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Abstract: In recent years, the use of biological molecules has offered exciting 
alternatives to conventional synthetic methods. Specific methods use various 
biological templates to direct the deposition and patterning of inorganic 
materials. Here we have established a new electrical model of microtubules as a 
biological nanoscale circuit based on polyelectrolyte features of cylindrical 
biopolymers. Our working hypothesis is that microtubules play an active role in 
sub-cellular computation and signaling via electronic and protonic conductivity 
and can thus be made useful in hybrid materials that offer novel electronic 
characteristics. We verify these hypotheses both computationally and analyti-
cally through a quantitative model based on the atomic resolution structures of 
the key functional proteins. 

Keywords: Nanobioelectronics, Microtubule, Protein, Nano pore, Nonlinear 
circuit. 

1 Introduction 

Nanobioelectronics is a thriving new area of research at the interface 
between the life sciences and nanotechnology, which deals with structures of 
dimensions ranging from 1 nm to 100 nm, below the range of lithographic 
fabrication techniques [1]. Nanobiotechnology aims to exploit biomolecules and 
the processes carried out by them for the development of novel functional 
materials and devices [2] and, more speculatively, nanomachines, perhaps 
nanorobots. These developments open up an exciting possibility of building 
integrated systems in which electronic and biomolecular components function 
side–by–side. Biopolymer structures are attractive as templates to form 
nanoscale architectures for electronics because of their size, geometry and 
ability to interact with inorganic materials.  

Proteins represent fertile territory for nanobioelectronics because they have 
properties ideal for engineering purposes. They possess sophisticated 
architectures at nanoscale dimensions, rich chemistry and versatile enzymatic 

                                                 
1Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia; 
E-mails: dalsek@uns.ac.rs, bomisat@neobee.net. 

*Award for the best paper presented in Section Microelectronics and Optoelectronics, at Conference ETRAN 
2011, June 6 – 9, Banja Vrućica – Teslić, Bosnia and Herzegovina. 

UDK: 621.3.049.77 DOI: 10.2298/SJEE1201107S 



D. L. Sekulić, M.V. Satarić 

108 

activities. Proteins are capable of carrying out complex tasks in cells. We need 
think only of examples such as the linear motors of the cytoskeleton, voltage–
gated ion channels, DNA replication complexes, or the photosynthetic reaction 
centres [2]. By genetic engineering and/or chemical modification or by using 
proteins in ways not found in nature, nanobiotechnology can harness the power 
of proteins to create new components for materials and devices. 

Most studies in this area have been performed on DNA molecules [3, 4]. It 
has been shown that DNA may be used as a template to form silver nanowires 
connecting gold electrodes [5]. Microtubules (MTs) comprise another 
interesting type of protein structure that may be a good candidate for designing 
and manufacturing electronic nanodevices. MTs are cytoskeletal biopolymers 
shaped as nanotubes. In vivo MT cylinders have 13 protofilaments (PFs), as 
shown in Fig. 1a. The external and internal diameters of MTs are 25 and 15 nm, 
and the length can reach up to 10–15 μm in a cell. The dimensions of a 
constituent tubulin dimer (TD) are (4×4×8) nm3, and there are 13 dimers from 
13 PFs considered as an elementary ring of MT. An important point is that 
every tubulin has a long thin flexible tail (TT) protruding out from the MT 
cylinder (every dimer has two TT). These TTs have an important role in electric 
capacitance in our model, as shown Fig. 1b. 

        
(a)      (b) 

Fig. 1 – (a) A MT hollow cylinder of 13 parallel PFs with denoted characteristic 

dimensions: outer and inner diameters of 25 nm and 15 nm, respectively, 

and TD length of 8 nm; (b) The topology of a TD with TTs whose 

dimensions are: the length of 4.5 nm and diameter of 1 nm. 
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In this paper, we explained the polyelectrolyte character of MT and 
described the basic components of the MT as a biomolecular nanoscale 
nonlinear electronic circuit. Then we set up an electrical model of the MT using 
capacitive and resistive components. Also, we analytically and numerically 
analyzed the voltage equation. 

2 Characterization of the Electric Components of MT 

In as much MTs are mostly negatively charged on their outer surface they 
are true polyelectrolyte polymers. This is the consequence of the fact that 
numerous amino acids forming tubulin have many negatively charged residues 
under physiological conditions. As a result, every MT attracts positive counter 
ions close to its surface creating so called ionic cloud (IC), while negative ions 
of cytosol are repelled such that a cylindrical depletion area is created around 
the MT. The width of this depleted layer is called the Bjerrum length, lB, 
defined by equating the Coulomb attraction energy of the ions with the thermal 
energy: 

 ( )2
0 B/ 4 k .Be ε εl Tπ =  (1) 

Taking e = 1.6×10−19 C, ε0 = 8.85×10−12 F/m, ε = 80 (for cytosol) and 
kB = 1.38×10−23 J/K, for the physiological temperature T = 310 K we obtain 
lB = 0.67 nm. The occurrence of Manning condensation around the polymer of 
radius r also depends on the fact that the salt concentration n in the cytosol 
should be low enough to satisfy the inequality lDb >> r, where the Debye length, 
lDb, is defined by 

 ( )
1/21 8 .Db Bl nl− = π  (2) 

 

 

Fig. 2 – Schematic representation of the counter–ion charge distributions 

surrounding a TD (left panel) and a TT (right panel). 
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Since the radius of a TT is of the order of 0.5 nm and the radius of a TD is 
of the order of 2.5 nm, while the Debye length for the cytosol is of the order of 
10 nm [6], we see that the condition in (2) holds for both radii. Thus, we are 
now able to reliably estimate the respective condensate thickness λ: 

 ( )
1/2

, 1DbA rl Aλ = < , (3) 

where A depends only weakly on the Manning parameter q0. Taking A = 1/2 one 
finds the corresponding values for the TD (λTD) and TT (λTT) as follows: 
λTD = 2.5 nm; λTT = 1.1 nm. These values will be used in our calculations of the 
corresponding capacity and resistivity, see Fig. 2. 

2.1 The capacitance of an elementary unit of MT 

In an earlier paper [7], a detailed Poisson-Boltzmann approach was used to 
evaluate the capacitance of an elementary ring of an MT which consists of 13 
dimers. Here, we adopt the same expression which reads: 

 0
0

2
,

ln 1 B

IC

l
C

l

R

πε ε
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

 (4) 

where l stands for the length of a polymer unit and RIC = rTD + λTT for the outer 
radius of an IC. The other parameters have already been introduced. We first 
estimate the elementary unit of each MT protofilament (EUP) capacitance 
contributed by a TD, see Fig. 3. With lTD = 8 nm and RIC = rTD + λTT = 5 nm, we 
find for TD (including only the outer surface) CTD = 1.4×10–16 F. Analogously, 
we can consider an extended TT as a smaller cylinder with the radius 
rTT = 0.5 nm and the thickness of its IC equal to λTT = 1 nm. Its extended 
effective length should be 4.5 nm 2.5 nm 2 nmeff

TTl = − =  meaning that its part 

close to the tubulin surface is already embedded. Thus, we now estimate the 
corresponding capacitance, CTT = 0.26×10–16 F. Accounting for the fact that two 
TTs are present in each tubulin dimer, we finally obtain 2×CTT = 0.52×10–16 F. 
The two capacitance values above are considered to correspond to a parallel 
arrangement with respect to each other, so that the total maximal capacitance of 
an EUP is readily estimated as: 

 16
0 2 1.92 10 F.TD TTC C C −= + × = ×  (5) 

We have emphasized that TTs capacitance must change with an increasing 
concentration of condensed cations due to the shrinking of flexible TTs. These 
changes are slightly different due to the different structures of α and β type TTs. 
To include this case we introduce the reduced factor of nonlinearity as follows 

 0 ,
b b

b
b b

α β

α β

=
+

 (6) 
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where bα and bβ stand for the respective TTs. This implies that the charge of an 
EUP capacitor diminishes with an increased voltage in a nonlinear way 
ΔC0 = C0b0v, b0v << 1. 

 
Fig. 3 – Schematic illustration of the calculation of the MT capacitance. 

 

Additionally, we account for the tilting movements of TTs under the 
combined action of thermal fluctuations [8] and a changing voltage due to an 
incoming ionic wave. Thus, the part of EUP capacitance contributed by TTs 
should also change by TTs tilt as shown in Fig. 4. The change of the effective 
length of a TT is an additional factor affecting the capacitance, ΔCTT. We 
assume that this change can be adequately described by the oscillating function 

 ( ) ( )0 0sin .eff eff eff

TT TT TTl l t t l t tΔ = ⎡Ω − ⎤ ≅ Ω −⎣ ⎦  (7) 

    
(a)                                                              (b) 

Fig. 4 – A comparison between: (a) an extended TT; 
(b) a tilting TT due to oscillations. 

 

So that the capacitance changes linearly with a change in the effective TTs length 

 0 0 0( ),TTC C t tΔ = Γ Ω −  (8) 

where the frequency Ω is much lower than the inverse charging time of the EUP 
capacitor due to the strong viscous damping of the TT tilt, thus justifying the 
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linearization of the above sine function in (7). In some sense, this effect is 
similar in character to the thermal ratchet mechanism combined with an 
asymmetric ionic potential. Including the two aspects of TTs dynamics 
described above, the charge of EUP can be expressed as follows 

 [ ]0 0 0 01 ( ) ,Q C t t b v v= − Γ Ω − −  (9) 

where Γ0 is a dimensionless parameter. 

2.2 The conductance of Nano–pores 

Between neighboring PFs there are two distinct types of (NPs). NP–1, see 
Fig. 5 left, is located where an inter–dimer β/α interface of one TD lies next to 
the inter–dimer β/α interface of the adjacent TD molecule. The so–called NP–2 
arises where an intra–dimer interface of one dimer lies next to the intra–dimer 
interface of an adjacent TD of a neighboring PF, see Fig. 5 right. Freedman et al 
[8] used HOLE and AMBER programs to estimate the effective radius of the 
narrowest points within these NPs and found them to be 0.4 nm and 0.47 nm for 
type–1 and type–2 NPs, respectively. 

  

Fig. 5 – An illustration of the NPs in the A and B MT lattices, respectively. 

 

Based on the modified version of the Poisson–Boltzmann equation, the 
conductances of NPs are determined in terms of Brownian dynamics of ions. 
For the type–1 NP, inner and outer cationic conductances were calculated to be 
2.93 nS and 1.22 nS, respectively, while for type–2 NP the respective values of 
7.80 nS and 4.98 nS were found. 

Finally, we could include the conductance of both NPs to account for the 
leakage of IC cations into the lumen area. Thus we have 

 0 1 2 (2.93 7.8)nS 10.7nS.G = σ + σ = + =  (10) 

It is expected that NPs exert greater resistance than the volume of IC around 
EUP.  
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2.3 The resistance of an elementary unit of MT 

Regarding the ohmic resistance, if we ignore ionic current leaks through the 
depleted layer, the dominant current flows in parallel with the MT axis charging 
EUP capacitors and partly leaking through NPs. The resistance attributed to this 
kind of ionic flow can be estimated on the basis of experimental evidence 
provided by the electro–orientation method performed on MTs in vitro [6]. 
Taking the reported measured value of MT ionic conductivity as 
σ = (0.15 ± 0.01) Sm-1, and adopting a simplifying assumption that the 
resistivity within an IC patch beyond an EUP is homogeneous, the resistance of 
an EUP with the length l = 8 nm and the cross–sectional area A = πrTDλTD, 
A = 19.625 nm2, see Fig. 3, is estimated as: 

 9
0

1
2.7 10  .

l
R

A
= = × Ω

σ
 (11) 

This is obviously an extremely high value of resistance which is most likely 
an over–estimate. We therefore prefer the computed resistance shown in Table 3 
of reference [8], referred to as the outer sheath–outer sheath resistance for 
complete 13 PFs, namely R13 = 4.75×106 Ω. The resistance for our EUP will be 
13 times greater, i.e., 

 7
0 1313 6.2 10  .R R= = × Ω  (12) 

This value appears to be more consistent with the resistance of two NPs which 
follows from (10). 

2.4 The inductance of an elementary unit of MT 

The straightforward calculation performed in [9] revealed that the order of 
magnitude of the inductance of an elementary ring in MT is of the order of 
L∼10−15 H. This is very small value regarding pertaining reactive resistance. 
For example, if the frequency is of the order of MHz we have ωL∼10−9 Ω for 
inductive impedance, while capacitive impedance amounts (ωC)–1∼109 Ω. 
Similar discrepancy holds for the energies of corresponding fields 

 2 2
0

1 1
,

2 2
Li C v  (13) 

since i is of the order of nA and v of the order of several mV. Thus, the role of 
inductance in this model could be safely ignored. 

3 The Model of MT as Nonlinear Circuit 

On the basis of above estimations for the resistive components of the MT 
we are now in the position to establish the corresponding model of MT as 
nonlinear nanoscale circuit. A typical section scheme is shown in Fig. 6. 
Applying Kirchhoff’s low to ladder of ERs, we have: 
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∂
     1 0 .n n nv v R i− − =  (14) 

Introducing the characteristic impedance of our system Z = 1/(C0ω) and 
establishing new function u(x, t), un = Z1/2in = Z–1/2vn, we can safely expand un in 
a continuum approximation using a Taylor series in terms of a small spatial 
parameter l (the length of a dimer). Then using the travelling–wave form of the 
function u(x, t) with dimensionless space and time variables (ξ, τ), we get the 
following voltage equation 
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0 0 03
0

3/2
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0 0 0 0
0
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3

2 0.

ZC s u u u
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T
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u ZG Z R ZC u
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−

⎛ ⎞ ∂ ∂ ∂
− + + Γ Ω ξ − ξ +⎜ ⎟

∂τ ∂ξ ∂ξ⎝ ⎠
∂

+ + + − Γ Ω =
∂ξ

 (15) 

Here, T0 = R0C0 is the characteristic charging (discharging) time of an EUP 
capacitor C0 through the resistance R0 and v0 = l/T0 is the characteristic velocity 
of spreading the ionic wave. The dimensionless speed, space and time variables 
are chosen to be respectively: 

 
0 0

1, ,
v x t

s s
v l T

= ≤ ξ = − τ τ = . (16) 

 

Fig. 6 – An effective circuit diagram for the n-th ER with 

characteristic elements for Kirchhoff’s laws. 

4 Analisis of the Voltage Equation 

Imposing that the condition 

 0

0

2
ZC s

T
>  (17) 
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holds, we then estimate the characteristic impedance of EUP as Z = 1.24×108 Ω 
for s = 1. For s = 1 one obtains the cutoff frequency ωmax = 4.3×107 s–1 or 
fmax = 6.8×106 Hz. This indicates that the characteristic frequency matches the 
order of magnitude of frequency Ω which describes the TTs oscillations. We 
now establish the compact form of (15) as: 

 ( )
3

3
0,

u u u u
u u

∂ ∂ ∂ ∂
+ β + α + γ ξ + δ =

∂τ ∂ξ ∂ξ ∂ξ
 (18) 

where the abbreviations were introduced as follows: 
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 (19) 

The detailed procedure of solving (18) is given in [10], so that the function 
u(ξ, τ) has the following form: 

 

( ) ( )

( )( ) ( )( ) ( )

1/2

2 0
0 0 0

0
0 0 0 0

, exp 2 cosh exp( 2 )
4

             1 exp 1 exp 3 exp 2 .
3

u
u u

u

−
⎧ α⎡ ⎤⎪

ξ τ = − γ τ − γ τ ⋅⎨⎢ ⎥β⎣ ⎦⎪⎩
⎫α⎡ ⎤

⋅ ξ − ξ − γ τ + − γ τ − γ τ ⎬⎢ ⎥β⎣ ⎦⎭

 (20) 

If we use the set of estimated and chosen parameters, we readily see that all 
dimensionless parameters (19) lie between zero and one (β = 0.33, γ0 = 0.17, 
δ = 0.34) staying within the same order of magnitude. This suggests that we 
should inspect numerically the behaviour of the solution of (18) when the 
parameters α, β, γ0 and ξ0 take slightly different values which are done next. 
Analysing the set of plots in Fig. 7 we can see the competition between 
nonlinearity α and the dispersion β, as well as the role of inhomogeneity γ0. In 
the case represented in Fig. 7b we have balanced all parameters. The soliton 
solution preserves its width but its amplitude decays rather rapidly so that over 
the length of about 500 l it becomes negligible. The above view shows the 
deceleration of the soliton solution along its path. Fig. 7c shows the case with 
increased nonlinearity (α = 0.5). It is remarkable that it exhibits not only a higher 
localization but also a slower decay of its amplitude. The advantage of this case 
lies in the fact that the velocity of the soliton solution decreases very slightly.  
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(a) 

 

 
(b) 

Fig. 7 – Numerical solutions of u(x, t) for: 

(a) α = 0.2, β = 0.33, γ0 = 0.17, ξ0 = 0.1; 
(b) α = 0.1, β = 0.1, γ0 = 0.1, ξ0 = 0.1. 
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Fig. 7c – Numerical solutions of u(x, t) for: α = 0.5, β = 0.1, γ0 = 0.1, ξ0 = 0.1. 

 

We estimate its average velocity as follows: 

 
3 8 5

0

400 400 8nm 3.2μm, m
0.26 .

s1000 10 1.2 10 s 1.2 10 s

x l x
v

tt T − −

Δ ≈ = × = ⎫ Δ⎪
= =⎬

ΔΔ = = × × = × ⎪⎭
 

The range of this soliton is 3.2 μm which is of the order of the cell’s 
diameter. Therefore, it appears that the ionic pulse with such parameter values 
could be efficiently transferred within the cell. 

5 Conclusions 

In this paper, we theoretically analysed the use of MTs as protein structure 
for building biomolecular nanoscale nonlinear circuit in the context of the 
polyelectrolyte character of these cytoskeletal filaments. We have taken into 
account the role of two aspects of this cylindrical biopolymer, its NPs and very 
sensitive TTs. Both of them are responsible for the nonlinear character of the 
overall electrical capacitance of MTs. Our solution, (20), was analyzed 
numerically for the set of parameters in Fig 7. It is apparent that the solitonic 
wave loses its energy due to ohmic resistance but it preserves the stable 
localized form. In the case presented in Fig. 7c with an increased nonlinearity 
parameter, the solitonic pulse exhibits greater robustness and it progresses with 
an almost constant velocity and only a slight decay of its initial amplitude. This 
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demonstrates the role of flexible TTs which could be of decisive importance for 
the stable localized character of ionic pulses along MTs. The order of 
magnitude of soliton–like localized pulses arising within the scope of our study 
ranges from mm/s to a several cm/s which are very reasonable values. 

In this study, the particular attention was paid to the role of NPs existing 
between neighboring dimmers within a MT wall which exhibit properties like 
ionic channels. These NPs are candidates to explain some properties of MTs 
resembling to unipolar transistors enabling the rectification and amplification of 
ionic currents. 

Finally, the experimental work of Priel et al [11] demonstrated that the 
electrical signal amplification resulting from the presence of MTs can be 
directly attributed to nonlinear ionic currents guided by MTs in close similarity 
to the framework developed by our present model. In fact, these measurements 
inspired the authors to consider the role MTs can play as biotransistors taking 
part in cognitive processes which is another interesting application of nonlinear 
ionic conductance of MTs. 
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