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Static Security Based Available Transfer Capability 
(ATC) Computation for Real-Time Power Markets 

Chintham Venkaiah1,a), Dulla Mallesham Vinod Kumar1,b) 

Abstract: In power system deregulation, the Independent System Operator 
(ISO) has the responsibility to control the power transactions and avoid 
overloading of the transmission lines beyond their thermal limits. To achieve 
this, the ISO has to update in real-time periodically Available Transfer 
Capability (ATC) index for enabling market participants to reserve the 
transmission service. In this paper Static Security based ATC has been computed 
for real-time applications using three artificial intelligent methods viz.: i) Back 
Propagation Algorithm (BPA); ii) Radial Basis Function (RBF) Neural network; 
and iii) Adaptive Neuro Fuzzy Inference System (ANFIS). These three different 
intelligent methods are tested on IEEE 24-bus Reliability Test System (RTS) and 
75-bus practical System for the base case and critical line outage cases for 
different transactions. The results are compared with the conventional full AC 
Load Flow method for different transactions. 

Keywords: Available transfer capability, Intelligent techniques, Power system 
deregulation, Real-time power markets, Security analysis. 

Introduction 
The Available Transfer Capability (ATC) of a transmission network is the 

unutilized transfer capability of a transmission network for the transfer of power 
for further commercial activity, over and above already committed usage [1]. 
Power transactions between a specific seller bus/area and a buyer bus/area can 
be committed only when sufficient ATC is available. Thus such transfer 
capability can be used for reserving transmission services, scheduling firm and 
non-firm transactions and for arranging emergency transfers between seller 
bus/area and buyer bus/areas of an interconnected power system network. 

Christie et. al. [2] reported that the US Federal Energy Regulatory 
Commission (FERC) began the federal deregulation process by requiring“open 
access” to transmission services, so that all companies owning generation would 
have equal opportunity to locate and obtain transmission services between their 
generation sites and their customers. The ATC values for the next hour and for 
each hour into the future would be placed on a website known as the Open 
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Access Same-time Information System (OASIS), to be operated by Independent 
System Operator (ISO). Anyone wishing to send a power transaction on the 
ISO’s transmission system would access OASIS web pages and use the ATC 
information available there to determine if the transmission system could 
accommodate the transaction, and to reserve the necessary transmission service. 
Thus the ATC must be computed fast and accurately. Hamoud [3] described a 
method based on ATC concept for assessing the feasibility of simultaneous 
bilateral transaction and it utilized the Ontario Hydro’s Probabilistic Composite 
System Evaluation Program (PROCOSE) which employs DC Load flow to 
perform the analysis. Hamoud further [4] proposed a simple, efficient and 
practical method employing PROCOSE for determining the ATC between any 
two locations in the system and the ATC’s for selected transmission paths 
between them. Marija et. al. [5] discussed some theoretical aspects of ATC and 
the problems associated with its evaluation under open access. Viktor et. al. [6] 
included ATC in Optimal Transaction Management (OTM) method for 
remedial transactions curtailment and this method is found well suited for 
market-related analysis. Jayashree et. al. [7] proposed a unified optimization 
model and algorithm for assessing ATC and carrying out Congestion 
management using Unified Power Flow Controller (UPFC) in a deregulated 
Power Systems handling both pool and bilateral transactions. This method used 
DC Load flow model and repeated Linear Programming routine. The dc load-
flow-based methods [2-7] are a bit faster than their ac counterparts but model 
only real power flow (in Mega Watts) in the lines rather than MVA, and assume 
the network to be loss free.  

Ejebe et. al. [8] presented a detailed formulation and implementation of a 
fast program for ATC calculation based on the linear incremental power flow 
approximation.  Fradi et. al. [9] presented a method to calculate energy 
transaction allocation factors for allocation of any nonlinear transmission 
system quantity to the active transactions placed on a transmission system. 
Ashwani  and Srivastava [10] proposed a methodology based on AC Power 
Transfer Distribution Factors (ACPTDF) to allocate the active power loading in 
transmission lines. The methods based on power transfer /outage distribution 
factors [8-10] can cater to only the scenarios that are too close to the base case 
from which the factors are derived. 

Jain et. al. [11] presented an approach based on RBF neural network to rank 
contingencies expected to cause steady state bus voltage violations. Ejebe et. al. 
[12] implemented a methodology developed for ranking transmission line 
outages and generator outages according to the severity of their effects on bus 
voltage or line flows. Wu [13] proposed a novel algorithm for contingency ATC 
computation and a sensitivity analysis for system uncertainties. 

Luo et. al. [14] proposed a neural network solution methodology for the 
problem of real power transfer capability calculation. The Quick prop algorithm 
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is utilized to train the neural network for estimating the transfer capability and 
the inputs to neural network are generator status, line status and load status. The 
artificial neural network (ANN) method [14] requires a large input vector so 
that it has to oversimplify determination of ATC by limiting it to a special case 
of power transfer to a single area from all of the remaining areas. So this 
method is unable to track down the bus-to-bus transactions, which is the true 
spirit of deregulation. The Adaptive Neuro Fuzzy method has a limitation with 
the universal index as all the line outage cases are considered for two categories 
leading to inaccurate ATC values in most of the line outage cases. Khairuddin 
et. al. [15] proposed a novel method with the full details for determining ATC in 
a large power system from only three input variables through fuzzy modeling. 
Khairuddin et. al. [16] introduced the concept of variable slack bus and the 
source bus is assigned to slack bus for ATC computation. The ATC is computed 
based on the highest possible increment of sink bus load above the base case. 
Here, ANN techniques have not been integrated with fuzzy systems for fast 
ATC computation. 

In this paper to overcome the above limitations, to reduce the 
computational burden and to execute ATC in real time different Artificial 
Intelligence (AI) techniques viz., Back Propagation Algorithm (BPA), Radial 
Basis Function (RBF) Neural Network and Adaptive Neuro Fuzzy Inference 
System (ANFIS) have been utilized and compared with the AC Load flow based 
ATC. These methods are tested on standard IEEE 24-bus [17] Reliability Test 
System (RTS) and 75-bus [18] practical system, for base case and critical line 
outage cases, for different transactions. 

In recent years, hybrid fuzzy neural networks have attracted considerable 
attention for their useful applications in such fields as control, pattern 
recognition, image processing, forecasting etc. In all these applications, there 
are different fuzzy neural network architectures proposed for different purposes 
and fields. The integrated system will possess the advantages of both neural 
networks (e.g. learning abilities, optimization abilities, and connectionist 
structures) and fuzzy systems (e.g humanlike IF-THEN rules thinking and ease 
of incorporating expert knowledge). In this way, one can bring the low-level 
learning and computational power of neural networks into fuzzy systems and 
also high level, humanlike IF-THEN rule thinking and reasoning of fuzzy 
systems into neural networks. Thus, on the neural side, more and more 
transparency is pursued and obtained either by pre-structuring a neural network 
to improve its performances or by a possible interpretation of the weight matrix 
following the learning stage.  On the fuzzy side, the development of methods 
allowing automatic tuning of the parameters that characterize the fuzzy system 
can largely draw inspiration from similar methods used in the connectionist 
community. Thus, neural networks can improve their transparency, making 
them closer to fuzzy systems, while fuzzy systems can self adapt, making them 
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closer to neural networks. Integrated systems can learn and adapt new 
associations, new patterns and new functional dependencies. 

This paper is organized as follows. Section 2 details the problem 
formulation of ATC computation for real-time power markets. Section 3 gives 
an insight into Artificial Intelligent methods (BPA, RBF and ANFIS) 
application for ATC computation. Section 4 illustrates legibly the effectiveness 
of utilization of intelligent methods on standard IEEE 24-bus system and 
Practical Indian 75-bus system. The conclusions are presented in Section 5. 

2 Problem Formulation 
The ATC problem for real-time application has been attempted in two 

different ways i) Neural Network approach and ii) Adaptive Nero Fuzzy 
approach. For a given source-sink pair, tracing the least “indirect path” using 
line impedance data, identifies the neighboring bus. The one having the least 
impedance among all the possible indirect paths is chosen. If there are a number 
of buses on the chosen indirect path between a source and a sink then the bus 
immediately after the source is labeled as the neighboring bus.  A new universal 
index (γ) has been proposed to represent a given operating condition of a power 
system taking into account demands at all the buses except the sink and 
neighboring bus. At the sink bus load is to be increased until it violates the 
thermal limit and the neighboring bus is a generator bus. Hence the loads are 
considered at these two buses. 

The Universal index ( γ ) is defined as 
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where diP  is demand (MW) at bus i , N  is the total number of buses, sN  and 

nN  are sink and neighboring bus and maxA  is the thermal load ability (MVA) of 
the line having the highest limit in the system. 

The Performance Index (PI) for the purpose of contingency screening 
[11, 12] to identify the critical lines is defined as 
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magnitude at bus i ; iα  is user defined constant (Generally taken as 1), and sp
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is specified voltage magnitude at bus i. 
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2.1 Input variables 
The inputs to the neural network play a vital role to extract the features. 

Therefore to compute ATC between a given pair of source-sink buses in a large 
system, only three inputs are considered to a neural network for base case. 
These are sink bus injection ( sP ), the neighboring bus injection ( nP ) and the 
universal index ( γ ) for the base case. Binary inputs are used to represent critical 
line outages in addition to the base case inputs. The sink and neighboring bus 
injections are the differences between respective local generation and demand in 
MW. 

2.1.1 Neural network approach 
Apart from three inputs viz. the sink bus injection ( sP ), the neighboring bus 

injection ( nP ) and the universal index ( γ ), the critical line outages are 
represented by binary inputs that represent for each critical line outage 
condition. For example, two input binary variables can represent four 
conditions: 

0 0 – normal operating condition (Base case); 
1 0 – critical line-2 outage; 
0 1 – critical line-1 outage; 
1 1 – critical line-3 outage. 
Similarly to represent number of line outages (NL) we need only maximum 

of ( )1log2 +NL  inputs. Moreover by considering only critical line outages the 
number of inputs will be decreased. 

2.1.2 Adaptive Neuro Fuzzy Inference System (ANFIS) approach  
In Adaptive Neuro Fuzzy Inference System approach in addition to the 

three base case inputs, Category Index (C) is used to represent various critical 
line outages. Thus total inputs considered here are the sink bus injection ( sP ), 
the neighboring bus injection ( nP ), the universal index ( γ ) and the Category 
Index (C). The total number of inputs to the Adaptive Neuro Fuzzy Inference 
system including critical line outages is reduced to four. Compared to the neural 
network critical line outage representations, only one input category index (C) is 
required to represent critical line outages in the Adaptive Neuro Fuzzy 
Inference System viz.  

C = 1 for normal operating condition (Base case); 
C = 3 for critical line-2 outage; 
C = 2 for critical line-1 outage; 
C = 4 for critical line-3 outage. 
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As the number of inputs to the ANFIS are reduced to four compared to 
Neural Network approach (inputs are five considering critical line outages), the 
computational time will be reduced drastically. 

3 Artificial Intelligent (AI) Models 
3.1 Back Propagation Algorithm (BPA) 

A schematic diagram of the topology of BPA is shown in Fig. 1. This 
network consists of a set of n input neurons, m output neurons and one hidden 
layer of k intermediate neurons. Data flows into the network through the input 
layer, passes through the hidden layer and finally flows out of the network 
through output layer. The network thus has a simple interpretation as a form of 
input-output model, with network weights as free parameters. Such networks 
[19] can model functions of almost any arbitrary complexity, with the number 
of layer and number of neurons in each layer, determining the function 
complexity. 

In Fig. 1 the input signal iX  ( 1, ,i n= … ) are multiplied by the weights ijW ; 
then operated on by the activation function ( )f x  to produce the jb  of the 
hidden layer. Similar operations can be made on outputs of the network. Here 
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where ‘ f ‘ is a transfer function of activation function, which can take the form 
of non-linear function. For the non linear sigmoid function 
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Fig. 1 – Topology of a three layered MLP. 
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Training is a procedure used to minimize the difference between outputs of 
Multi-layer Perceptron (MLP) and the desired values by adjusting the weights 
of the network. Sets of input vectors are presented to the network until training 
is completed. Once the network is trained the new input data is presented to the 
network to determine the output. 

3.2 Radial Basis Function (RBF) Neural Network 
A potential advantage of Radial Basis Function Network (RBF) is its ability 

to augment new training data without the need for retraining. RBF has only one 
nonlinear hidden layer and linear output layer. During training, all of the input 
variables are fed to hidden layer directly without any weight and only the 
weights between hidden and output layers have to be modified using error 
signal. Thus, it requires less training time in comparison to BPA model. 

 
Fig. 2 – Radial Basis Function Network model. 

The RBF Neural Network is shown in Fig. 2. The RBF network [11] hidden 
layer has non-linear Gaussian function, which is defined by a center position 
and a width parameter. The width of the RBF unit controls the rate of decrease 
of function. The output of the i th unit ia  ( px ) in the hidden layer is given by 
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where jix  is centre of ith RBF unit for input variable j , iΨ  is width of i th RBF 
unit, jpx  is j th variable of input pattern p  and r  is dimension of input vector. 

The connection between the hidden units and the output units are weighted 
sums. The output value qpO  of the q th output node for p th incoming pattern is 
given as 
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where qiw  is weight between i th RBF unit and q th output node, qow  is biasing 
term at q th output node and H  is number of hidden layer (RBF) nodes. 

The parameters of the RBF units are determined in three steps of the 
training activity. First, the unit centers are determined by some form of 
clustering algorithm. Then the widths are determined by a nearest neighbor 
method. Finally, weights connecting the RBF units and the output units are 
calculated using delta rule. 

3.3 Adaptive Neuro Fuzzy Inference System (ANFIS) 
The fuzzy logic has two main advantages. The way fuzzy logic tackles the 

dimensionality of a problem is computationally more efficient than that by other 
artificial intelligence (AI) techniques (such as ANN, expert system, etc.). 
Another advantage is that fuzzy logic can capture uncertainties inherent in an 
incomplete or reduced set of data. It is noteworthy that rigorous mathematics 
intensive conventional methods have none of these two advantages.  

3.3.1 Fuzzification of Inputs 
Each of the inputs is converted from a single crisp value into a maximum of 

two fuzzy values using the widely used triangular functions that may overlap 
with one another as shown in Fig. 3. The x -axis in Fig. 3 represents the crisp 
values of i th input ( iI ) while the y-axis shows “membership grade” ( iμ ) that 
may vary from 0.0 to 1.0. Each triangle has a fuzzy attribute that can be coded 
by a linguistic variable (e.g., “low”) or a number implying level of fuzziness 
(e.g., 1). However, for the sake of mathematical representation, a number is 
used. The total number of such attributes or triangles for i th input is denoted by 

im . The x  coordinates of three vertices of each triangle are respectively ija , ijc  

and ijb , when 1,2, , ij m= … . Equation (7) shows crisp ( iI ) to fuzzy ( f
iI ) 

conversion for i th input [15] 
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where 1,2,3,4i =  (i.e., for ATC determination), 1I , 2I , 3I  and 4I  are sP , nP , 
γ  and C, respectively. 

The membership grade ( iμ ) corresponding to each fuzzy value of given 
crisp input can be obtained using (8): 
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where j  implies the numbers picked up by the i th input’s fuzzy value ( f
iI ) as 

in (7). 

 
Fig. 3 – Triangular membership function for ith input. 

3.3.2 Inference on ATC  
The rule-base relating ATC to the inputs for a large system is developed 

using Sugeno fuzzy model. A set of first-order polynomial equations is used to 
infer a crisp value of ATC from crisp values of four inputs. It should be noted 

that a given set of crisp values for the four inputs will not fire all of the 
4

1
i

i

m
=
∏  

rules rather q  number of rules when 41 2q≤ ≤  (i.e., one to sixteen rules). This 
is because, as shown in (7), each input’s crisp value has a maximum of two 
fuzzy values. The required overall crisp value ATC is obtained as in (9) that 
uses weighted average of the individual crisp outputs from each of the fired 
rules, that is oATC  
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where “o” implies each of the fired q rules, and oμ  is as in (10): 
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4
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where 1μ , 2μ , 3μ , 4μ  are the membership grades calculated using (8) 
respectively, for the four input fuzzy values ( i.e. 1 2 3, ,f f fI I I and 4

fI ). 

4 Simulation Results 
4.1 ATC for bilateral transactions on IEEE 24-bus RTS  

The IEEE 24-bus RTS [17] has been used to compare the performance of 
proposed Neural Networks & ANFIS methods with that of full AC load flow-
based ATC determination. The pair of buses 23 (source) and 16 (sink) is 
considered for illustrating the determination of ATC. The path 23-13-11-14-16 
has been identified as the one having the least impedance path among all of the 
indirect paths that connect 16 to 23. This has led to selection of bus 13 as the 
neighbor to this source–sink.  

4.1.1 Generation of patterns 
The Training and Testing patterns are generated using load-flow, treating 

bus 23 as slack, 16 and 13 both as PV (i.e., bus with specified real power and 
voltage) buses. The other bus types were retained as what those should be in a 
normal load flow. The load at sink bus (No. 16) was incremented in steps of 10 
MW to repeat the load flow until thermal limit is exceeded in any line of the test 
system. The maximum possible increment achieved above base-case load at the 
sink bus was the ATC for the corresponding case. 

4.1.2 Training 
Training sets provided to the neural network are representative of the whole 

state space of concern so that the trained system has the ability of 
generalization. Training patterns for the IEEE 24-bus RTS are composed of: 
Load levels of 50%, 75%, and 100% of base case while all lines in operation 
with different Sink bus injection. Contingency ranking is done on this system. It 
is found that the lines 7, 18 and 37 are the first three critical lines for the IEEE 
24-bus RTS.  Single Line outage of these lines at 50%, 75%, and 100% of base 
load with different Sink bus injection are considered for the pattern generation. 
Total 240 patterns are generated randomly, Out of which 180 patterns are used 
for the training and the remaining novel 60 patterns which are not the part of 
training pattern are used for the testing considering base case as well as the 
critical outage cases. There are 180 training patterns in total covering the base 
case and three critical line outage cases are considered. 
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4.1.3 Testing 
The trained neural network and ANFIS was tested using 60 patterns, which 

are composed of 30 load variation cases and 30 critical line outage cases with 
different sink bus injections. None of these 60 patterns were used in the training 
of the neural network. 

4.2 ATC for bilateral transactions on 75-bus practical system 
The 75-bus practical system [18] has been used to compare the 

performance of proposed Neural Networks & ANFIS methods with that of full 
AC load flow-based ATC determination.  The pair of buses 14 (source) and 5 
(sink) is considered for illustrating the determination of ATC. As there is no 
direct path between the source bus and sink bus one of the effective generator 
buses connected to the indirect path between buses 14 and 5 is taken as the 
neighboring bus. So generator bus 6 is taken as the neighboring bus. 

4.2.1 Generation of patterns 
The load at sink bus (No. 5) was varied in steps of 5 MW to repeat the load 

flow until thermal limit is exceeded in any line of the system.  The maximum 
possible increment achieved above base case load at the sink bus was the ATC 
for the corresponding case. 

4.2.2 Training 
Training sets provided to the neural network are representative of the whole 

state space of concern so that the trained system has the ability of 
generalization.  Training patterns for the 75-bus system are composed of: Load 
levels of 25%, 50% and 75% of base case while all lines in operation with 
different Sink bus injection.  Contingency ranking is done on this system. It is 
found that the lines 25, 22, 19 are the first three critical lines for the 75-bus 
system. Single Line outage of these lines at 25%, 50% and 75% of base load 
with different Sink bus injection are considered for the pattern generation. Total 
300 patterns are generated randomly, Out of which 210 patterns are used for the 
training and the remaining novel 90 patterns which are not the part of training 
pattern are used for the testing considering base case as well as the critical 
outage cases. There are 210 training patterns in total covering the base case and 
three critical line outage cases are considered. 

4.2.3 Testing 
The trained neural network and ANFIS was tested using 90 patterns, which 

are composed of different loading cases and different line contingency cases 
with different sink bus injections.  None of these 90 patterns were used in the 
training of the neural network. 
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4.3 Back Propagation Algorithm (BPA) for IEEE 24-bus RTS 
4.3.1 Input layer 

The input layer consists of five neurons to give inputs Sink bus injection 
( sP ), Neighboring bus injection ( nP ) and Universal Index ( γ ) and 2 binary 
inputs are selected to represent four cases as below. 

0 0 – for Base case; 
1 0 – for critical Line-18 outage; 
0 1 – for critical Line-7 outage; 
1 1 – for critical Line-37 outage. 

4.3.2 Output layer 
The output layer has only one neuron whose output is the ATC from bus 23 

to bus 16. 

4.3.3 Hidden layer 
The neural network with one hidden layer with 9 neurons has been 

considered by hit and trial, which has provided minimum error. Fig. 4 shows 
graphically the BPA based ATC as compared to exact values of ATC as 
determined from AC load flow based calculation [16] for IEEE 24-bus RTS.  

 
Fig. 4 – IEEE 24-bus RTS comparison of BPA 

Neural Network ATC and AC LF based ATC. 

4.4. Back Propagation Algorithm (BPA) for 75-bus practical system 
4.4.1 Input Layer 

The input layer consists of five neurons to give inputs Sink bus injection 
( sP ), Neighboring bus injection ( nP ) and Universal Index ( γ ) and 2 binary 
inputs are selected to represent four cases as below. 
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0 0 – for Base case; 
1 0 – for critical Line-22 outage; 
0 1 – for critical Line-25 outage; 
1 1 – for critical Line-19 outage. 

4.4.2 Output Layer 
The output layer has only one neuron whose output is the ATC from bus 14 

to bus 5. 

4.4.3 Hidden Layer 
The neural network with one hidden layer with 9 neurons has been 

considered by hit and trial, which has provided minimum error. Fig. 5 shows 
graphically the BPA based ATC as compared to exact values of ATC as 
determined from AC load flow based calculation [16] for 75-bus practical 
system.  

 
Fig. 5 – 75-bus practical system comparison of BPA 

Neural Network ATC and AC LF based ATC. 

4.5 Radial Basis Function Neural Network (RBFN) 
for IEEE 24-bus RTS & 75-bus practical system 
To demonstrate the effectiveness of the proposed RBF model, it has been 

trained and tested with the patterns generated as discussed in Sections 4.1 and 
4.2. The RBF model used here has same 5 neurons in the input layer, 1 neuron 
in the output layer as utilized for BPA. The number of hidden neurons selected 
as 75 with Gaussian density function. Euclidean distance-based clustering [11] 
technique has been employed in this paper to select the number of hidden (RBF) 
units and unit centers. The normalized input and output data are used for 
training of the RBF neural network. The optimal learning is achieved at the 
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global minimum of testing error. It was observed that the training in this case 
was faster and also its performance was better as compared to the BPA model. 

The training of RBF neural network requires less computation time as 
compared to the BPA model, since only the second layer weights have to be 
calculated using error signal. The training of RBF network has been made still 
faster by applying adaptive learning rate and momentum.  

 
Fig. 6 – IEEE 24-bus RTS comparison of RBF ATC and AC LF based ATC. 

Figs. 6 and 7 shows graphically the RBF neural network estimates for ATC 
as compared to exact values of ATC as determined from AC load flow method, 
for the IEEE 24-bus RTS and 75-bus practical system respectively. 

 
Fig. 7 – 75-bus practical system comparison of RBF ATC and AC LF based ATC. 
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4.6 Adaptive Neuro Fuzzy Inference System (ANFIS) for 
IEEE 24-bus RTS & 75-bus practical system 
ATC between a given pair of source-sink buses in a large system is 

determined using the same inputs as given in BPA and RBF methods, except 
instead of taking binary input variables for critical line outage conditions, a 
single variable is taken and it is given a separate integer value to distinct each 
outage case. The inputs thus become Sink bus injection ( sP ), neighboring bus 
injection ( nP ), Universal Index ( γ ) and category Index(C). 

The C value has been specified for the IEEE 24-bus RTS is as follows: 
C=1 for Base case; 
C=3 for critical line-18 outage; 
C=2 for critical line-7 outage; 
C=4 for critical line-37 outage. 
The C value has been specified for the 75-bus practical system is as 

follows: 
C=1 for Base case; 
C=3 for critical line-22 outage; 
C=2 for critical line-25 outage; 
C=4 for critical line-19 outage. 
These four inputs are fuzzified and ATC has been calculated. The numbers 

of fuzzy sets (attributes) chosen are respectively 3, 5, 3 and 4 for sP , nP , γ  and 
C. The linguistic attributes corresponding to three levels are low, medium, and 
high respectively. Since the neighboring bus may also have generation in excess 
of its local load, its membership levels are five implying negative high, negative 
low, zero, positive low, and positive high, respectively. For training by ANFIS, 
the MATLAB Fuzzy Toolbox [20] was used. Fig. 8 shows graphically the 
ANFIS estimates of the ATC as compared to exact values as determined from 
AC load flow based calculation for IEEE 24-bus Reliability Test system. 

The ATC values calculated for different test cases by the three methods are 
given in Table 1 for Base case and line outage cases along with the AC Load 
Flow based ATC values. Out of 60 test patterns the first 30 patterns presented in 
Table 1 correspond to normal operating condition and the remaining 30 patterns 
in Table 1 correspond to critical line outages with 10 patterns for each line. 

Fig. 9 shows the comparisons of ANFIS based ATC and AC LF based ATC 
results for the 75-bus practical system. 
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Fig. 8 – IEEE 24-bus RTS comparison of ANFIS ATC and ACLF ATC. 

Table 1 
ATC between bus 23 and bus 16 for IEEE 24-bus RTS (Base Case & Critical Line Outages). 
Test 

Patterns 
AC LF 

ATC(pu) 
BPA 

ATC(pu)
RBF 

ATC(pu)
ANFIS 

ATC(pu)
Test 

Patterns
AC LF 

ATC(pu)
BPA 

ATC(pu)
RBF 

ATC(pu) 
ANFIS 

ATC(pu) 
1 13.00001 13.0530 13.506985 12.9700 31 12.80001 12.9640 14.775820 12.8010 
2 09.00000 08.9914 09.518487 08.9700 32 09.50000 09.9520 11.346738 09.5025 
3 10.30000 10.2810 11.043727 10.3090 33 09.90000 10.1410 10.166296 09.9001 
4 08.30000 08.2917 08.965892 08.3094 34 08.60000 08.9781 08.736770 08.6016 
5 12.00001 12.0390 12.720891 11.9750 35 07.00000 07.1053 06.681277 07.0000 
6 07.99999 08.0358 08.613604 07.9748 36 05.10000 04.9325 03.966622 05.0999 
7 09.60000 09.6559 10.296741 09.6234 37 06.50000 06.4989 04.601788 06.4999 
8 07.60000 07.6841 08.222308 07.6237 38 05.20000 05.3608 03.105386 05.2077 
9 10.90001 10.8090 11.352566 10.9130 39 01.90000 01.9331 00.414151 01.9096 
10 08.90000 08.8253 09.379425 08.9124 40 06.60000 06.6140 03.990614 06.5997 
11 11.30001 11.4150 11.786911 11.3150 41 11.50001 11.3400 11.803089 11.5010 
12 07.30000 07.3441 07.835326 07.3142 42 07.70000 07.8051 08.008680 07.7019 
13 08.70000 08.7402 09.192936 08.6707 43 08.80000 08.8100 08.951054 08.8002 
14 02.70000 02.6969 02.946276 02.6687 44 07.60000 07.4440 07.837973 07.6012 
15 08.30000 08.3976 08.770634 08.3445 45 05.40000 05.3226 05.604135 05.4016 
16 06.30000 06.3528 06.688462 06.3451 46 04.00000 04.0617 04.146664 04.0020 
17 07.99999 07.9974 08.302246 07.9698 47 05.70000 05.5940 05.592674 05.6999 
18 04.00000 04.0289 04.134586 03.9714 48 04.50000 04.3272 04.477858 04.5004 
19 07.20000 07.1004 07.273947 07.2113 49 02.30000 02.2584 02.302838 02.3005 
20 03.20000 03.2284 03.222071 03.2188 50 02.90000 02.8876 02.897452 02.8998 
21 07.60000 07.4950 07.373643 07.5562 51 11.80001 11.6940 11.165541 11.7680 
22 01.60000 01.7300 01.535939 01.5938 52 06.80000 06.5329 06.266925 06.7367 
23 05.20000 05.2348 05.062666 05.2498 53 08.40000 08.4842 08.085509 08.4004 
24 03.20000 03.1999 03.068753 03.2468 54 06.40000 06.3507 06.172842 06.4003 
25 06.50000 06.5503 06.115197 06.6203 55 05.00000 04.8195 04.810942 05.0366 
26 04.50000 04.4658 04.138824 04.6191 56 02.30000 02.3278 02.116342 02.3004 
27 03.80000 03.4563 03.128177 03.4477 57 03.60000 03.5195 03.495235 03.5999 
28 01.80000 01.4665 01.144288 01.5144 58 01.20000 01.2906 01.269242 01.2505 
29 04.60000 05.1265 04.550518 04.8551 59 03.50000 03.5012 03.433395 03.5455 
30 02.60000 02.9055 02.621739 02.8556 60 02.20000 02.1620 02.135205 02.1744 
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Fig. 9 – 75-bus practical System comparison of ANFIS ATC and ACLF ATC. 

 
Test Patterns: -31-40: critical line-7 outage; 41-50: critical line-18 outage; 

51-60: critical line-37 outage. 
The ATC values computed for different test cases on 75-bus practical 

system by the three methods are given in Table 2 for base case and line outage 
cases along with the AC load flow based ATC values. 

Table 2 
ATC between bus 14 and bus 5 for Practical Indian 75-bus system 

(Base Case & Critical Line Outages). 
Test 

Patterns 
AC LF 

ATC(pu)
BPA 

ATC(pu)
RBF 

ATC(pu)
ANFIS 

ATC(pu)
Test 

Patterns
AC LF 

ATC(pu)
BPA 

ATC(pu)
RBF 

ATC(pu)
ANFIS 

ATC(pu) 
1 0.2411 0.33897 0.38740 0.2350 46 5.8148 5.75140 5.22970 5.8212 

2 0.7423 0.70198 0.90887 0.7420 47 0.2397 0.62539 0.26216 0.5690 

3 1.2447 1.23360 1.43460 1.2500 48 1.7472 1.91570 1.33350 1.2100 

4 1.7482 1.79230 1.96090 1.8000 49 2.7577 2.81460 2.41820 2.0600 

5 2.2528 2.33060 2.48410 2.3000 50 3.7723 3.69510 3.48770 3.0500 

6 2.7584 2.83490 3.00060 2.7600 51 4.7913 4.85030 4.51410 4.0700 

7 3.2650 3.29130 3.50660 3.2000 52 5.8153 5.99420 5.47100 5.0900 

8 3.7727 3.69000 3.99870 3.4600 53 0.7423 0.61960 0.57455 0.4790 

9 4.2816 4.02800 4.47370 3.6800 54 1.7482 1.79890 1.63770 1.5000 

10 5.3030 4.53610 5.35950 5.0600 55 3.7727 3.75970 3.76460 3.5400 

11 0.7426 0.73239 1.18980 0.7390 56 3.2645 3.08530 3.62050 3.0600 

12 1.7483 1.74520 2.20390 1.7300 57 0.2382 0.26147 0.09906 0.2260 

13 2.7584 2.76800 3.20480 2.7700 58 1.2422 1.06860 1.17310 1.2300 

14 0.2416 0.35301 0.59489 0.1060 59 2.2510 2.25540 2.27360 2.2500 

15 0.7427 0.71782 1.10700 0.5830 60 3.2639 3.08690 3.37210 3.2900 
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Table 2 (continuation) 
ATC between bus 14 and bus 5 for Practical Indian 75-bus system 

(Base Case & Critical Line Outages). 
Test 

Patterns 
AC LF 

ATC(pu)
BPA 

ATC(pu)
RBF 

ATC(pu)
ANFIS 

ATC(pu)
Test 

Patterns
AC LF 

ATC(pu)
BPA 

ATC(pu)
RBF 

ATC(pu)
ANFIS 

ATC(pu) 
16 1.2450 1.23040 1.62320 1.0600 61 4.2809 4.05700 4.43930 4.2900 

17 1.7484 1.76590 2.13990 1.5700 62 5.3024 5.22910 5.44740 5.2400 

18 2.2529 2.29420 2.65350 2.0900 63 0.2416 0.35506 -0.43767 0.1470 

19 2.7585 2.80750 3.16030 2.6200 64 1.2451 1.30640 0.56736 1.3300 

20 3.2651 3.28990 3.65680 3.1400 65 2.2530 2.38500 1.59390 2.2800 

21 3.7729 3.72510 4.13960 3.5800 66 3.2651 3.29430 2.61440 3.2700 

22 0.2411 0.30981 0.24812 0.0347 67 3.7728 3.82460 3.11380 3.7500 

23 0.7423 0.64276 0.77496 0.4850 68 0.2401 0.30988 -0.22649 0.3990 
24 1.2447 1.16170 1.30690 0.9350 69 1.2439 1.27040 0.79634 1.1100 

25 1.7482 1.73270 1.84030 1.4700 70 2.2522 2.44490 1.84170 2.1900 

26 2.2528 2.29020 2.37130 2.0000 71 3.2647 3.36490 2.88150 3.2800 

27 2.7584 2.80560 2.89610 2.5300 72 3.7725 3.85550 3.39050 3.800 

28 3.2650 3.26070 3.41110 3.0500 73 0.2344 0.16712 0.19830 0.1660 

29 3.7728 3.64760 3.91280 3.4500 74 0.1765 0.45422 1.10420 0.2340 

30 3.1842 3.33460 2.84990 3.2400 75 1.3636 1.45440 2.02960 1.3900 

31 0.7857 0.74220 1.48500 1.1900 76 2.5709 2.72570 2.94970 2.5700 

32 1.9840 1.93640 2.38060 2.0900 77 3.4270 3.35960 3.39990 3.2300 

33 3.2013 3.22460 3.23010 3.1200 78 3.7728 3.54230 4.15170 3.5800 

34 0.1822 0.67127 2.13010 0.8040 79 0.9462 1.04280 0.42852 0.7300 

35 1.9734 1.88960 2.87790 2.1000 80 2.1323 2.01920 1.39140 2.4300 
36 3.1928 3.23580 3.55220 3.2000 81 0.7399 0.56256 -0.33536 0.3850 

37 0.2313 1.53120 1.99220 0.6000 82 0.9462 1.77970 0.65186 0.2500 

38 2.6388 2.43360 3.01420 2.7400 83 2.7570 0.24033 0.99235 2.5300 

39 3.6971 3.56120 3.99890 3.6700 84 3.7230 0.64390 1.86470 3.9400 

40 4.7707 4.86550 4.92100 4.7000 85 0.7418 0.69017 -0.13852 0.7100 

41 5.8619 5.97250 5.75770 5.8100 86 1.7478 1.94250 0.87236 1.7470 

42 1.6007 1.58650 1.15090 1.6018 87 2.7580 2.87070 1.89310 2.7100 

43 2.6436 2.56550 2.21710 2.6452 88 2.7587 2.68260 2.41150 2.5800 

44 3.7011 3.46460 3.27050 3.7920 89 1.4929 3.06300 2.34200 1.9400 

45 4.7732 4.58640 4.28340 4.7927 90 2.6941 4.21620 3.25520 2.7100 

 
Test Patterns: -20-45: critical line-25 outage; 46-65: critical line-22 outage; 

66-90: critical line-19 outage. 
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The training and testing times of the intelligent techniques viz. BPA, RBF 
and ANFIS have been compared in terms of CPU time (in seconds) for 
computing ATC for both the systems are as shown in Table 3. 

Table 3 
Comparison of CPU Time (in seconds). 

Test System BPA RBF ANFIS 

Training 

IEEE 24-bus RTS 15.483 13.235 10.210 

75-bus Practical System 16.950 14.262 10.853 

Testing 

IEEE 24-bus RTS 0.0264 0.0258 0.0192 

75-bus Practical System 0.0288 0.0252 0.0186 
 

It is found from Table 3 that all the proposed intelligent techniques took 
very less time to compute ATC. The simulation was carried out in Pentium® 4 
CPU, 3.00 GHz, 496 MB of RAM Personal Computer. 

5 Conclusion 
In this paper to make use ATC calculations in real time, Artificial 

Intelligent methods viz.: 
i) Back Propagation Algorithm, 
ii) Radial Basis Function Neural Networks, and 
iii) Adaptive Neuro Fuzzy Inference System 

are utilized and compared with the Full AC Load Flow method. To compute 
ATC between source and sink three inputs are considered i) Sink bus injection 
(Ps), ii) Neighboring bus injection (Pn) and iii) Universal index (γ). Whereas for 
the critical line outage cases apart from these three inputs two more additional 
inputs are considered for the Back Propagation Algorithm (BPA) and Radial 
Basis Function Neural network (RBF) whereas only one additional input is 
considered for the Adaptive Neuro Fuzzy Inference System (ANFIS) to identify 
a particular critical line outage. The proposed method has been tested on IEEE 
24-bus Reliability Test System and 75-bus practical System. 

The mean absolute error for base case and critical line outage case utilizing 
BPA neural network were found to be 0.09478 pu and 0.1182 pu respectively 
for IEEE 24-bus RTS and the corresponding values for 75-bus practical system 
are 0.08918 pu and 0.25563 pu respectively. For the Radial Basis Function 
(RBF) Neural network, the mean absolute error for base case and critical line 
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outage case were found to be 0.3959 pu and 0.58798 pu respectively for IEEE 
24-bus RTS and the corresponding values for 75-bus practical system are 
0.29678 pu and 0.46106 pu respectively. Whereas for the Adaptive Neuro 
Fuzzy Inference System (ANFIS), the mean absolute error for base case and 
critical line outage case were found to be 0.0667 pu and 0.009527 pu respecti-
vely for IEEE 24-bus RTS and the corresponding values for 75-bus practical 
system are 0.12267 pu and 0.18739 pu respectively. 

The CPU time requirement of the ANFIS method is independent of the 
system size and also it requires only four inputs irrespective of size of the 
system.  The number of rules and parameters related to fuzzy model are 
independent of the system size.  Hence the Adaptive Neuro Fuzzy Inference 
System (ANFIS) method can be used on larger systems for real-time power 
markets. 
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