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Abstract: As the coming era is that of digitized medical information, an 

important challenge to deal with is the storage and transmission requirements of 

enormous data, including medical images. Compression is one of the 

indispensable techniques to solve this problem. In this work, we propose an 

algorithm for medical image compression based on a biorthogonal wavelet 

transform CDF 9/7 coupled with SPIHT coding algorithm, of which we applied 

the lifting structure to improve the drawbacks of wavelet transform. In order to 

enhance the compression by our algorithm, we have compared the results 

obtained with wavelet based filters bank. Experimental results show that the 

proposed algorithm is superior to traditional methods in both lossy and lossless 

compression for all tested images. Our algorithm provides very important PSNR 

and MSSIM values for MRI images. 

Keywords: Medical image, Compression, Biorthgonal wavelets, CDF9/7, 

Lifting scheme, SPIHT. 

1 Introduction 

The massive use of numerical methods in medical imaging (MRI, X 

scanner, nuclear medicine, etc.) today generates increasingly important volumes 

of data. The problem becomes even more critical with the generalisation of 3D 

sequence. So it is necessary to use compressed images in order to limit the 

amount of data to be stored and transmitted. 

Many compression schemes by transformation have been proposed, we can 

cite the standards JPEG images, MPEG 1 and 2 for video compression. All of 

these standards are based on the discrete cosine transform (DCT) [1]. 

Over the past ten years, the wavelets (DWT) have had a huge success in the 

field of image processing, and have been used to solve many problems such as 

                                                           
1Departement of Electronic, Bechar University, Bechar 08000, Algeria. E-mail: beladgham.tlm@gmail.com 
2Genie-Biomedical Laboratory, Departement of Electronic, Abou bekr Belkaid University, Tlemcen 13000, Algeria. 
3Biomecanic Laboratory, Valencienne University, France. 

UDK: 004.92.021 



M. Beladgham, A. Bessaid, A.M. Lakhdar, A. Taleb-Ahmed 

164 

image compression and restoration [2]. However, despite the success of 

wavelets in various fields of image processing such as encoding, weaknesses 

have been noted in its use in the detection and representation of the objects’ 

contours. The wavelets transform and other classical multi-resolutions 

decompositions seem to form a restricted and limited class of opportunities for 

multi-scale representations of multidimensional signals. 

To overcome this problem, new multi resolution decompositions better 

adapted to the representation of images are used. This is the case of 

decomposition by lifting scheme.  

In this work we propose the lifting structure algorithm for MRI image 

compression. For this reason, this paper is divided into three parts: the first is 

devoted to a representation of the Lifting scheme, then we present the 

biorthgonal wavelet CDF 9/7. 

In order to enhance image compression by our algorithm, we compare the 

PSNR and MSSIM results obtained with the existing techniques namely the 

wavelets filter bank. 

2 Wavelet Transforms 

The wavelet transform (WT), in general, produces floating point 

coefficients. Although these coefficients are used to reconstruct an original 

image perfectly in theory, the use of finite precision arithmetic and quantization 

results in a lossy scheme. 

Recently, reversible integer WT’s (WT's that transform integers to integers 

and allow perfect reconstruction of the original signal) have been introduced 

[3, 4]. In [5], Calderbank et al. introduced how to use the lifting scheme 

presented in [6], where Sweldens showed that the convolution based 

biorthogonal WT can be implemented in a lifting-based scheme as shown in 

Fig. 1 for reducing the computational complexity. Note that only the 

decomposition part of WT is depicted in Fig. 1 because the reconstruction 

process is just the reverse version of the one in Fig. 1. The lifting-based WT 

consists of splitting, lifting, and scaling modules and the WT is treated as a 

prediction-error decomposition. It provides a complete spatial interpretation of 

WT. In Fig. 1, let X  denote the input signal, and 1LX  and 1HX  be the 

decomposed output signals, where they are obtained through the following three 

modules of lifting-based 1DWT: 

1. Splitting: In this module, the original signal X  is divided into two 

disjoint parts, i.e., ( ) (2 )eX n X n=  and X 0 ( ) (2 1)X n X n= +  that denote 

all even-indexed and odd-indexed samples of X , respectively [7]. 
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2. Lifting: In this module, the prediction operation P  is used to estimate 

0 ( )X n  from ( )eX n  and results in an error signal ( )d n  which represents 

the detailed part of the original signal. Then we update ( )d n  by applying 

it to the update operation U , and the resulting signal is combined with 

( )eX n  to ( )s n  estimate, which represents the smooth part of the original 

signal. 

3. Scaling: A normalization factor is applied to ( )d n  and ( )s n , respectively. 

In the even-indexed part ( )s n  is multiplied by a normalization factor eK  

to produce the wavelet subband 1LX . Similarly in the odd-index part the 

error signal ( )d n  is multiplied by 0K  to obtain the wavelet subband 
1HX . 

 

Fig. 1 – The lifting-based WT. 

 

Note that the output results of 1LX  and 
1HX  obtained by using the lifting-

based WT are the same as those of using the convolution approach for the same 

input even if they have completely different functional structures. Compared 

with the traditional convolution-based WT, the lifting-based scheme has several 

advantages. First, it makes optimal use of similarities between the highpass and 

lowpass filters; the computation complexity can be reduced by a factor of two. 

Second, it allows a full in-place calculation of the wavelet transform. In other 

words, no auxiliary memory is needed. 

3 Biorthogonal Wavelets CDF 9/7 

This article deals with biorthogonal wavelet 9/7. These wavelets are part of 

the family of symmetric biorthogonal wavelet CDF. The low pass filters 

associated with wavelet 9/7 have 9p =  coefficients in the analysis, 7p =  

coefficients to synthesize, as described in Table 1. The biorthogonal wavelets 

9/7 are illustrated in Fig. 2, they have 4N =  null moments in analysis, and 

4N =  in synthesis.  
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The wavelets 9/7 have a great number of null moments for a relatively short 

support. They are more symmetrical and very close to orthogonality. This is an 

important feature in coding which ensures that the reconstruction error is very 

close to the quantization error in terms of mean squared error. Antonini and 

Barlaud were the first [8] to show the superiority of the biorthogonal wavelet 

transform 9/7 for the decorrelation of natural images. It has been widely used in 

image coding [9, 10] and is used by the JPEG-2000 codec [11]. 
 

Table 1a 

The analysis filter coefficients. 

Analysis filter coefficients 

i Low-pass filter High-pass filter 

0 
0.6029490182363579 

0.6029490182363579 
+ 1.115087052457000 

±1 + 0.266864118442875 + 0.591271763114250 

±2 – 0.078223266528990 – 0.057543526228500 

±3 – 0.016864118442875 – 0.091271763114250 

±4 + 0.026748757410810  

Table 1b 

The synthesis filter coefficients. 

Synthesis filter coefficients 

i Low-pass filter High-pass filter 

0 + 1.115087052457000 0.6029490182363579 

±1 – 0.591271763114250 – 0.266864118442875 

±2 – 0.057543526228500 – 0.078223266528990 

±3 + 0.091271763114250 + 0.016864118442875 

±4  + 0.026748757410810 
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Fig. 2 – CDF 9/7 wavelet ψ  and ψ  dual. 

 

The Lifting scheme of the biorthogonal transform 9/7 goes through of four 

steps: two prediction operators and two update operators as shown it Fig. 3 

[12, 13]. 

 
(a) 

 
(b) 

Fig. 3 – Split, Predict and Update Steps of forward 

CDF 9/7 wavelet using Lifting scheme; 

(a) Lifting implementation of the analysis side of the CDF 9/7 filter bank; 

(b) Structure of the CDF 9/7 filter. 
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For lifting implementation, the CDF 9/7 wavelet filter pair can be 

factorized into a sequence of primal and dual lifting. The most efficient 

factorization of the polyphase matrix for the 9/7 filter is as follows [14, 15]: 

 

1 11 01 (1 ) 1 (1 )
( )

(1 ) 10 1 0 1

1 0 0
.

(1 ) 1 0 1/

a Z c Z
P Z

b Z

K

d Z K

− −⎡ ⎤ ⎡ ⎤+ +⎡ ⎤
= ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⋅ ⋅⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (1) 

The following equation describes the four “lifting” steps and the two 

“Scaling” steps.  

 

(2 1) (2 1) ( [ (2 ) (2 2)]),

(2 ) (2 ) ( [ (2 1) (2 1)]),

(2 1) (2 1) ( [ (2 ) (2 2)]),

(2 ) (2 ) ( [ (2 1) (2 1)]),

Y n X n a X n X n

Y n X n b Y n Y n

Y n Y n c Y n Y n

Y n Y n d Y n Y n

+ ← + + × + +⎧
⎪ ← + × − + +⎪
⎨ + ← + + × + +⎪
⎪ ← + × − + +⎩

 (2) 

 
(2 1) (2 1),

(2 ) (1 / ) (2 ),

Y n K Y n

Y n K Y n

+ ← − × +⎧
⎨ ← ×⎩

 (3) 

where the values of the parameters are: 

 

1.586134342,

0.0529801185,

0.8829110762,

0.4435068522,

1.149604398.

a

b

c

d

K

= −
= −
=
= −
=

 

The synthesis side of the filter bank simply inverts the scaling, and reverses 

the sequence of the lifting and update steps. Fig. 4 shows the synthesis side of 

the filter bank using lifting. 

 

Fig. 4 – Lifting implementation of the synthesis side of the CDF 9/7 filter bank. 
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4 SPIHT Coding Scheme 

When the decomposition image is obtained, we try to find a way to code 

the wavelet coefficients into an efficient result, taking redundancy and storage 

space into consideration. SPIHT [7] is one of the most advanced schemes 

available, even outperforming the state-of-the-art JPEG 2000 in some situations. 

The basic principle is the same; a progressive coding is applied, processing the 

image respectively to a lowering threshold. The difference is in the concept of 

zerotrees (spatial orientation trees in SPIHT). This is an idea that takes into 

consideration bounds between coefficients across subbands at different levels 

[9]. The first idea is always the same: if there is a coefficient at the highest level 

of the transform in a particular subband which considered insignificant against a 

particular threshold, it is very probable that its descendants in lower levels will 

be insignificant too. Therefore we can code quite a large group of coefficients 

with one symbol. Fig. 5 shows how a spatial orientation tree is defined in a 

pyramid constructed with recursive four subbands splitting. The coefficients are 

ordered hierarchically. According to this relationship, the SPIHT algorithm 

saves many bits that specify insignificant coefficients [16]. 

 

Fig. 5 – Parent-child relationship. 
 

The flowchart of SPIHT is presented in Fig. 6. As a First step, the original 

image is decomposed into ten subbands. Then the method finds the maximum 

and the iteration number. Second, the method puts the DWT coefficients into a 

sorting pass that finds the significance coefficients in all coefficients and 

encodes the sign of these significance coefficients. Third, the significance 

coefficients that can be found in the sorting pass are put into the refinement pass 

that uses two bits to exact the reconstruct value for approaching to real value. 
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The first second and third steps are iterative, then iteration decreases the 

threshold ( 1 / 2n nT T −= ) and the reconstructive value ( 1 / 2n nR R −= ). As a fourth 

step, the encoding bits access entropy coding and then transmit [17]. The result 

is in the form of a bitstream.  

All of the wavelet-based-image encoding algorithms improve the 

compression rate and the visual quality, but the wavelet-transform computation 

is a serious disadvantage of those algorithms. 

 

Fig. 6 – Flowchart of SPIHT. 

 

5 Compression Quality Evaluation 

The Peak Signal to Noise Ratio (PSNR) is the most commonly used as a 

measure of quality of reconstruction in image compression. The PSNR are 

identified using the following formulate: 

 
2

10

(Dynamics of image)
PSNR 10log

MSE

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (4) 

Mean Square Error (MSE) which requires two M N×  grayscale images I  

and Î , where one of the images is considered as a compression of the other is 

defined as: 

 ( )2

1 1 1

1 ˆMSE ² ( , ) ( , )
j Ni M

j

I i j I i j
M N

==

= =

= −
× ∑∑ . (5) 
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Usually an image is encoded on 8 bits. It is represented by 256 gray levels, 

which vary between 0 and 255, the extent of image dynamics is 255. 

The structural similarity index (SSIM) 

The PSNR measurement gives a numerical value on the damage, but it does 

not describe its type. Moreover, as is noted in [18, 19], it does not quite 

represent the quality perceived by human observers. 

For medical imaging applications, where images are degraded must 

eventually be examined by experts, traditional evaluation remains insufficient. 

For this reason, objective approaches are needed to assess the medical imaging 

quality. 

We then evaluate a new paradigm to estimate the quality of medical 

images, specifically the ones compressed by wavelet transform, based on the 

assumption that the human visual system (HVS) is highly adapted to extract 

structural information. 

The similarity index compares the brightness, contrast and structure 

between each pair of vectors, where the structural similarity index (SSIM) 

between two signals x  and y  is given by the following expression [20, 21]: 

 SSIM( , ) ( , ) ( , ) ( , )x y l x y c x y s x y= . (6) 

However, the comparison of brightness is determined by the following 

expression: 

 
1

1

2
( , )

x y

x y

C
l x y

C

μ μ +
=
μ + μ +

, (7) 

where the average intensity of signal x  is given by: 
1

1 N

x i

i

x
N =

μ = ∑ , 2

1 1( )C K L= , 

the constant 1 1K << , and L is the dynamic row of the pixel values (255 for an 

image in gray scale coded on 8 bits). 

The function of contrast comparison takes the following form: 

 
2 2

2

2
( , )

x y

x y

c x y
C

σ σ
=
σ + σ +

, (8) 

where 2 2( )x x xxσ = μ −μ  is the standard deviation of the original signal x , 

2

2 2( )C K L= , and the constant 2 1K << . 

The function of structure comparison is defined as follows: 

 
3 3

3 3

cov( , )
( , )

xy

x y x y

C x y C
s x y

C C

σ + +
= =
σ σ + σ σ +

, (9) 
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where cov( , ) xy x yx y = μ −μ μ , and 2
3

2

C
C = . 

Then the expression of the structural similarity index becomes: 

 
1 2

2 2 2 2

1 2

(2 )(2 )
SSIM( , )

( )( )

x y xy

x y x y

C C
x y

C C

μ μ + σ +
=

μ + μ + σ σ +
. (10) 

Finally the quality measurement can provide a spatial map of the local 

image quality, which provides more information on the image quality 

degradation, which is useful in medical imaging applications. 

For application, we require a single overall measurement of the whole 

image quality that is given by the following formula: 

 
1

1ˆ ˆMSSIM( , ) SSIM( , )
M

i i

i

I I I I
M =

= ∑ , (11) 

where I  and Î  are respectively the reference and degraded images, iI  and ˆ
iI  

are the contents of images at the i -th local window. 

M  is the total number of local windows in image. The MSSIM values 

exhibit greater consistency with the visual quality. 

6 Results and Discussion 

We are interested in lossy compression methods based on 2D wavelet 

transforms because their properties are interesting. Indeed, the 2D wavelets 

transform combines good spatial and frequency locations. As we work on 

medical image, the spatial location and frequency are important [22, 23]. 

We applied the proposed algorithm on test image ‘Lena’ of size 512×512 

encoded by 8bpp. 

 

Fig. 7 – Original image. 

The importance of our work lies in the possibility of reducing the rates for 

which the image quality remains acceptable. Estimates and judgments of the 
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compressed image quality is given by the PSNR evaluation parameters and the 

MSSIM similarity Index. 

Fig. 8 shown below illustrates the compressed image quality for different 

bit-rate values (number of bits per pixel). 

To show the performance of the proposed method, we will now make a 

comparison between these different types of transform (CDF 9/7 (Filter Bank); 

Gall5/3 (Lifting scheme) and CDF9/7 (Lifting scheme)) coupled with the 

SPIHT coding and CDF9/7 (Lifting scheme) combined with the EZW coding. 

For each application we vary the bit-rate 0.125 to 2, and we calculate the PSNR 

and MSSIM. The results obtained are given in Table 2. 

 

(a) Ratio = 98.44 % ; PSNR 

= 24.50dB 

MSSIM = 0.68 

(b) Ratio = 96.88 % ; 

PSNR = 30.60 dB 

MSSIM = 0.84 

 

(c) Ratio = 93.75% ;  

PSNR = 35.41 dB 

MSSIM = 0.91 

(d) Ratio = 90.63%; 

PSNR = 37.74 dB 

MSSIM = 0.93 

(e) Ratio = 87.50 %;  

PSNR = 39.36 dB 

MSSIM = 0.95 

 

(f) Ratio = 75.00%; 

SNR = 43.88 dB 

MSSIM = 0.98 

Fig. 8 – Lena image compressed with CDF9/7 (Lifting scheme) and SPIHT coding. 
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Table 2 

PSNR and MSSIM variation using different methods (Lena). 

CDF9/7 (Lifting) 

+ SPIHT 

Gall5/3 (Lifting) 

+ SPIHT 

CDF9/7(Filter bank) 

+ SPIHT 

CDF9/7 (Lifting) 

+ EZW cR  

(bpp) 
PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM 

0.125 24.50 0.68 25.41 0.71 23.55 0.67 23.37 0.64 

0.25 30.60 0.84 30.56 0.84 27.97 0.80 27.52 0.76 

0.5 35.41 0.91 34.92 0.90 32.33 0.88 32.31 0.86 

0.75 37.74 0.93 37.20 0.93 35.80 0.92 34.25 0.90 

1 39.36 0.95 38.78 0.94 36.63 0.93 35.97 0.91 

1.5 41.61 0.96 41.25 0.96 38.66 0.95 38.40 0.94 

2 43.88 0.98 43.24 0.97 41.37 0.97 39.65 0.95 

 

In this article we have applied our algorithm to compress medical images. 

For this reason, we have chosen an axial slice of human brain size 512x512 

(grayscale) encoded on 8 bits per pixel, recorded by means of an MRI scanner 

(Fig. 9). This image is taken from the GE Medical System database [24]. 

 

 

Fig. 9 – Original image (Brain Axial slice). 

 

Fig. 10 illustrates the compressed image quality for different bit-rate values 

(number of bits per pixel). According to the PSNR and MSSIM values, we note 

that from 0.5bpp, image reconstruction becomes almost perfect. 

To show the performance of the proposed method, we make a comparison 

between these different types of transform (CDF 9/7 (Filter Bank); Gall5/3 

(Lifting scheme) and CDF9/7 (Lifting scheme)) coupled with the SPIHT coding 

and CDF9/7 (Lifting scheme), combined with the EZW coding. For each 

application we vary the bit-rate from 0.125 to 2, and we calculate the PSNR and 

MSSIM. The results obtained are given in Table 3. 
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(a) Ratio=98.44 % ; 

PSNR=19.79 dB 

MSSIM = 0.59 

(b) Ratio=96.88 % ; 

PSNR=25.74 dB 

MSSIM = 0.76 

(c) Ratio=93.75 % ; 

PSNR=34.95 dB 

MSSIM = 0.91 

   

(d) Ratio=90.63 % ; 

PSNR=40.74 dB 

MSSIM = 0.97 

(e) Ratio=87.50 % ; 

PSNR=45.03 dB 

MSSIM = 0.99 

(f) Ratio=75.00 % ; 

PSNR=55.17 dB 

MSSIM = 1.00 

Fig. 10 – Compressing of a axial slice with CDF9/7 

(Lifting scheme) and SPIHT coding. 

 

The comparison in terms of image quality for the four algorithms is given 

by the PSNR and MSSIM curves represented in Figs. 11 and 12. 

By comparing the different values of PSNR and MSSIM, we show clearly 

the effectiveness of our algorithm in terms of compressed image quality. 

This study was subsequently generalized to a set of medical images of the 

GE Medical Systems database. The Fig. 13 presents the results obtained after 

application of our algorithm on various slices. These results are obtained with a 

0.75 bpp bite-rate. We note that our algorithm is adapted for the MRI medical 

image compression. 

We can observe that compression degrades to a lessen extent the image 

structure for a low compression bit-rate. However, for high compression bit-

rate, our algorithm better safeguards the various image structures. 
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Table 3 

PSNR and MSSIM variation using different methods (Axial slice). 

CDF9/7 (Lifting) 

+ SPIHT 

Gall5/3 (Lifting) 

+ SPIHT 

CDF9/7(Filter bank) 

+ SPIHT 

CDF9/7 (Lifting) 

+ EZW 
Rc 

(bpp) 

PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM 

0.125 19.79 0.59 19.46 0.65 18.38 0.59 19.44 0.58 

0.25 25.74 0.76 24.93 0.77 23.62 0.63 22.65 0.70 

0.5 34.95 0.91 34.14 0.91 32.22 0.80 29.85 0.82 

0.75 40.74 0.97 40.21 0.97 37.88 0.89 34.61 0.90 

1 45.03 0.99 44.38 0.99 42.32 0.95 37.93 0.94 

1.5 50.76 1.00 50.04 1.00 48.07 0.98 43.27 0.98 

2 55.17 1.00 54.35 1.00 52.19 0.99 46.77 0.99 

 
Fig. 11 – PSNR variation using different methods. 

 
Fig. 12 – MSSIM variation using different methods. 
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Axial Slice of the brain (MRI) 

Ratio = 90.63 % ; 

PSNR = 39. 49 dB 

MSSIM = 0.96 

 

Coronal Slice of the brain (MRI) 

Ratio = 90.63 % ; 

PSNR = 36.45dB 

MSSIM = 0.94 

 

Axial Slice of the brain (CT) 

Ratio = 90.63 % ; 

PSNR = 36.10 dB 

MSSIM = 0. 92 

 

Echography image 

Ratio = 90.63 % ; 

PSNR = 35.68 dB 

MSSIM = 0. 92 

Fig. 13 – Compressing of different slices by CDF9/7 (Lifting scheme) and SPIHT coding. 

7 Conclusion 

The objective of this paper is undoubtedly the enhancement of medical 

images quality after the compression step. The latter is regarded as an essential 

tool to aid diagnosis (storage or transmission) in medical imaging. We used the 

Biorthogonal CDF9/7 wavelet compression based on lifting scheme, coupled 

with the SPIHT coding. After several applications, we found that this algorithm 

gives better results than the other compression techniques. 

To develop our algorithm, we have applied this technique on different types 

of medical images. We have noticed that for 0.75  bpp bit-rate, the algorithm 

provides very important PSNR and MSSIM values for MRI images and it is 

more suitable for this category of images. Thus, we conclude that the results 
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obtained are very satisfactory in terms of compression ratio and compressed 

image quality. In perspective, we aspire to apply our algorithm to compress 

video sequences. 
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