
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING
Vol. 9, No. 1, February 2012, 29-32

29

Implementation of Visitor Pattern in
Processing a Syntax Tree in Qlab Project*

Aleksandar Đenić1, Miroslav Marić1, Marko Mladenović1,
Srđan Božović2, Miloš Netković1

Abstract: Qlab is an open-source project that supports various mathematical
calculations, specialized for academic use. It has been developed at the Faculty
of Mathematics, University of Belgrade, and is supported by Microsoft Serbia. In
this paper we present some of Qlab’s successfully implemented core solutions.
More precisely, in our approach we use a specialized Visitor pattern to optimize
the management of syntax tree commands that our parser sends to our engine.
This allows the processing of a larger scale of tree implementation using the
Visitor interface.

Keywords: Qlab, Visitor pattern, Syntax tree.

1 Introduction
The main idea behind the Qlab project [1] is to develop open source

software which will support complex mathematical calculations. It's being
developed by Faculty of Mathematics, University of Belgrade and it's supported
by Microsoft Serbia. Developers are students under the leadership of faculty
professors. They are divided into teams and in order to use full potential of the
faculty, students from all sections and modules are included in the development.

Initial set of Qlab functionalities is based on those of MATLAB, but one of
the main goals is to expand that set and to develop more comprehensive
mathematical software which will be released under Open source license. In
addition, Qlab adheres all MATLAB standards, so every program written in
MATLAB will have no problems executing in Qlab, and vice versa.

2 Implementation
Qlab is developed on Microsoft .NET platform, language used is C#.

Development environment is Microsoft Visual Studio and .NET Framework

1Faculty of Mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia;
E-mails: djenic@matf.bg.ac.rs; maricm@matf.bg.ac.rs; mladja87@gmail.com; milos.netkovic@gmail.com

2MFC-Mikrokomerc, Belgrade, Serbia; E-mail: srdjan.bozovic@gmail.com
*Award for the best paper presented in Section Artificial Intelligence, at Conference ETRAN 2011,
June 6 – 9, Banja Vrućica – Teslić, Bosnia and Herzegovina.

UDK: 004.45:519.6 DOI: 10.2298/SJEE1201029D

A. Ðenić, M. Marić, M. Mladenović, S. Božović, M. Netković

30

version used is 4.0. Project is divided into 4 sub-projects: parser, basic
mathematical operations, engine and graphical user interface (GUI). Each of
them is being developed independently, with respect to standards of
communication which were defined earlier. This kind of project organization
secured modularity of the project and simplified it's organization. Also, it allows
us to add new features and improvements in the future without modifying the
entire project. More precisely, if new features or improvements are added to one
of the sub-projects, only that one will be modified and, with respect to
communication standards, the rest of the application will continue to work. This
is a very important feature, especially if we take into consideration the fact that
Qlab is an open source project and that anyone can add new features.

The process of execution goes as follows: a user defines functions and
scripts he wants to use in the GUI. When a command is called or a function is
executed, GUI passes the command to the engine. Engine parses the command
and functions and scripts needed for the execution, and based on the syntax tree
and basic mathematical operations executes the command. Result is then sent
back to the GUI which displays it to the user.

For parsing we used Gardens Point Parser Generator, developed on
Queensland University in Brisbane, Australia, which is also open source. It
translates standard lex/yacc grammars to C# library which parses text. Parsed
text is returned in the shape of a syntax tree.

3 Visitor Pattern
Visitor pattern [2] in object oriented programming is a way to separate

algorithms from objects on which it operates. Result of this kind of separation is
ability to add new operations on existing structures without changing the
structures themselves.

Visitor pattern allows us to add new virtual function to an entire family of
classes, without modifying the classes. Instead of adding code to every class,
visitor class is created. That class implements all the virtual functions we need.
Visitor takes an instance of a class as an argument and by using double dispatch
method gets the result. Double dispatch method is a mechanism which passes a
function call to concrete functions, based on types of objects involved. Object
types are resolved in runtime.

4 Visitor Pattern in Qlab
Syntax tree which is the result of parsing is one of the most important

structures in Qlab. Functions, scripts and commands are all being parsed.
Syntax trees keep data on all parsed elements and they are the basis for all
calculations in Qlab. They are also very important for analysis of parser testing,

Implementation of Visitor Pattern in Processing a Syntax Tree in Qlab Project

31

binary serialization of functions, analysis of programs. That said, it is necessary
to implement more syntax tree traversals, different ones will be used for
different actions.

 ABSTRACT CLAS Statement : IVisited
 METHODS:
 Accept(Visitor: IVisitor)

 CLASS AssignmentStatement : Statement
 ATTRIBUTES:
 LeftHandSide: Expression[]
 RightHandSide: Expression
 METHODS:
 Accept(Visitor: IVisitor)
 Visitor.Visit(this)

 CLASS WhileStatement : Statement
 ATTRIBUTES:
 Condition: Expression
 LoopStatement: Statement
 METHODS:
 Accept(Visitor: IVisitor)
 Visitor.Visit(this)

 INTERFACE IVisitor
 METHODS:
 Visit(as: AssignmentStatement)
 Visit(ws: WhileStatement)

 CLASS EngineVisitor: IVisitor
 METHODS:
 Visit(as: AssignmentStatement)
 Call Accept Method on RightHandSide
 FOREACH exp: Expression IN LeftHandSide
 Assign Appropriate Value to exp
 Visit(ws: WhileStatement)
 WHILE Condition
 Call Accept Method on LoopStatement

Fig. 1 – Visitor pattrern in QLab engine.

One of the ways to get more traversals of one tree is to implement a set of
methods in every node, every method would be responsible for a different
processing of the node. That solution is very bad, since with rise in number of
methods, node loses it's basic functionality, being a node of a tree. Also, it leads
to loss in project modularity, since engine adds functionalities in structures
which belong to parser.

Best solution for these problems is to implement Visitor pattern on the
entire syntax tree. Idea is to use node structure, and to make sure that every
node has an Accept method which will, as an argument, have an instance of
Visitor interface. Visitor needs to have a Visit method for every type of node in

A. Ðenić, M. Marić, M. Mladenović, S. Božović, M. Netković

32

the syntax tree. Accept method of a node can now call Visit method of it's class.
In that way, Visitor implementations are separated into different structures.

In Qlab, basic node of a syntax tree is an abstract class Statement, all concrete
nodes are inheriting that class. Parts of implementation of concrete nodes,
AssignmentStatement and WhileStatement, are shown in Fig. 1. Both nodes
contain their own specific data and an Accept method. Accept method calls
concrete implementation of Visit method of it's class. Ivisitor interface contains
Visit methods for every node in the tree, in this case AssignmentStatement and
WhileStatement. In the same example there is also a simplified version of
EngineVisitor for program execution, which implements concrete Visit methods
on tree nodes.

Adding any number of tree processings is fairly easy. All one needs to do is
implement visitor interface for each new tree processing. That way, we can
easily add a new engine or a new serialization.

4 Conclusion
Architecture of Qlab is modular, split in parts which are independent in

both terms of logic and implementation. This sort of project organizations
secures high quality code and easier improvements in the future. The
development of these modules has been equally challenging as organizing
students to use their knowledge and skills to contribute to the project and their
future carriers. The visitor pattern was one very useful improvement that made
Qlab more complete and represents the future development of Qlab – using
advanced technologies making a modern all round mathematical software.

5 References
[1] M. Marić, A. Đenić, M. Mladenović: Razvoj „open sours“ aplikacija na univerzitetima, Qlab

projekat Matematičkog fakulteta u Beogradu, Informatika 2010 „Novi trendovi u razvoju
informacionih sistema“, Beograd, Srbija, 12. maj 2010, pp. 36 – 39. (In Serbian).

[2] T.A. Davis: MATLAB Primer, CRC Press, Boca Raton, Florida, USA, 2011.
[3] A.W. Troelsen: Pro C# 2010 and the .NET 4 Platform, NY, USA, Apress, 2010.
[4] J.R. Levine, T. Mason, D. Brown: Lex & Yacc, O'Reilly Media, Sebastopol, California,

USA, 1992.
[5] B. Judith: C# 3.0 Design Patterns, O’Reilly Media, Sebastopol, California, USA, 2008.

