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Advanced Algorithms for Mobile Robot Motion 
Planning and Tracking in Structured Static 

Environments Using Particle Swarm Optimization* 

Aleksandar Ćosić1, Marko Šušić1, Duško Katić1 

Abstract: An approach to intelligent robot motion planning and tracking in 
known and static environments is presented in this paper. This complex problem 
is divided into several simpler problems. The first is generation of a collision-
free path from starting to destination point, which is solved using a particle 
swarm optimization (PSO) algorithm. The second is interpolation of the obtained 
collision-free path, which is solved using a radial basis function neural network 
(RBFNN), and trajectory generation, based on the interpolated path. The last is a 
trajectory tracking problem, which is solved using a proportional-integral (PI) 
controller. Due to uncertainties, obstacle avoidance is still not ensured, so an 
additional fuzzy controller is introduced, which corrects the control action of the 
PI controller. The proposed solution can be used even in dynamic environments, 
where obstacles change their position in time. Simulation studies were realized 
to validate and illustrate this approach. 

Keywords: Mobile robots, Motion planning, Particle swarm optimization, 
Radial basis function neural networks. 

1 Introduction 

Efficient navigation of mobile robot means generation of collision free path 
and design of control law, which provides desired path following. Significant 
efforts have been made in order to solve robot motion planning (RMP) 
problems. Such a complex problem can be divided into several simpler 
problems. The first is generation of collision free path in space with obstacles. It 
is assumed that all obstacles are static and that their positions are known. 
Solution of the problem is given with NP–hard algorithm, given in [1]. There 
are two different approaches for mobile robot motion planning: classic and 
heuristic [2 – 4]. The current developed classic methods are variations of a few 
general approaches: Roadmap, Cell decomposition, Potential fields, and 
Mathematical programming. The mentioned classic approaches suffer from 
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many drawbacks, such as high time complexity in high dimensions and trapping 
in local minima, which makes them inefficient in practice. In order to improve 
the efficiency of classic methods, many heuristic and meta-heuristic algorithms 
are used in RMP [4]: Simulated Annealing (SA), Artificial Neural Networks 
(ANN), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant 
Colony (ACO), Stigmergy, Wavelet Theory, Fuzzy Logic (FL) and Tabu Search 
(TS). Heuristic algorithms do not guarantee to find a solution, but if they do, are 
likely to do so much faster than deterministic methods.  

In this paper, PSO algorithm for mobile robot path generation is chosen  
[5 – 8]. PSO represents multi-agent search technique [9], which is based on 
simplified social behavior of large animal groups. It has been proven that in 
many cases PSO algorithm provides fast and efficient solution of optimization 
problems. 

The second problem is path following. This problem can be solved using 
fuzzy controller, which is a good solution when it is difficult to obtain valid 
mathematical model. From the other hand, parameter adjustment is very time-
consuming task, so the evolution techniques could be helpful for adjustment of 
large number of parameters [10 – 12]. This problem could also be solved using 
nonlinear backstepping procedure, given in [13 – 14]. In this paper, problem is 
decomposed on trajectory generation and trajectory tracking. Collision free path 
generated by PSO is not smooth and it is represented as an array of points in 
two-dimensional space. In order to make it smooth it has to be interpolated 
using RBFNN. The next step is trajectory generation, based on interpolated 
path, such that the velocity of the mobile robot is large on straight segments of 
the path, and small in sharp curves. Simple PI controller is proposed as a 
tracking controller. In order to prevent collisions with obstacles due to 
uncertainties and movement of obstacles, additional fuzzy controller is 
introduced, which corrects action of tracking controller. For demonstration of 
algorithm performance, kinematic model of mobile robot is used. 

The rest of the paper is organized as follows: Section II provides short 
description of PSO algorithm and RBFNN, while Section III provides 
algorithms for generating collision free path using PSO, path interpolation using 
RBFNN, and trajectory generation. In Section IV, control algorithms for 
trajectory tracking and obstacle avoidance are shown. In Section V simulation 
results are presented, while conclusion is given in Section VI. 

2 Basic Theoretical Concepts 

2.1 Particle swarm optimization 

PSO algorithm is multi-agent evolutionary search technique. The space of 
solution is searched with multiple particles, whereby every particle is directed 
on the basis of its own experience and the experience of the whole swarm. Basic 
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variables are position of particle, which represents the potential solution, 
velocity of the particle, which represents the change of position in current 
iteration and fitness function, which is the measure of success of the particle. 

Let ( )ix k  and ( )iv k  denote the position and velocity of i-th particle in k-th 

iteration, respectively. Algorithm can be described by following steps: 
 

1. Problem definition: 
Allowable position and velocity ranges [ ]min max,V V  and [ ]min max,X X ,

 
respectively, swarm size N, measure of success for every particle – 
fitness function ( )iP k ; value of this function measures the success of 
the i-th particle; 

2. Algorithm initialization: 
Positions and velocities of particles are initialized with uniform random 
numbers from [ ]min max,X X  and [ ]min max,V V , respectively, i.e., 

 
( ) ( )

( ) ( )
min 1 max min

min 2 max min

0

0 χ
i

i

x X X X

v V V V

= + χ −

= + −
 (1) 

where 1χ  and 2χ  are uniform random numbers from [0,1]; 

3. Fitness function evaluation: 
For every particle in swarm, the following variables are evaluated: 
fitness function, self-best position ( )ip k  and global-best position 

( )gp k ; 

4. Velocity correction: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

effect of current effect of particle's effect of swarm's
motion experince experience

1 γi i i i g iv k wv k c p k x k c p k x k⎡ ⎤+ = + ⎡ − ⎤ + γ −⎣ ⎦ ⎣ ⎦ , (2) 

where 1c  and 2c
 

denote self-confidence and swarm-confidence 

parameters, respectively, while w stands for inertia factor and 1γ , 2γ  

are random numbers from [0,1]. Inertia factor determines the effect of 
current motion on a future motion. Large values of this parameter leads 
to global search, while small values leads to fine, local search, which is 
suitable when algorithm converges. Thus, variable value of inertia is 
used, such that inertia starts from large value, and decreases as 
algorithm iterates. Also self-confidence and swarm-confidence factors 
should be variable. Self-experience should have dominant effect on 
particle motion at the beginning of the algorithm, while later, swarm-
experience should prevail. Particles velocities must stay inside 

allowable interval [ ]min max,V V ; 
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5. Position correction: 
 ( ) ( ) ( )1 1i i ix k x k v k+ = + + . (3) 

Position must stay inside allowable interval [ ]min max,X X ; 

6. Termination of algorithm: 
Algorithm terminates when maximum number of iterations is reached, 
or good enough value of fitness function. 

Performance of algorithm heavily depends on particles diversity. It is 
preferred that swarm consists of diverse particles at the beginning of algorithm. 
Later, as algorithm iterate, diversity should decrease, in order to finely converge 
to optimum. It is necessary to allow passing through detected optimum, in order 
to avoid stucking in it, because it can be local minima. 

2.2 Radial basis function neural networks 

Radial basis function neural networks (RBFNN) are three-layer neural 
networks. Their structure is shown on Fig. 1. These networks are widely used 
for nonlinear function approximation, as well as multilayer perceptrons (MLPs). 
Although they cannot achieve the accuracy of the MLP networks, their 
advantage over MLP is in much faster training. For achieving the same 
accuracy as MLP, RBFNN is usually more complex, i.e., it has more nodes in 
the hidden layer. 

Let [ ]1

T

nx x=x  and [ ]1

T

my y=y  denote input and output 

vectors, respectively. Activation function of hidden neurons is: 

 ( )

2

22e , 1,..,
i

i x i n
−

−
σΦ = =

x w

, (4)  

where || ||⋅  denotes Euclidean norm. Activation function ( )i xΦ  is centred in 

vector iw , while σ denotes spread of the function. Output layer is linear, so 

output of the network is linear combination of the hidden layer outputs: 

 
1

( ), 1,..,
k

j ij i
i

y l x j m
=

= Φ =∑ . (5) 

It can be seen from (4) that activation of hidden layer neuron i is the 
strongest when i=x w , because ( ) 1i xΦ = . Activation decreases when input 

departs from vector iw . Basic idea is to divide input space onto k overlapping 

regions, while every hidden neuron will be active only in one region, i.e. some 
neighbourhood of iw . If region width σ is too small, network generalizes 

poorly, while for large values of this parameter, interpolation can be coarse. 



Advanced Algorithms for Mobile Robot Motion Planning and Tracking… 

13 

 

Fig. 1 – Structure of RBFNN. 
 

Network can be trained such that approximation error on the training set is 
zero. This can be impractical, because size of the hidden layer is equal to the 
size of the training set. Thus, training algorithm should gradually increase the 
size of hidden layer until desired value of approximation error or maximum 
number of hidden neurons is reached. Training algorithm is given in [15]. 

3 Advanced Algorithms for Motion Planning Problem 

3.1 Path generation using PSO algorithm 

It is assumed that the positions of obstacles are known and static. The goal 
is generation of collision free path from starting to destination point, so that the 
path is as short as possible. This task will be solved using PSO algorithm. 
Generated path is given as an array of two-dimensional points, so the obtained 
path is not smooth. Robot has fixed maximum step size, i.e. maximum distance 
between current and next point max

rV . Increase of this parameter speeds up the 

algorithm, but decreases the path smoothness and decreases the possibility of 
algorithm to be get stuck in complex scenarios with large number of close 
obstacles. It is also assumed that all obstacles are circular and there is no 
overlapping between obstacles, although they can touch each other, but not 
more than two. Sizes of all obstacles are increased for the dimension of mobile 
robot. 

Region of search is illustrated on Fig. 2. Let ( , )i ix y  denotes optimal point 

generated by PSO in previous iteration, which represents the center of search 
region in current iteration, while ( , )f fx y  denotes destination point. Region of 

search is circular sector with central angle of 270°, symmetric relative to line 
joining points ( , )i ix y  and ( , )f fx y . On this way, algorithm always progresses 

in sense that every new point is closer to destination than previous one. This 
solution gives better results than circle. On the other hand this solution is better 
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than half–circle, because it could happen that optimal solution lies in the corner 
of chosen search region, which is not covered by the half–circle. 

 

 

Fig. 2 – Search region of PSO algorithm. 
 

More complex situation arises when the region of search collides with 
obstacles. In this case it is necessary to eliminate all points that are located at 
the intersection of search region and obstacles. These situations can be avoided 
on two ways. The first way is to mark these points as inadequate by giving them 
large positive value of fitness function. This solution is simple, but in this way 
population loses some particles, i.e., artificially reduces the size of the 
population. The other way is to move points that lie inside the obstacles to the 
obstacle edge (see Fig. 2). On this way algorithm will move particles into the 
allowable part of search region, and there is no loss of population particles. 
Particle ( , )k kx y  which lies inside the obstacle is moved in the point ( , )k kx y′ ′ , 

which is located at the intersection between obstacle edge and line joining 
particle ( , )k kx y and centre of the search region ( , )i ix y , and for this new 

particle fitness function is evaluated. Particles in the PSO algorithm represent 
two-dimensional points in polar coordinates (radius with respect to the centre of 
the search area rV , and angle θ  between x-axis and line joining particle and the 

centre of the search area). Next position should be obtained such that total 
length of the path is minimal and collision with obstacles is minimal. Path 
length F, from ( , )r rx y  to the destination ( , )f fx y  over ( , )i ix y  is: 

 ( ) ( )
2 2

cos sin ,

cos , sin .

r r r i f r r i f

i r r i i r r i

F V x V x y V y

x x V y y V

= + + θ − + + θ −

= + θ = + θ
 (6) 
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Fitness function is weighted sum of path length F, given in (6) and 
additional term ( )P i , which represents penalties if path leads over the obstacles. 

This term has to be variable, taking into account size, position and orientation of 
the obstacles. Finally, fitness function ifit  is given by: 

 
( ) ( )

1 2 2 1 3 2

2 2

( ), ( ) ( ) ( ),

cos sin .

i i

i r r r i f r r i f

fit w F w P i P i w P i w P i

F V x V x y V y

= + = +

= + + θ − + + θ −
 (7) 

Penalization factor ( )P i  consists of two factors 1( )P i , which represents 

penalization due to the existence of intersection between obstacle and path 
generated from current particle to the destination point, and 2 ( )P i , which 

represents penalization due to the existence of intersection between obstacle and 
path generated from particle given in the previous algorithm iteration to the 
current particle.  

Weights 1 2 3, ,w w w  weight path length and path intersection with obstacles, 

respectively. Larger values of the 1w  will give a shorter path, which leads 

mobile robot very close to the obstacles, while larger values of 2w  and 3w  

means less chance for collision between mobile robot and obstacles at the 
expense of longer path. It is recommended to choose larger values of 2w  and 

3w  in cases when algorithm works with larger values of the radius max
rV , in 

order to ensure that generated path does not lead over the obstacles. 

 

Fig. 3 – Illustration of penalization factor evaluation. 
 

Let us assume that there is obstacle between current and destination point, 
as shown on Fig. 3. Robot can circumvent obstacle from either side, but it is 
rational to select the shorter path. This implies that penalization factor should be 
shorter of these two paths. So, penalization factor can be defined as: 
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 ( ) ( ) { } { }
1

min , 1,2 , 1,2
S

k j
s

P i arc obim s j k
=

⎧ ⎫
= + ∈ ∈⎨ ⎬

⎩ ⎭
∑ , (8) 

where jarc  denotes arc of the obstacle intersected by path, and ( )c s  denotes 

circumference of adjacent obstacle. Algorithm has stochastic nature, so it will 
not give the same result if it proceeds from starting to destination point and in 
reverse direction. So algorithm must proceed in both directions, and choose 
shorter path. 

3.2 Path interpolation using RBFNN 

Path smoothing is achieved by interpolation using RBFNN. For this 
purpose, some other types of neural networks can be used (such as MLP 
networks), but in this case RBFNN gives very good results, accurate 
approximation and fast training. Neural networks are used for function 
approximation. This means that in general case they cannot be used here 
directly, because obtained path may not be a function. So, the idea is to 
parameterize x and y coordinate of the path, i.e., to associate time instant to 
every point of the path.  

Path interpolation is performed using RBFNN with one input (time) and 
two outputs (x and y coordinate of path point). The first step is generation of 
training set. This means that time instant must be associated to every point of 
the path. The simplest way to generate time vector is to adopt uniform velocity 
of motion v along the path. Now, time vector can be evaluated recursively using 
(9), where iP  and 1iP−  denote two successive points of the path. 

 ( ) ( )1
1 1 1 1, , , ,i i

i i i i i i i i

P P
t t P x y P x y

v
−

− − − −

−
= + = = . (9) 

Region centers iw  and output layer weights ijl  in (4) and (5) are 

determined in training process, but region width σ and hidden layer size must be 
adjusted experimentally. Choice of these two parameters is critical. Simple 
networks cannot approximate path adequately, while too complex networks can 
learn features that do not exist in training set. It is important to note that after 
training it could happen that path generated by RBFNN is not collision free. So 
the accuracy of the approximation is not the only criteria that influences choice 
of the hidden layer size and σ, collision free property is a more important one. 

3.3 Trajectory generation based on interpolated path 

Trajectory generation based on given path means introduction of time, i.e. 
trajectory represents time-parameterized path. Trajectory obtained in the 
interpolation step assumed uniform motion along path, which is not a good 
solution. So, the goal is achievement of variable velocity of motion, such that 
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robot moves fast on straight segments of the path and slowly in curves, i.e. 
robot velocity should be inversely proportional to some measure of path 
curvature. At the beginning, robot should accelerate uniformly, until it reaches 
the desired velocity and slow down uniformly, at the end of the motion. 

 

 

Fig. 4 – Illustration of the measure of curvature determination. 
 

Unfortunately, exact evaluation of the curvature is complex task, because in 
general case it is very difficult to obtain path in closed form. Hence, the idea is 
to approximate curvature numerically. Let ( , )i ix y  denote current robot position 

and let the part of the path from point ( , )i ix y  to point ( , )k kx y  is circle arc of 

length L, as shown on Fig. 4. If the length L is fixed, measure of path curvature 
could be the central angle α of the arc. This angle could be obtained as a sum of 
individual angles 1 2, ,..., k i−α α α . Angle 1α  stands for the angle between vectors 

ip  and 1i−p , while angle k i−α  stands for the angle between vectors 1k −p  and 

kp . If the sampling of the path is frequent enough, the path can be 

approximated adequately with piecewise straight line, and tangent line becomes 
a line which joins two successive points, i.e., vector ip  becomes very close to 

real tangent vector ip . So, the individual angles can be evaluated using the 

following formula: 

 

( )

( ) ( )

1

1 1

1 1 1 2 1 2 1

, arccos ,

, , , .

k i
j ji

j j
j j j

j j j j j j j j j jx x y y x x y y

−
+

= +

+ + + + + + +

⋅
α = α α =

⋅

= − − = − −

∑
p p

p p

p p

 (10) 
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When the measure of curvature α is determined in every point of the path, 
velocity vector v can be evaluated, which is inversely proportional to α. So, 
velocity in point ( , )i ix y , ( )iv , becomes: 

 ( )
( )

i

i

k
v =

α
. (11)  

Parameter k is proportionality constant and it must be chosen such that 
robot passes the sharpest curve of the path safely. Time vector is evaluated 
using obtained velocity profile. Let the initial time instant is zero, and let 

0 0( , )x y  denotes the starting position of the robot. Based on evaluated velocity 

profile, time vector can be obtained: 

 

( ) ( ) ( )

( ) ( )
( )

2 2

1 11

1 1

2 2

1 1

1

,

.

i i i ii i i

i i i i

i i i i

i i i

x x y ys ss
v

t t t t t

x x y y
t t

v

+ +−

− −

+ +

−

− + −−Δ
= = =

Δ − −

− + −
= +

  (12)  

4 Advanced Algorithms for Motion Tracking Problem 

4.1 Kinematic model of mobile robot 

Schematic model of mobile robot is shown on Fig. 5. Wheels on the same 
side are turning with the same angular velocity. World coordinate frame is 
denoted by { }, ,X O Y , while { }, ,l lx COM y  denotes local coordinate frame, 

attached at the robot. Origin of the local coordinate frame is placed at the robot 
centre of mass (COM). State variables are position and orientation of the robot, 
i.e., COM position ( , )x y  and angle ϕ between x-axis of the world and local 

coordinate frame, while Lω  and Dω  denote angular velocities of left and right 

side wheels of the robot, respectively, and represent control inputs. Let Lv  and 

Dv  denote linear velocities of the left and right side wheels centres, 

respectively, cv  COM linear velocity and ϕ  robot angular velocity around 

COM. Relations between linear and angular velocities are given by: 

 
( )

, ,

1
, 2 .

2

L L D D

c L D D L

v r v r

v v v b v v

= ω = ω

= + ϕ = −
 (13) 

Combining previous equations (13) leads to: 

 ( ) ( ), .
2 2c L D D L

r r
v

b
= ω + ω ϕ = ω − ω  (14) 
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Fig. 5 – Schematic model of mobile robot. 

 

Previous equations are related to the local coordinate system. In order to 
describe motion in global coordinate frame it is necessary to describe mobile 
robot velocity cv  in global coordinate system. If x  and y  denote projections of 

velocity cv  onto coordinate axis of global coordinate system, these projections 
can be written as: 

 
cos ,

sin .
c

c

x v

y v

= ϕ

= ϕ
 (15) 

Finally, combining (14) and (15), kinematic model of mobile robot is 
obtained: 

 

cos cos
2 2

sin sin
2 2

2 2

L

D

r r

x
r r

y

r r

b b

⎡ ⎤
ϕ ϕ⎢ ⎥

⎡ ⎤ ⎢ ⎥
ω⎡ ⎤⎢ ⎥ ⎢ ⎥= ϕ ϕ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ω⎣ ⎦⎢ ⎥ϕ ⎢ ⎥⎣ ⎦

⎢ ⎥−
⎢ ⎥⎣ ⎦

. (16) 

4.2 Generic odometer 
In order to prevent collisions with obstacles it is assumed that there is some 

generic odometer, located at the robot COM. Its field of view is 270° and its 
range is denoted by gR . Field of view is symmetrical regarding to robot 

longitudinal axis. So, obstacle will not be detected if it is close to the back side 
of the robot (i.e. obstacle lies outside its field of view) or if it is not in the sensor 
range. Output of the sensor is robot-to-closest-obstacle distance and angle at 
which robot sees the obstacle, denoted by d  and α  on Fig. 6, respectively. 

4.3 Controller design 
Proposed controller structure is given on Fig. 6. 
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Fig. 6 – Structure of the control system. 
 

Controller consists of three parts: trajectory tracking controller (TCC), 
obstacle avoidance controller (OAC) and combined controller. Trajectory 
tracking controller provides tracking of the desired trajectory generated in 
previous algorithm steps. For this purpose PI controller is proposed. 
Unfortunately, due to uncertainties and approximation errors, tracking will not 
be perfect. So, at this point, it is not ensured that robot will pass from starting to 
destination point safely and obstacle avoidance controller becomes necessary. 
For this purpose fuzzy controller is proposed. The last part of the control 
structure is combiner. Its role is to combine the control signals obtained from 
TCC and correction signal obtained from OAC into control signals of the 
mobile robot. It is basically a weighed sum of TCC and OAC outputs, but with 
weights that depend on distance between robot and obstacle, i.e. it gives relative 
importance to TCC and OAC outputs. Thus, its role is to make compromise 
between tracking and avoiding action of the controller, depending on robot-to-
obstacle distance. 

4.4 Design of Trajectory Tracking Controller (TCT) 

Tracking controller should generate control action which tries to direct 
robot to the desired trajectory. This action is mainly achieved by proportional 
term. Also, controller should have integral term in order to decrease an error in 
stationary state. Let ( , )x y  denote robot position, while desired position in the 

same time instant is denoted by ( , )x y∗ ∗ , and desired velocity by ∗
v . Velocity 

generated by controller is denoted by zv  and can be written as: 

 
( )

{ }0 0

,

1
,

min , / .

0,

z z

p z

z zi z
z z i

z

K d
d

d d d kT

d

∗

∗

= + Δ

⎧ − ⎛ ⎞
+ >⎪ ⎜ ⎟

Δ = = −⎨ ⎝ ⎠
⎪

≤⎩

v v v

e
e e e

ve

e

v
(17) 
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where zΔv  is velocity correction, k is positive gain and d is the dead-zone size, 

dependant on *
v . Tracking error is denoted by * * T

z x x y y⎡ ⎤= − −⎣ ⎦e , while 

dzi z t= ∫e e  denotes integral of the tracking error. Proportional gain is denoted 

by Kp, while Ti stands for integral constant. 

As can be seen from (17), velocity correction is chosen as nonlinear 
function of errors sum, i.e., dead-zone around desired point is introduced. 
Introducing nonlinearity is necessary, because it does not allow oscillations of 
robot position when robot comes close enough to the desired point. Dead-zone 
changes its size depending on desired velocity, i.e., it decreases when desired 
velocity increases. Parameter 0d  determines the size of the dead zone when 

desired trajectory approaches destination point, i.e., maximal value of tracking 
error when real vehicle approaches a destination point. 

It is necessary to avoid integrator windup. Simple anti-windup algorithm is 
adopted, i.e., integral term “freezes” on the previous value, when one of the 
motors saturates. 

It can be seen from kinematic equations (14) and (16) that angular 
velocities of the motors ( ),L Dω ω  are actually weighted sums of the linear and 

angular velocity of the robot ( ),cv ϕ . So, angular velocities generated by 

controller are given by: 
 ,

z z z zL v z z D v z za a a aϕ ϕω = − ϕ ω = + ϕv v , (18) 

where zv  and zϕ  denotes magnitude and angle of velocity vector zv  given by 

(17), respectively, while weights 
zva  and 

z
aϕ  are control parameters, which 

have to be adjusted. These parameters weigh straight-line and turning 
capabilities of the controller. Derivative zϕ  is given by: 

 z
z

sT

ϕ − ϕ
ϕ = , (19) 

where sT  denotes the sampling time. 

4.5 Design of Obstacle Avoidance Controller (OTC) 

Path planning algorithm in complex scenarios with large number of 
obstacles generates paths that guides robot very close to the obstacles. It is 
ensured that generated path is collision free. In the approximation step, RBFNN 
training algorithm favors the paths that are collision free, but it can happen that 
the obtained path is not collision free, i.e. that it slightly touches the obstacle. 
Also, the tracking is never perfect, due to uncertainties and disturbances. Thus, 
obstacle avoidance controller becomes necessary. 
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Obstacle avoidance fuzzy controller is two-input (distance and angle) and 
one-output (correction Δω ) system. Correction should be generated such that 
mobile robot moves away from the obstacle when it comes close enough to it.  

Membership functions of the inputs and output of the fuzzy system are 
given on Fig. 7. Fuzzy rules are given by Table 1. 

    
(a) 

 
(b) 

Fig. 7 – Membership functions of the: (a) inputs; (b) output. 

 

Table 1 
Fuzzy rule base. 

Angle 
 Right 

Behind 
Right Right Front Left Front Left Left Behind 

Distance Near 
Small 

Positive 
Half 

Positive 
Full 

Positive 
Full 

Negative 
Half 

Negative 
Small 

Negative 

 

4.6 Design of combined controller 

The task of the combined controller is to combine outputs from the TTC 
and OAC in order to obtain control signals of the mobile robot. It is basically a 
weighed sum of TCC and OAC outputs, but with weights that depend on 
distance between robot and obstacle, i.e., it gives relative importance to TCC 
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and OAC outputs. When robot comes close to the obstacle, OAC output 
becomes dominant. When the robot is far away from the obstacle TCC output is 
dominant. Following the notes introduced on Fig. 6, the output signal of the 
combined controller, can be written as a weighted sum of its inputs: 

 1 2 1 2,t t
L L D DK K K Kω = ω − Δω ω = ω + Δω , (20) 

where 1K  and 2K  denote the weights of the sum, t
Lω  and t

Dω  are the outputs of 

the tracking controller and Δω  is the output of the obstacle avoidance 
controller. Weights must be dependable on distance between robot and obstacle, 
in order to change relative importance of “tracking” and “avoiding” control 
signal. When the robot approaches the obstacle, “avoiding” signal should be 
dominant. If there is no obstacles in the close neighborhood of the robot, 
“tracking” signal should be dominant. 

5 Simulation Results 

Proposed algorithm for motion planning of mobile robot is implemented in 
MATLAB package, using Virtual WRSN software for mobile robot navigation, 
given in [16] and [17]. 

The scenario with seven obstacles is adopted. In order to include robot 
dimensions, obstacles are enlarged with the dimension of mobile robot. It is 
assumed that robot width is 2 30b = cm and wheel radius is 6r = cm. Maximum 

angular velocities of the wheels are max max 15L Dω = ω = rad/s. It is assumed that the 

robot position and orientation measurements are corrupted with white Gaussian 
noise, which standard deviations are 1 cm and 1°, respectively. Odometer range 
is 1.5gR = m. 

Starting point is (2,4.5) m, while the destination point is (4.5,0.5) m. PSO 

algorithm searches space with the 30 particles in the swarm. Particles velocities 
are bounded on interval [–1,+1]. Search area radius is max 0.25rV = m. Choice of 

this parameter is critical. Small values lead to fine search, which produces 
smooth path with large number of points, but there is possibility of stucking 
between obstacles in complex scenarios, because algorithm has to choose 
between particles with similar quality. Larger values of max

rV  give the coarse 

path, but the possibility to be get stuck is very small. The algorithm terminates 
after 100 iterations. Values of weights in fitness function are 1 1w = , 

2 3 5w w= = . Larger values of 1w  shortens the path length, but path passes very 

close to the obstacles, while larger values of 2w  and 3w  pushes the path away 

from the obstacles, but the path becomes longer. Parameters 1 2, ,c c w  are 

iteration-variable, chosen according to following law: 
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 ( ) ( ) ( )
2

8
1 20.4 0.8, 0.01 0.48, 0.05 0.89

k

c k e c k k w k k
−

−

= + = + = − + . (21) 

Because of the stochastic nature of the algorithm, paths generated from 
starting to destination point (blue line on Fig. 8a) and vice versa (red line on 
Fig. 8a) will not be the same. Length of the blue path is 5.20 m, while the length 
of the red path is 5.13 m. So, in this case, red path is better one. On Fig. 8a, 
points generated by algorithm are represented with stars, while real obstacles 
are represented with solid black line. Obstacles enlarged by robot dimension are 
represented with dashed black line. 

The next step is path interpolation using RBFNN. Training set consists of 
input-output training pairs. Each training pair consists of point on the path and 
corresponding time instant, which is obtained assuming constant velocity of 
robot motion. It is assumed that this velocity is 0.2v = m/s. Hidden layer size 
should be chosen such that approximation of the path is adequate and collision 
free. Approximation performance heavily depends on hidden layer size and 
region width σ. These parameters have been determined experimentally. Hidden 
layer has 24 neurons, while 2.375σ = . Neural network response is shown on 
Fig. 8b. 

When the interpolated path is generated, the next step is trajectory 
generation based on previously obtained path. Algorithm uses following values 
of parameters: length on which the path character is analyzed is 0.5L = m, 
maximal velocity of the robot is max 0.5v = m/s and proportionality constant in 
(11) is 0.25k = . Velocity profile, as well as x and y coordinate plots of the 
desired trajectory versus time are shown on Fig. 9. 

 

  

(a)                                                           (b) 

Fig. 8 – (a) Paths generated by PSO algorithm, (b) Interpolated path using RBFNN. 
 



Advanced Algorithms for Mobile Robot Motion Planning and Tracking… 

25 

In order to demonstrate tracking performance, results of the simulation 
without OAC will be given on the Fig. 9a, while 2D view is given on Fig. 10a. 
It is assumed that robot starts motion from the close neighborhood of the 
starting point of the desired trajectory, i.e. ( ) ( )0 0, , 2.05,4.48, / 4x y θ = −π . PI 

controller parameters are chosen experimentally, as a compromise between 
tracking quality and noise presence in control signals. Controller parameters are 
as follows: 
 010, 0.5, 0.05m, 10, 66.68, 9.3352

z zp i vK T d k a aϕ= = = = = = . 

 
(a) 

 
(b) 

Fig. 9 – Desired velocity, state variables, control signals and error during 
tracking using: (a) PI controller, (b) complete control structure. 
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(a)                                                          (b) 

Fig. 10 – Two-dimensional view of trajectory tracking : (a) without OAC, (b) with OAC. 

 
(a) 

 
(b) 

Fig. 11 – (a) Tracking performance in modified scenario, 
(b) Two-dimensional view of trajectory tracking in modified scenario. 
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Values of parameters have been chosen experimentally. When controller 
accomplishes the desired value of the error in stationary state, motors turn off 
(see (17)). Choice of the parameters is critical. Larger value of proportional gain 

pK  enhances the tracking performance, i.e. decreases tracking error, but 

increases the presence of noise in control signals. Increase of iT  decreases the 

tracking error, but may lead to instability, if the adopted value is too large. 
Parameters 

zva  and 
z

aϕ  weight straight-line and turning capabilities, so larger 

value of 
z

aϕ  
is recommended. Error on the Fig. 9 is defined as a distance 

between desired ( , )x y∗ ∗  and robot position ( , )x y  at the same time instant. 

Proposed controller is simple and provides good solution to tracking. 

Results obtained with OAC are given on Fig. 9b. Weights in the combined 
controller are chosen according to following law: 

 1 2

1.778 0.2, 0.45m 1.778 0.8, 0.45m
,

0, 0.45m 0, 0.45m

d d d d
K K

d d

+ < − + <⎧ ⎧
= =⎨ ⎨

≥ ≥⎩ ⎩
 (22) 

As can be seen, tracking is worse, in sense that tracking error has increased, 
because controller pushed robot away from the obstacles. Two-dimensional 
views of tracking with and without OAC are given on Fig. 10. Snapshots of the 
virtual (blue) and real (red) robot are taken on every 4 s. 

6 Conclusion 

The solution of motion planning in known and static environments is 
presented in this paper. This problem can be divided into following problems: 
generation of collision free path using PSO algorithm, interpolation of obtained 
path using RBFNN, trajectory generation based on interpolated path and 
trajectory tracking using simple PI controller. Fuzzy controller for obstacle 
avoidance is also presented in this paper. In phases where obtained path is 
interpolated using RBFNN, it could happen that the generated path is not 
collision free, so this controller has a main goal to push mobile robot away from 
the obstacles. Although it is assumed that obstacles are circular, proposed 
method, with slight modifications, can be applied on obstacles of arbitrary 
shape. This approach can be applied in dynamic environments in which exist 
moving obstacles, due to action of obstacle avoidance fuzzy controller. It can be 
also applied even in multi robot environments, with some modification of 
tracking control law. 
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