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Electronic States and Optical Transitions in a 
Graphene Quantum Dot in a Normal Magnetic Field* 

Marko Grujić1, Milan Tadić1 

Abstract: An analytical approach using the Dirac-Weyl equation is implemented 
to obtain the energy spectrum and optical absorption of a circular graphene 
quantum dot in the presence of an external magnetic field. The results are 
obtained for the infinite-mass and zigzag boundary conditions. We found that the 
energy spectra of a dot with zigzag boundary condition exhibit a zero energy 
band regardless of the value of the magnetic field, while for the infinite mass 
boundary conditions, the zero energy states appear only for high magnetic fields. 
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1 Introduction 
Graphene is an allotrope of carbon which, due to its novel properties, has 

attracted considerable attention recently [1, 2]. The energy spectrum of 
graphene is linear at two inequivalent points ( K  and K ′ ) in the Brillouin zone. 
Such a linear behavior is a characteristic of relativistic massless particles, which 
can be studied using the Dirac-Weyl equation [3]. The manipulation of charge 
carrier states in graphene can be made either by using external magnetic fields, 
which lead to the appearance of Landau levels for an infinite graphene sheet, or 
by using finite size graphene quantum dots (GQD’s) [4]. 

Edge termination plays a major role in the energy spectrum of graphene. 
For a zigzag termination in graphene nanoribbons and graphene flakes, such as 
triangular and hexagonal GQD’s, a band of zero-energy edge-localized states is 
found [5, 6]. Except for the case where all the terminations of the graphene 
flake are armchair, the appearance of the zero energy states seems to be robust 
with respect to the edge roughness, as demonstrated by the persistent finite 
density of these states observed in realistic quasi-circular GQD’s [7]. 

It has been shown that graphene structures with zigzag segments on the 
edge are prone to spontaneous magnetic ordering, which can be approximately 
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treated by imposing the infinite mass boundary condition (IMBC) [8-10]. 
Recent calculations, however, suggest that the edge magnetization is not a 
robust property of the GQD. Several different factors might lead to the 
suppression of edge magnetization, such as impurities and edge defects [11, 12], 
the thermal instability of the lattice and the spontaneous edge reconstruction 
[12-14]. In the latter, even though the edge magnetism is suppressed, the edge 
states near the Fermi energy remain. Hence, the applications of the zigzag 
boundary condition (ZZBC) to the circular GQD’s seem to be more appropriate 
than the IMBC. However, if the spontaneous edge reconstruction could be 
suppressed by any means (like adsorbing the hydrogen atoms) [12], the 
application of the IMBC would be a better choice. Therefore, it is our goal to 
analyze and compare properties stemming from the two boundary conditions. 

In this paper, we analytically solve the Dirac-Weyl equation for a circular 
graphene quantum dot under a perpendicular magnetic field, for both infinite-
mass and zigzag boundary conditions. A comparison between the energy 
spectra for each boundary condition is made. Furthermore, we discuss the effect 
of a magnetic field on the optical spectrum of a circular GQD, where we 
analyze the effect of different boundary conditions (i.e. ZZBC and IMBC) on 
the interband optical transition. 

2 The Continuum Approach 
The Dirac-Weyl Hamiltonian for low-energy electron states in graphene, in 

the presence of a perpendicular magnetic field and a mass-related potential, 
reads  
 = ( ) ( )F zH v e V r+ + σp A σ . (1) 

Here σ  denotes the pseudo-spin Pauli matrix, which takes into account 
contributions of two different graphene sublattices. This equation holds for the 
K  valley states, and one should employ ∗σ  to consider states in the K ′  valley. 
We assume that the carriers are confined in a circular area of radius R , so that 

( ) = 0V r  for <r R , and ( )V r →∞  for r R≥ , where r  is the radial coordinate 
of the cylindrical coordinates system. In the case of the adopted ZZBC, the two 
Dirac cones are labeled by the quantum number k , which has the value 1+  in 
the K  valley, and 1−  in the K ′  valley. For the IMBC, however, we use the so 
called valley-isotropic form of the Hamiltonian, with fixed = 1k + , and the 
valleys are differentiated by another quantum number τ , which is employed in 
the boundary condition itself. Furthermore, we introduce the dimensionless 
variables = /r Rρ , 2 2 2= / 2 = / 2BR l eBRβ =  and 0= / = / FE E ER vε = , where 
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E  is the carrier energy, Fv  is the Fermi velocity, and Bl  is the magnetic length. 
Since [ ], = 0zH J , the total angular momentum is a conserved quantity, and thus 
the two-component wave function has the form:  

 1i
i

2

( )
( , ) = e

e ( )
m

k

r
r

r
φ

φ

χ⎛ ⎞
ψ φ ⎜ ⎟χ⎝ ⎠

. (2) 

where = 0, 1, 2,...m ± ±  is the angular momentum quantum number. The 
following boundary conditions 

 i2

1

( , ) = i e
( , )
R
R

φψ φ
τ

ψ φ
, (3) 

 1( , ) = 0.Rψ φ  (4) 

are examined. The form in (3) is called the infinite mass boundary condition 
(IMBC), where = 1( 1)τ + −  is employed for the ( )K K ′  states. The condition in 
(4) requires one of the wave function components to be equal to zero at the dot 
edge, and is called the zigzag boundary condition (ZZBC). The applicability of 
ZZBC is known to span a wide range of edge terminations, containing mixed 
zigzag and armchair boundaries, contrary to the armchair boundary condition, 
being applicable only to a small subset of purely armchair terminated structures 
[15]. Neither IMBC nor ZZBC admixes valleys, as their eigenstates belong to 
one or the other valley exclusively. 

2.1 Zero energy solutions 
When = 0ε , the differential equations (1) are decoupled and offer 

straightforward solutions of the form: 

 
2 /2

1 1( ) = emk kC βρχ ρ ρ    and   
2( 1) /2

2 2( ) = emk kC − + − βρχ ρ ρ . 

These solutions can not simultaneously satisfy the IMBC in (3) and be 
normalisable. Thus, there are no zero energy states in the IMBC spectrum. 

If the ZZBC given by (3) is employed, it is possible to find the 
normalisable zero energy solutions in both valleys. Those wave function 
components have the form 1( ) = 0χ ρ  and 

2( 1) /2
2 ( ) = emk kC − + − βρχ ρ ρ , with 

= 1, 2, 3,mk − − − … . Obviously, these states are completely pseudo-spin polari-
zed. The form of the wave function indicates that all states, except for = 1mk −  
ones, are edge localized. Furthermore, the states with the larger m  are 
localized closer to the edge. 
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2.2 Non-zero energy solutions for = 0β  
When 0ε ≠  and = 0β , (1) requires decoupling and offers solutions of the 

Bessel type 1 1( ) = ( ).mC Jχ ρ ερ  From (1), the relation between the first and the 
second component of the wave function follows  

 
i

2 1
e( , ) = ( , ),

k ki ik
φ

ρ φ

⎛ ⎞
ψ ρ φ − ∂ + ∂ + βρ ψ ρ φ⎜ ⎟ε ρ⎝ ⎠

 (5) 

and 
 2 1( ) = ( )m kikC J +χ ρ ερ . (6) 

The boundary condition (3) leads to the equation 1( ) = ( )m mJ J +τ ε ε , while 
the boundary condition (4) gives ( ) = 0mJ ε . Recalling that the Bessel functions 
obey properties ( ) = ( 1) ( )m

m mJ J−ε − ε  and ( ) = ( 1) ( )m
m mJ Jε − −ε , several 

interesting properties of the zero-field energy spectra are derived: i) for the 
ZZBC, the states of equal m  in both valleys have the same energy, whereas for 
the IMBC, the m  states in the K  valley have equal energies to the ( 1)m− +  
states in the K ′  valley; ii) for the ZZBC, positive and negative energy m  states 
are symmetric with respect to = 0ε , whereas for the IMBC, similar symmetry 
between the positive energy m  states and negative energy ( 1)m− +  states is 
found. This latter property indicates that the intervalley electron-hole symmetry 
between the states of the same m  is present when the IMBC is adopted. iii) 
According to i) and ii) we may deduce that the energy spectrum within each 
valley is either doubly degenerate (for 0m ≠ ) or non-degenerate (for = 0m ) if 
the ZZBC is adopted. This is not a case when the IMBC is adopted. 

2.3 Non-zero energy solutions for 0β ≠  
For the general case 0ε ≠  and 0β ≠ , the normalisable solution is 

 i
22i /2 2

11 1
2 1( , ) = e e , 1, ,

2 4
m m m kC F mφ −βρ ⎛ ⎞+ + ε

ψ ρ φ ρ − + βρ⎜ ⎟β⎝ ⎠
 (7) 

where we used the relation i
1 1( , ) = e ( )mφψ ρ φ χ ρ , obtained from (1) and (2), and 

i11 ( , , )F a b z  is the regularized confluent hypergeometric function. Having 
extracted the second component of the wave function from (5), the IMBC leads 
to the following eigenvalue equation: 

 i i
2 2

1 11 11 , 2, 1 , 1, = 0,
2 4 4

F m m F m m
⎛ ⎞ ⎛ ⎞τε ε ε

+ − + β − + − + β⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠
 (8) 
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while for the ZZBC we obtain  

 i
2

11
2 1 , 1, = 0.

2 4
m kF m

⎛ ⎞+ + ε
− + β⎜ ⎟β⎝ ⎠

 (9) 

One may notice that the positive-energy K  and negative-energy K ′  
spectra obtained from (8) are symmetric, since the choice > 0ε  and = 1τ +  
produces the same eigenvalue equation as the choice < 0ε  and = 1τ − . On the 
other hand, when the ZZBC is adopted, (9) depends on the 2ε , and 
consequently the electron and hole states in each valley exhibit symmetry. 

2.4 Energy spectrum 

 
Fig. 1 – Energy spectra of a circular graphene quantum dot in a perpendicular 

magnetic field for: (a) the IMBC;  (b) ZZBC. 
The K  valley spectrum is depicted by the solid blue lines, the K ′  spectrum 
is shown by the dashed red lines, while the zigzag zero energy band (ZES) 

is shown by the solid black line. Inset shows how the quantum dot states merge 
to form the first LL in the K  valleys for both adopted boundary conditions. 

Radius of the dot used in the calculation is = 70R nm. 
 

The six lowest energy levels in the analyzed GQD for each m  in the range 
[ 4,4]−  for the ZZBC and IMBC cases are shown in Figs. 1a and 1b, res-
pectively, for a dot with radius = 70R  nm. The spectrum at the K  valley is 
displayed by the solid blue lines, whereas the red-dashed lines denote the 
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energy levels at the 'K  valley spectrum. The zero energy localized zigzag state 
(ZES) is shown by the horizontal solid black line in Fig. 1b. As already pointed 
out, use of the IMBC is justified by the existence of the magnetization related 
confinement [16], which leads to the energy gap in the spectrum, as evident in 
Fig. 1a. The magnetic ordering at the dot edge breaks reversal symmetry, and 
thus the electron-hole symmetry for each valley is broken, even when an 
external magnetic field is absent. Therefore, the energies of the electron and 
hole states in a given valley are not mutually related. However, the magnetic 
ordering cannot break the intervalley electron-hole symmetry when the IMBC is 
adopted, and is demonstrated by the =K K ′ε −ε  relationship in Fig. 1a [17]. 

Unlike the IMBC, the application of the ZZBC produces the ZES, 
composed of the 1m ≤ −  states in the K  valley, and 1m ≥ +  states in the K ′  
valley (see Section 2.1). When the magnetic field increases, the quantum-dot 
states merge to form the Landau levels (LL’s) of graphene. In contrast to 
semiconductors, the LL’s in graphene are unevenly spaced and exhibit square-
root dependence on the magnetic field [2]. For the IMBC, the first LL ( =1n ) is 
composed out of 0m ≤  states, and the higher energy ( >1n ) LL's are formed 
out of <m n  states in both the K  and K ′  valleys. Such a behavior is similar to 
semiconductor QD's [18]. This behavior is also true for the LL’s in the K  
valley of the ZZBC, displayed as the solid lines in Fig. 1b. For the LL’s in the 
K ′  valley of the ZZBC we observe that the condensation rule is m n≤ . The 

0m ≤  states in the K ′  valley spectrum for the adopted ZZBC and the < 0m  
states in both valleys for the applied IMBC form the zero energy ( = 0n ) 
Landau level (ZLL). We point out that for both IMBC and ZZBC, only one of 
the valleys contributes to the zeroth Landau level in each band, which is known 
to be the case in massive graphene, and is the reason behind the anomalous 
QHE [2]. However, if the IMBC is adopted there are no physical solutions at 
zero energy, therefore the quantum dot states which form the ZLL cannot have 
an exact zero energy in the employed continuum model with this boundary 
condition. 

The asymptotic dependence of the energy levels for large β  is given by  

 , ( ) = 4 .n m n
ρ

ε β ± β  (10) 

Here the Landau level index is denoted by n . Furthermore, two different 
regimes of carrier confinement might be resolved: at low magnetic fields, the 
confinement is due to graphene termination (edge confinement). The influence 
of the edge is suppressed when the magnetic field is large, and the confinement 
becomes dominated by magnetic field. However, in the continuum model, no 
matter how high the magnetic field is, it will not suppress the zero energy band. 
ZES and it's degeneracy will persist throughout the magnetic confinement 
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regime in the ZZBC spectrum, while it’s wave function is pushed inwards, 
toward the center of the dot (see Section 2.1). For both adopted boundary 
conditions, the transition between the two confinement regimes takes place as 
the magnetic field increases (see Fig. 1). We may define the transition points as 
the points where the energies of the states in the quantum dot differ negligibly 
from the LL energy. Such defined transitions shift towards a larger magnetic 
field when m  increases. The displayed dependence of the energy levels in the 
analyzed circular GQD is consistent with experiments [19], which have shown 
that the Landau levels in graphene indeed possess a square root dependence on 
the magnetic field, and also prove the existence of the = 0n  LL at the Dirac 
charge neutrality point. We should note that the observed dependence of the 
electron and hole energy levels on magnetic field differ from the one in 
semiconductor quantum dots, where neither ZES nor = 0n  LL are found, and 
the Landau levels increase linearly with β . Moreover, energies of the negative 
m  states obtained from (9) have a tendency to undershoot the positive m  
energies of the same Landau level, which is not the case of solutions of (10), as 
the inset in Fig. 1a displays. 

2.5 Optical absorption 
Optical absorption, for transition between states i and j, is measured by 

 
2 2=| | | |

i p
ij i jM re

φ
〈Ψ Ψ 〉 . (11) 

Having calculated the matrix elements describing the transition for each 
possible pair of states, we introduced the Lorentzian-type broadening for the 
absorption spectrum, and also Fermi-Dirac statistics. The spectrum broadening 
parameter is assumed to be 1 meV in our calculations. The total absorption 
spectrum is taken to be the sum of all individual transitions ,,

( ) = ( )i ji j
A E A E∑  

for both valleys. The integral with respect to φ  is finite when =j im m . 
Furthermore, no selection rule applies to n , which contradicts the case of 
massive graphene, where the transitions are allowed only between adjacent 
Landau levels [20]. 

Although transitions between states which do not differ by 1±  in the value 
of n  are allowed in the GQD, we found that their contribution to the overall 
absorption is a few orders of magnitude smaller than the contribution of the 

1n n→ ±  transitions. The matrix elements between the six lowest energy states 
for m  in the range [ 4, 4]− +  are taken into account when computing the 
absorption spectra. The absorption spectra for = 0Fε  and three values of the 
magnetic field, = 5β , 10, and 15, are shown in the left and right panel of Fig. 2 
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for = 100T  and = 300T  K, respectively. The strongest absorption line is due 
to the = 1 = 0n n− →  and = 0 = 1n n→  transitions for the IMBC and for 
transitions between ZES and = 1n ±  LL for the ZZBC.  

 
Fig. 2 – The absorption spectrum ( )A ε  for = 0Fε , 
and both boundary conditions. Left and right panels 
correspond to temperatures = 100T  K and 300  K: 
(a) = 0Fε , = 100T  K;   (b) = 0Fε , = 300T  K; 
(c) = 0Fε , = 100T  K;   (d) = 0Fε , = 300T  K. 

 

The absorption spectra for the ZZBC Fig. 2c and 2d, display similar 
features as the absorption for the IMBC. In addition to the bright spot, the 
absorption spectra for both applied boundary conditions exhibit the bright and 
narrow absorption line, which is stronger for the IMBC. This absorption takes 
place by means of the = 1 = 0n n− →  and = 0 = 1n n→  transitions in the case 
of the IMBC. For this case, the energies of the transitions between the states in 
the two valleys are equal, which is favorable for the appearance of this line. On 
the other hand, for the adopted ZZBC the energy spectrums of the electron and 
hole are symmetric within each valley, whereas the intervalley electron-hole 
symmetry does not exist. It leads to less pronounced central absorption peak in 
the spectrum, which is due to transitions between the ZES and = 1n ±  LL in the 
both valleys. The other noteworthy feature for the ZZBC and = 0Fε  is the 
absorption due to the interband transitions between the = 0n  quantum-dot 
states in the K ′  valley, whose transition energy tends to zero when the 
magnetic field increases. 
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3 Conclusion 
The electron and hole states in a monolayer graphene circular quantum dot 

are modelled using the Dirac-Weyl equation. Two distinct types of boundary 
conditions are employed, namely the infinite-mass and the zigzag boundary 
conditions, which describe magnetic ordering at the edge and the edge 
reconstruction, respectively. The energy gap is found only for the infinite-mass 
boundary condition, whereas the peculiar zero energy state, which is pseudo-
spin polarized and localized close to the zigzag boundary, exists when the 
zigzag boundary condition is adopted. Increase of the magnetic field diminishes 
influence of the edge on the electron confinement, and the states merge into 
Landau levels. The obtained spectra exhibit different symmetries between the 
electron and hole spectra, and also different intervalley symmetries. 

Furthermore, the boundary conditions and the intervalley symmetry are 
found to influence the absorption spectra. Equal transition energies in the two 
valleys lead to the most intense absorption line for the adopted infinite mass 
boundary condition. On the other hand, different transitions energies in the two 
valleys lead to much smaller absorption if the zigzag boundary conditions are 
adopted. 
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