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Energy Tunneling Through Narrow Waveguide 
Channel and Design of Small Antennas* 

Miranda Mitrović1, Branka Jokanović1 

Abstract: In this paper we investigate the conditions for energy tunneling 
through narrow channel obtained by reducing the height of rectangular 
waveguide. Tunneling of the energy occurs at the frequency for which the 
effective dielectric permittivity of the channel becomes equal to zero, so it can be 
treated as an ENZ (epsilon-near-zero) metamaterial. We investigated how 
geometry of the channel and dielectric permittivity affect the transmission 
coefficient and field density in the channel. Adding slots in the channel, which 
are placed orthogonally to the wave propagation, we designed a small antenna 
with directivity of 5.44 dBi at the frequency of 3 GHz. 

Keywords: ENZ metamaterial, Zeroth-order resonance, Fabry-Perot resonance, 
High-directivity antenna. 

1 Introduction 
During the last decade there has been a great interest in metamaterials 

whose relative dielectric permittivity rε  is close to zero (epsilon-near-zero, 
ENZ metamaterials). This kind of metamaterials can be designed using standard 
techniques, like split-ring resonators [1], however dispersion characteristic of 
rectangular waveguide near the cut-off frequency can also be used to mimic the 
behaviour of ENZ metamaterial [2]. There can be a number of applications for 
this structure, from cloaking devices [3], confining energy beyond diffraction 
limit, and waveguide coupling through very narrow channel without energy 
loss, to designing small, and high-directivity antennas. 

2 Theoretical Analysis 
Rectangular waveguide with width a  and height b  (where a b> ) can 

support propagation of TE and TM modes. The mode cut-off frequency is 
determined by expression: 
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where rε  is relative dielectric permittivity of the material filling the waveguide. 

 
Fig. 1 – The sequence of modes in rectangular waveguide with height b = a/2. 

 
It can be seen clearly from Fig. 1 that dominant mode in rectangular 

waveguide is TE10, while the next mode is TE20. Frequency range between cut-
off frequencies of those two modes is marked as a pass band of rectangular 
waveguide. It is important to emphasize that cut-off frequencies of TE10 and 
TE20 modes do not depend on b  since 0n = . But, if we reduce the height of 
rectangular waveguide b , the cut-off frequencies for higher modes for which 

0n ≠ , will shift toward higher frequencies. 
If we start to reduce the height of rectangular waveguide continuously 

(Fig. 2), it is intuitively obvious that at one point the reflection coefficient will 
considerably grow and stop propagation of energy through the very narrow 
channel. 

 
Fig. 2 – The reduction of waveguide height b. 
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If instead of configuration in Fig. 2 we use the structure shown in Fig. 3 
with Π-channel, transmission will be possible in the narrow frequency band as 
long as dielectric permittivity of material filling the channel is smaller than in 
input waveguides. Later on, the explanation of this phenomena will be provided. 

 
Fig. 3 – Waveguide with narrow Π-channel (bch<< b). 

 
According to [2], it is possible to consider propagation of TE10 mode in a 

narrow rectangular waveguide as propagation of TEM mode in a parallel plate 
waveguide with effective permittivity reffε : 
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The effective permittivity of the channel can be derived as: 
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Here c is the speed of light in vacuum, and rε  is dielectric permittivity of 
the channel. It can be easily seen that reffε  equals to zero at the cut-off 

frequency of the channel: (10) 2c rf c a= ε . This explains why we can consider 
this structure as an ENZ metamaterial around frequency (10)cf . 

Structure in Fig. 3 consists of two rectangular waveguides connected by 
narrow channel. Dielectric permittivity of material in the input waveguides 
should be greater than in the channel, in order to provide transmission of the 
tunnelling frequency within the pass band of input waveguides. Taking into 
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account that reffε  in the channel is near zero close to cut-off frequency, which is 
not equal to zero, we come to conclusion that wave vector β  is also closed to 
zero and wavelength approaches infinity. This kind of behaviour is 
characteristic for balanced left-handed (LH) metamaterials that have the zeroth-
order frequency (ZOR) [6] at the transition between left- and right-handed 
regions. At that frequency β  is equal to zero. Energy transfer through the 
channel at ZOR  frequency is obtained with relatively small losses. Also, field is 
constant along the channel and field density is a very large and proportional to 
waveguide/channel height ratio.  

3 Simulation Results for ENZ Channel 
We considered firstly, the structure from Fig. 2 with waveguide width and 

height a = 101.6 mm and b = a/2 = 50.4 mm. Since dielectric permittivity in the 
input waveguides is 2rε = , cut-off frequency for TE10 mode is 1.044 GHz, and 
for TE20 mode 2.088 GHz. Values for the channel height are chosen to be: 
bch1 = b, bch2 = b/2=25.4 mm, bch3 = b/8 = 6.35 mm and bch4 = b/64 = 0.8mm. 
Simulation results for transmission and reflection coefficients are shown in 
Figs. 4a and 4b respectively. 

1,0 1,2 1,4 1,6 1,8 2,0
-15

-10

-5

0
i ii

iii

iv

f  [GHz]

S
21

 [d
B

]

(a) 

1,00 1,25 1,50 1,75 2,00
-15

-10

-5

0
iv

iii

ii

f  [GHz]

S 11
 [d

B]

 
(b) 

Fig. 4 – Transmission (a) and reflection coefficients (b) for different values of bch: 
(i) bch1 = b = 50.8 mm,  (ii) bch2 = =25.4 mm,  (iii) bch3 = 6.35 mm;  (iv) bch4 = 0.8 mm. 

 

As can be seen from Fig. 4, even if the height of waveguide is reduced at 
some point to the half of its original size, transmission is still possible. 
Considerable reduction of transmission coefficient occurs when the channel 
height is less then bch3 = b/8 as a consequence of large reflection at the 
discontinuity. 
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Fig. 5 – Transmission coefficient for Π-channel for bs = bch = 0.8 mm. 

 
To compensate the influence of discontinuity at the channel/waveguide 

junctions, we added two transition layers with thickness bs = bch, which form  
Π-channel, as it is shown in Fig. 3 (values of a and b are the same as before). 
Dielectric permittivity of the channel and transition area is 1rchε =  (air),  
and of input waveguides 2rε = . Transmission coefficient for Π-channel with 
bs = bch = 0.8 mm is shown in Fig. 5. It can be seen that the first transmission 
peak appears at 1.476 GHz and represents the zeroth-order resonance, ZOR. 
That is actually the frequency at which the energy tunnelling is appeared, since 
the effective permittivity is equal to zero. The second transmission peak is due 
to Fabry-Perot resonance and its position strongly depend on the channel length, 
which is not the case for ZOR, as long as bch << a [7]. 

The field distribution in ENZ channel and real part of Poynting vector are 
shown in Figs. 6a and 6b respectively. 

In approximation of perfectly conducting metallic walls and lossless 
dielectrics, field density in the channel is increased with reduction of channel 
height and transmission is perfect. In reality, field density in channel is 
restricted by break down voltage in dielectric and transmission is lowered due to 
finite conductivity of metallic walls and dielectric losses. Simulated results for 
bch1 = b/16 = 3.18 mm and bch2 = b/64 = 0.8 mm are shown in Fig. 7. Metal used 
is copper with σ = 58 MS/m. Detailed discussion on losses in ENZ channel is 
given in our previous work [8]. 

As it was pointed out before, the second transmission peak is due to Fabry-
Perot resonance and is highly dependent on the channel length, that is not the 
case with the zeroth-order resonance (ZOR) frequency at which tunneling of 
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energy is occurred. Change of Fabry-Perot resonance for various lengths of a 
narrow channel (bch = b/64 = 0.8 mm, L1 = 95.25 mm, L2 = 127 mm and 
L3 = 190.5 mm) can be seen in Fig. 8. This property can be used to manipulate 
the second transmission peak in order to remove it or leave it within the pass 
band of the waveguide. 

 
(a) 

 
(b) 

 

Fig. 6 – (a) Field distribution in a narrow channel shows 
H-field density inside the channel enhanced by factor b/bch in comparison to 

field in waveguide sections; field density is constant along the channel; 
(b) Real part of Poynting vector shows energy flow through the channel; energy is 
concentrated in the middle of the channel and gradually descending toward edges. 
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Fig. 7 – Transmission coefficient for different values of channel height bch: 

(i) bch1 = 3.18 mm,   (ii) bch2 = 0.8 mm. 
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Fig. 8 – Shifting the second transmission peak 

(Fabry-Perot resonance) due to variation of channel length: 
(i) L1 = 95.25 mm,  (ii) L2 = 127 mm,  (iii) L3 = 190.5 mm. 

 

4 Antenna Design and Simulation Results  

Using ENZ channel, simple antenna can be designed by placing one or few 
slots on the top or bottom side of ENZ channel along or normal to the direction 
of propagation. If the slots are oriented along the propagation direction they 
should be placed at a certain distance from the middle of the channel in order to 
get noticeable radiation. Much higher radiation can be achieved if the slots are 
perpendicular to the direction of wave propagation. Simulated radiation pattern 
for two slots placed symmetrically around the middle of the channel and 
perpendicular to the direction of propagation are given below. Channel 
dimension is 50×50 mm, slots dimensions are 1×50 mm, and the distance 
between them is 3 mm. 

The main drawback of this antenna is that it operates in very narrow 
frequency range, as can be seen in Fig. 9b. The level of radiation here is shown 
through the value of 2 2

11 21S Sρ = −  since designed antenna is a progressive 
wave antenna. 

Radiation patterns with respect to φ and θ are given in Figs. 10a and 10b. It 
can be seen that this antenna has following 3dB-beamwidths: θH3dB = 139.7° and 
θE3dB = 84.3° that gives very high directivity of 5.44 dBi. 



M. Mitrović, B. Jokanović 

70 

  
(a)   

2,90 2,95 3,00 3,05
0,0

0,2

0,4

0,6

0,8

1,0

f [GHz]

 r

-25

-20

-15

-10

-5

0

  S
11

 [d
B

]

 
(b) 

 
 

 
(c) 

Fig. 9 – (a) 3D radiation pattern;  (b) Radiated power and reflection coefficient;  
(c) E-field in configuration with two radiating slots in the middle of the channel. 

 

 
(a) 

 
(b) 

Sl. 10 – Radiation pattern for: (a) φ = 0° (E-plane) and φ = 90° (H-plane); 
(b) θ = 15°, θ = 45° and θ = 75°. 
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6 Conclusion 
In this paper we investigate how geometry parameters of the ENZ channel 

influence the energy tunneling through the channel. If the channel height is 
getting smaller, the energy confining is increased, as well as the reflection and 
losses, while the frequency range in which tunneling occurs becomes narrower. 
Changing the channel length affects only the position of Fabry-Perot 
transmission peak, while there is no influence to ZOR resonance. ENZ channel 
is used in design of a small, high-directivity antenna which consists of two 
vertical slots, perpendicular to wave propagation. 
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