine classes of machines of the external area which 
have the same influence on the study system in a robust manner and without 
using information from the study system. Starting from these classes, 
aggregation methods [11, 56] are used to provide a physical dynamic equivalent 
(a dynamic equivalent which consists in real machines, regulations, lines, etc. 
and not only a mathematical equivalent), i.e. structure-preserving reduced 
model. 

In [140] the model reduction technique, based on the computation of a 
subspace of the product of the Gramians using the formulation proposed in [25] 
with a modification to allow for the retention of lightly damped and unstable 
modes in the reduced system, is proposed. The reduced system exhibits modal 
characteristics similar to the unreduced system in the frequency range 
associated with swing modes and can be used for the design of damping 
controllers. 

In [141] a technique, called sparse LRCF-ADI, is used to construct 
reduced-order state-space models of large scale power systems described in 
descriptor form (9). The proposed technique is an improvement of the LR(CF)-
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ADI (see Subsection 3.5) and exploits the sparsity of the power system model 
described in descriptor form. 

The external system is important only as far as it influences the analysis in 
the study system and is often represented by a linear model for studies such as 
small signal stability analysis. Furthermore, it is often the case that the external 
system input/output behaviour is of interest only in very low frequencies (less 
than 2 Hz) depending on the nature of its interconnection to the study system 
and the level of generator modeling. This characteristic makes KMs (see 
Subsection 3.4) suitable for model reduction application on the external area. In 
[5] the use of KMs in the model reduction of power systems is described. 
Additionally, a connection between the KMs and coherency in power systems is 
proposed, aiming at retaining some physical relationship between the reduced 
and the original system. The reduction process considered the external area of 
the power system as an input-output system. 

6 Application 
In this section, two of the most frequently used techniques for the reduction 

of linear models (BT and MT) are applied to the New England 10-generator,  
39-bus test power system, shown by single-line diagram in Fig. 1. System 
parameters and data are given in [142]. 
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Fig. 1 – Single line diagram of the New England 10-generator 

and 39-bus test power system. 
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After the load flow calculation and data initialization, the test system 
described by DAEs (2) is linearized at the operating point (see eqs. (3) and (4)). 
Algebraic variables (i.e. vector of perturbations of algebraic variables) are 
eliminated, as in (5) and (6). The reference voltage of the AVR connected to the 
synchronous machine G1, and voltage magnitudes at buses 1, 5, 9, 14 and 17 
(denoted in red in Fig. 1), are chosen to be input and output variables, 
respectively. Thus, the model used for the application of the two chosen 
techniques, is described by (7). 

Two techniques applied to the example (linear system described by (7)) are 
briefly described in formulaes in Subsections 6.1 and 6.2. 

6.1 Balanced Truncation (BT)  
BT consists of three main steps [141].  
The first step is to compute the Gramians P and Q by solving the Lyapunov 

equations: 
 T T+ = −AP PA BB ;   T T+ = −A Q QA C C . (11) 

The second step is to factor P and Q as P = UUT and Q = LLT, where U and 
L are the Cholesky factors. These factors are then multiplied and their product 
decomposed as follows: 
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, (12) 

where W1 and Y1 are composed of the leading r columns of W and Y, 
respectively. Matrix Σ = diag{σ1, σ2, … , σn} contains the singular values of 
UTL, that are also known as the HSVs of the system.  

The third step is to construct a reduced-order model (in the form of (7)) of 
order r « n via matrices: 
 T

11 L R=A T AT ,   T
1 L=B T B ,   1 R=C CT ,   1 =D D , (13) 

where TL and TR are given by: 
 1/2

1 1L
−=T LY Σ ,   1/2

1 1R
−=T UW Σ . (14) 

Y1, W1 and Σ1 are chosen such that r largest HSVs and r corresponding 
state variables are preserved in the reduced model.  

6.2 Modal Truncation (MT) 
In MT transfer function (see (8)) of the system is decomposed: 

 1 2( ) ( ) ( )s s s= +G G G , (15) 

so that G1(s) contains r dominant modes, while G2(s) contains the other n − r 
modes of the system. Dominant modes are those that predominantly affect the 



S.D. Đukić, A.T. Sarić 

160 

behavior of the system. In this example, for dominant modes are chosen those 
with the smallest absolute value, i.e. modes with small real and imaginary (low 
magnitude and frequency) values. The MT truncate modes contained in G2(s), 
and the model corresponding to the transfer function G1(s) approximates the 
original system. 

 
Fig. 2 – Voltage magnitudes at buses 1, 5, 9, 14 and 17, 

when increasing the reference voltage 
of the AVR connected to the synchronous machine G1 by 5 %, for: 

1) original model, 2) model reduced by BT, and 3) model reduced by MT. 
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Fig. 2 gives a comparative view of voltage magnitudes at buses 1, 5, 9, 14 
and 17, when increasing the reference voltage of the AVR connected to the 
synchronous machine G1 by 5 %, for original model, model reduced by BT and 
model reduced by MT. State variables (modes) were truncated as far as the form 
of voltage magnitudes at buses 1, 5, 9, 14 and 17 corresponded to those 
obtained with the original model. Of the 109 state variables, BT method 
truncated 106, while MT method truncated 77 state variables (modes). MT 
preserved 32 dominant modes of original model, while neglecting less 
important ones. After balancing the system (where the state variables lost their 
physical meaning), BT method truncated the states which are less important for 
input-output behaviour of the system. BT method did not preserve the steady 
state behaviour of the original model (see voltage magnitudes at buses 5, 14 and 
17). As already mentioned, if it is important to maintain the steady state 
behaviour of the original model, residualization can provide better results than 
truncation. 

7 Conclusion 
The need for reduced models has been driven by different reasons: limited 

computational, accuracy and storage capabilities, need to gain insight into the 
true cause of the observable dynamics of a system, etc. The problem of model 
reduction can be viewed as a trade-off between complexity and misfit. A model 
of minimal complexity that approximates the original one (optimally) with a 
maximum allowed misfit is required. This paper gives a brief review of the 
model reduction techniques, commonly used in control theory, for large-scale 
dynamic systems. Advantages and disadvantages of described techniques were 
discussed. Techniques commonly used for reduction of the power system 
models are also described. Two of the described techniques are applied to the 
New England 10-generator, 39-bus test power system with discussion of 
obtained results. 

Control theory provides lots of methods which can be used for reduction of 
different large-scale physical systems. These methods mostly have a rigorous 
mathematical basis and aim to approximate the input-output behaviour of the 
considered system. On the other hand, for power system model reduction, 
empirical methods are preferred, since they retain the physical structure of the 
model, while being simple to use. Connections between those two groups of 
methods are investigated in several papers. Our future future research direction 
is to apply the methods used in control theory to reduce the dynamic model of 
the large-scale power system, so that the state variables in the reduced model 
preserve their physical meaning.   
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