
SERBIAN JOURNAL OF ELEKCTRICAL ENGINEERING
Vol. 7, No. 1, May 2010, 95-119

95

Using of Particle Swarm for
Control of Helicopter

Alireza Rezaee1

Abstract: The CE150 Helicopter is one of the ranges offered by HUMUSOFT
for teaching systems dynamics and control engineering principles. It has two
degrees of freedom and is a MIMO system. We consider only Azimuth system
for identification and control. There are many approaches to system identifi-
cation. We choose NN structure and train it by Back-propagation and then use
GA and PSO for optimizing the NN’s training. At last we design PSO controller
of Azimuth system.

Keywords: CE150 Helicopter Model, System identification, State feedback
control, Particle Swarm, Neural Networks, Genetic Algorithm, Matlab.

1 Introduction
The CE150 Helicopter Model is one of the unique ranges of products

designed for the theoretical study and practical investigation of basic and
advanced control engineering principles.

This includes system dynamics modeling, identification, analysis and
various controllers design by classical and modern methods. The model consists
of a body carrying two DC motors. These motors drive the propellers. The body
has two degrees of freedom. The axes of the body rotation are perpendicular as
well as the axes of the motors. Both body position angles, i.e. azimuth angle in
horizontal (φ) and elevation angle in vertical plane (ψ) are influenced by the
rotating propellers simultaneously. But torque that is produced by main
propeller is more effective on (ψ) and the torque of side propeller is effective
on (φ) rather than the other. The helicopter model is a multivariable dynamical
system with up to three manipulated inputs 1u , 2u , 3u (3u is the model of
disturbance) and two measured outputs φ , ψ . All inputs and outputs are
coupled. The system is essentially nonlinear and at least of the sixth order,
depending on the modeling precision.

The mathematical Model can be linearized around the operating point [1, 2].
Schematics diagram of helicopter model is shown in Fig. 1.

1Islamic Azad University Abhar Branch; E-mail: arrezaee@yahoo.com

UDK: 623.74:681.516.3

A. Rezaee

96

Fig. 1 – Helicopter model.

In this project, the main goal is to identify and control of SISO model, so

we can eliminate the coupling between azimuth and elevation by fastening the
special screw that is on the main body of helicopter and considering the side
motor as an actuator and azimuth angle as measured output regardless the
influence of the cross couplings between the elevation and azimuth dynamics.
Then SISO subsystem of Azimuth can be like Fig. 2 [3].

Fig. 2 – Azimuth model.

Nonlinear model by using physical and electrical rules is obtained like the
following (1) for Azimuth rotation.

Using of Particle Swarm for Control of Helicopter

97

 []

2

2
2 2 3 2 3

4

2 3 2 42
2

2 1

1

2

3

4

1 ()
((), (),) ,

1 (2)

((), (),) ,

() .

z

B z a z b z
I

t t t
z

u z T z
T

t t t z

z
z

t
z
z

φ
φ

φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥− + +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎢ ⎥⎣ ⎦

=

φ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥φ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥β
⎢ ⎥ ⎢ ⎥β⎣ ⎦⎣ ⎦

f z u

g z u

z

 (1)

The operating point of system is

1

2

3

4

ˆ 0
ˆ 0

ˆ
ˆ 0
ˆ 0

z
z
z
z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

z .

Around the operating point, we linearize model [4] and consider this linear
model for identification, control and show how it is helpful and correct for
nonlinear system.

Equations (2) shows the linear model:

[]
[]

2

2

2

2

0 1 0 0
0 0.2791 6.8372 0

ˆˆ[(), ,] ,
0 0 0 1
0 0 16 8

0
0

ˆˆ[(), ,] ,
0

16
ˆˆ[(), (),] 1 0 0 0 ,

ˆˆ[(), (),] 0 .

z

u

x

u

t t

t t

t t t

t t t

φ

φ

φ

φ

⎡ ⎤
⎢ ⎥−⎢ ⎥= =
⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

= =

= =

A J z u

B J z u

C H z u

D H z u

 (2)

A. Rezaee

98

System poles are at 0, –0.2791, –4 and –4. The repeated poles are related to
dynamics of side motor. The 0 and –0.2791 are dominating poles and –4, –4 are
insignificant poles (the step response and root-locus plot and Nyquist).
Although none of poles are unstable but with a very low gain it passes jω axis
and easily becomes unstable.

One of the requirements in system identification is the collection of
‘information rich’ input/output data. The Azimuth angle does not give us
enough information about system. The system becomes unstable quickly. In
order to adequate model it is necessary to stabilize it using a feedback
controller. By using a feedback controller, the output data will contain more
information describing the process. A full state feedback controller is developed
to stabilize and control the linear Azimuth system. Because of controllability
and observability of system, the full state feedback controller can stabilize the
system by positioning the closed loop poles in the stable region according to
Table 1 [5]. We use integrator for eliminating the steady state error. The proper
closed loop poles to reach desired performance can specify by using SISO Tools
of Matlab.

Table 1
Closed loop poles.

–6 –5 –4 –0.4–j0.48 –0.4+0.48j Closed loop poles

In this way, system becomes stable and has desired response as like Fig. 3.

Fig. 3 – Controlled system response.

Developing a controller for the non-linear system is more difficult. Linear
control techniques such as full-state feedback were tested and it is almost
successful in controlling the non-linear system, too. But we must always
consider that all the following design and discussion are true only around

Using of Particle Swarm for Control of Helicopter

99

operating point of system and their realization for nonlinear system must be
checked [2].

2 Identification
In control engineering, system identification is employed to determine a

model of the system (plant) subject to control. In this context, system models
describe the behavior of the plant over time as it is exposed to control and
influence from external factors. System identification consists of two subtasks:

(i) Identification parts by direct measurement of physically accessible
parameters and identification of model subsystems;

(ii) Processing the input and output signals, considering the system as a black
box (data driven method).

The first method is time consuming but it gives good understanding of the
system but in many systems it's so hard and almost impossible. The second
approach is general, elegant. But it must be used around the chosen set point in
nonlinear system. We follow second approach to identify Azimuth system.

A system identification problem can be formulated as an optimization task
where the objective is to find a model and a set of parameters that minimize the
prediction error between system output ()y t , i.e., the measured data, and model

output (,)y t θ at each time-step t (Fig. 4).

Fig. 4 – Data driven identification.

For system identification, we use Artificial Neural Network. In this way,

we have a parametric structure that model system. First neural network is
trained by back propagation and then we optimize it by GA (Genetic Algorithm)
and PSO (Particle Swarm Optimization). The stages of developing identifi-
cation are discussed in details in the following section.

A. Rezaee

100

2.1 Multi Layer Perceptron (MLP)
Artificial Neural Networks (ANN) provides a general method for learning

arbitrary mapping between two data sets. A typical ANN contains a number of
adjustable parameters called weights. In particular, supervised learning involves
finding a set of weights that minimizes the mapping error. In our case, mapping
error is defined the difference between observed output and NN's output. Fig. 5
shows a typical MLP ANN [4, 6].

Fig. 5 – Typical MLP NN.

ANN has some noticeable advantages:
(i) The main advantage of neural networks is possibility of training it to

perform a particular function by adjusting the values of connections
(weights) between elements and their structures.

(ii) Neural networks are composed of elements operating in parallel.
Parallel processing increases speed of calculation compared to slower
sequential processing.

(iii) It has memory.
The number of hidden layers and neuron in each layer is problem depended

(Problem complexity defines NN's complexity). The number of weights
determines the learning ability. So it is very important to choose correct number
that can train network correctly and not entrapped into over fitness for limited
data. So we choose a topology that balances generalization and specialization.

Choosing correct activation function is so important too [4].
We designed ANN with following features:
Supervised learning, 3 layers, sigmoid activation function for hidden layer

and pure linear function for output layer, 4 neuron for hidden layer (therefore 8
weights must be adjusted), training constant 0.8η = , train data size =100.

Using of Particle Swarm for Control of Helicopter

101

 Result:
To reach reliable identification we repeated experiment 10 times and then

calculated average. Fig. 6 shows the best result.

Fig. 6 – Identification Error.

Using low training constant make NN entraps into local minimum and with
high training constant NN might pass global minimum (Fig. 23 shows this
effect). The number of training data is effective on speed convergence and
reliability (Fig. 24 shows this effect).

2.2 Evolutionary NN training
It has been shown that Multilayer Perceptron (MLP) networks can be used

with great success to solve function approximation problems. The main
difficulty in using this type of network is the training phase (which can be error
prone and slow) due to its nonlinear nature. Many powerful optimization
algorithms have been devised.

Evolutionary computation methodologies have been applied to three main
attributes of neural networks: network connection weights, network architecture
(network topology, transfer function), and network learning algorithms.

Most of the works involving the evolution of ANN has focused on the
network weights and topological structure. Usually the weights and/or
topological structure are encoded as a chromosome in GA or as particles in
PSO. The fitness function is defined sum square error between system and
model output [7].

A. Rezaee

102

The advantage of the EC is that it can be used in cases with non-
differentiable PE transfer functions and no gradient information available.
Another advantage is searching whole solution space parallel.

The disadvantages are the performance is not competitive in some
problems and representation of the weights is difficult and the genetic operators
have to be carefully selected or developed.

 Genetic Algorithm approach
The GA, originally described by Holland is an Evolutionary Algorithm [8].
In this method we consider a population of individuals that each of them

represents potential solution and a function that determines the quality of a
solution, called the fitness function. Then use evolutionary operator (such as
mutation, cross over, reinforcement…) to produce off springs. And according
fitness new population is selected. Fig. 7 shows brief and simple GA algorithm
[9, 10, 11].

0
() initialise()
() evaluate((),)

repeat :
() recombine((),)
() mutate((),)
() evaluate((),)

(1) select((), (), ,)
1

until stopping criterion is met

r

m

s

t
P t
F t P t

P t P t
P t P t
F t P t

P t P t F t
t t

←
← μ
← μ

′ ← θ
′′ ′′← θ

′′← λ
′′+ ← μ θ

← +

Fig. 7 – Pseudo GA code.

Probability of mutation, crossover, kind of doing them, population size and
selection kind is so effective on algorithm efficiency.

Usually mutation probability is assumed high at firs generation to search
extended space and then decreasing it. But the exact value is problem depended.
When algorithm entraps into local minimum, increasing mutation probability
seems a good solution.

By increasing population size, we search more extended space but it's
sometimes needs more time.

We can use coded or real value chromosomes that we preferred to use real
value population.

Using of Particle Swarm for Control of Helicopter

103

There are many crossover and mutation methods. We used Arithmetic
crossover and nonuniform mutation [9].

All NN's weights are considered as genes (we have 8 genes); fitness
function is defined sum square error between model and system output (so we
have minimizing problem). We assume 0.1mp = , 0.7cp = and population
size = 10.

In our case decreasing mp didn't cause better result.

 Result:
 Our algorithm is robust to initial condition. With any initial condition, after

transient we reach to same result. Fig. 8 shows average result.

Fig. 8 – Error identification.

We changed and tested almost all variables but algorithm didn't reach lower
error than 0.19 and couldn't come out of this local minimum. For better result
we can use gradient method to send it out of local minimum. We tried this
method, too; but about our system it didn't make better result than pure GA.

 Particle Swarm Optimization Method
Particle swarm optimization was introduced in 1995 by Kennedy and

Eberhart [12].
Some of the attractive features of the PSO include the ease of

implementation and the fact that no gradient information is required. It can be
used to solve a wide range of optimization problems, including most of the
problems can be solved using Genetic Algorithms; some example applications
include neural networks training [13]. It is like the other Evolutionary
Algorithm, a stochastic algorithm and sociologically inspired method.

A. Rezaee

104

The following is a brief introduction to the operation of the particle swarm
algorithm. Consider a flock or swarm of p particles, where each particle’s
position representing a possible solution point in the design problem space D.
For each particle i, Kennedy and Eberhart proposed that the position ix be
updated in the following manner:

 1 1
i i i
k k kx x v+ += + . (3)

The velocity vector keeps track of the speed and direction the particle is
currently traveling.

With a pseudo-velocity 1
i
kv +

 calculated as follows:

 1 1 1 2 2() ()i i i i g i
k k k k k k kv w v c r p x c r p x+ = + − + − . (4)

Here, subscript k indicates a (unit) pseudo-time increment, i
kp represents

the best ever position of particle i at time k (yielding the highest fitness) and
g
kp represents the global best position in the swarm at time k (social

contribution). 1r and 2r represent uniform random numbers between 0 and 1,
they are used to effect the stochastic nature of the algorithm. To allow the
product 1 1c r or 2 2c r to have a mean of 1, that 1c is cognitive and 2c is social
scaling parameters and can be selected such that 1 2 2c c= = .They influence the
maximum size of step that a particle can take in a single iteration. It's better to
choose 1 2,c c in the way that 1 2 4c c+ ≤ [7]. If 1 2 4c c+ ≥ , Velocities and
positions tend to explode toward infinity. The result of using these proposed
values is that the particles overshoot the target half the time, thereby
maintaining separation within the group and allowing for a greater area to be
searched. The addition of the variable kw (Inertia weight), is a modification to
the original PSO algorithm [7]. This allows a more refined search as the
optimization progresses by reducing its value linearly or dynamically [7].

This algorithm includes several stages:
1. Initialization
(a) Set constants 1c , 2c , 0w ;

(b) Randomly initialize particle positions from the uniform random
distribution on the interval min max[,]x x ;

(c) Randomly initialize particle velocities max[0,]v ;

(d) Randomly initialize gp and ip .

Using of Particle Swarm for Control of Helicopter

105

2. Optimization

(a) Evaluate function value i
kf using design space coordinates k

ix ;

(b) If i
kf ≤ i

bestf then i i
best kf f= , i i

kp x= ;

(c) If i
kf ≤ i

gbestf then i i
gbest kf f= , g i

kp x= ;

(d) If stopping condition is satisfied then go to 3;

(e) Update particle velocity vector 1
i
kv + using (4);

(f) Update particle position vector 1
i
kx + using (3);

(g) Go to 2 (a).
3. Report result
4. Terminate

PSO is a promising method to train ANN. It is faster and gets better results

in most cases. It also avoids some of the problems GA met.
This type of behavior seems to be ideal when exploring large error surfaces,

especially with a relatively large maximum velocity parameter. Some particles
can explore far beyond the current minimum (while the population still
remembers the global best solution) This solves one of the problems of gradient
based optimization techniques, namely their poor performance in regions with
very flat gradients. Should the random initialization cause the starting position
to be in such a region, the particle swarm optimizer can quickly move closer
towards a minimum, where the gradient will typically be much steeper.

 Result:
For a neural network implementation, the fitness function is sum square

error like GA, and the position vector corresponds to the weight vector of the
network. At the end of the algorithm, the global best particle's position serves as
the answer.

For NN training, all weights are considered as particles, so we have 8
dimensions space. At first we assume population size=10, 1 1c = , 2 2c = and

1kw = (one can find other details in main algorithm).

Fig. 9 shows the result.

A. Rezaee

106

Fig. 9 – Identification Error.

3 Control
We usually have some specific goals of controlling a system:
(i) stabilizing system;

(ii) closed-loop system tracks set point with desired manner;
(iii) reducing the effect of noise and disturbance on system performance;
(iv) decreasing system sensitivity.

Table 2
Zeros boundaries.

 Real Imaginary

First pair [–0.5,4] [0.5,5]

Second pair [4,10] [0.5,5]

So we consider these goals as first condition for our controller.
We design our controller with an evolutionary Algorithm PSO directly.

 PSO Controller
We design our controller with root-locus method.
The root-locus approach to design controller powerful when then the

specification are given in terms of time-domain quantities like, damping ration,
maximum overshoot, rise time, or settling time.

Using of Particle Swarm for Control of Helicopter

107

From the performance specification, the desired locations for dominant
closed-loop poles are determined, and then we try to reach these closed loop
poles by designing suitable compensators.

We design controller with aim that the step response curve will exhibit
maximum overshoot of 25% or less and settling time of 15s or less.

We make use of SISO Tools of Matlab to find right controller structure.
System root-locus clears that system is unstable even for a very low gain

(one can find root-locus plot in Fig. 19).
Because of it, we must add some zeros (the number of added zeros must be

defined) at proper place that pull the root locus to left and tend to make the
system more stable and can speed up the settling of the response. To have
proper controller we need poles that are insignificant in comparison with
system's poles.

At last we design 4th order controller that stabilize system and satisfy
performance constraints.

It seems that each pair zeros must be at specific boundary that our goals
satisfy. Limitation is defined like table (2). We put all controller poles at -10 so
they don't effect on desired performance.

At this stage we consider PSO for finding exact places of controller zeros.
We define search space as limited parameters space. Our PSO Controller

has 5 dimension (controller zeros and gain) and population size=50 and gbest
algorithm. And after that we change parameters to effect of them on system
performance. The fitness function is defined based on max overshoot and
settling time so it is trade-off between minimizing max overshoot and settling
time. We define a factor to adjust the weight of each factor to reach better
response. Cost function is defined like:
 (settling time) (1)(max overshoot)η + −η − . (5)

 Result:
Fig. 10 shows the closed loop system step response (0.4 ()u t , as much as

possible near linear condition of system).
We consider average result that is more reliable, as shown in Fig. 11.
If we decrease population size, algorithm becomes slower and need more

time to execute (one can see Fig. 25).
We use inertia weight and decrease linearly from 1.2 to 0.8. When it is

more than 1, particles accelerate up to the maximum velocity and when it is less
than 1 will cause the particle to slowly decelerate until its velocity reaches zero

A. Rezaee

108

and algorithm may entrap in local minimum. But we don't get better result. If
executing iteration isn't limited maybe it works (one can see related Figs. 25
and 26).

Fig. 10 – Step response (max overshoot = 4.56 %, settling time = 15.6 s).

Fig. 11 – Cost function.

Then we used breeding method. In this method, the effect of reproduction

and recombination on PSO is investigated [7] when our algorithm entraps into
local minimum this method can send out of it (Fig. 27).

In other experiment we decreased parameter 1c linearly from 1.6 to 0.8.
The result is more robust to initial condition (Fig. 28). We changed 2c , too. But
result didn't change noticeably.

Using of Particle Swarm for Control of Helicopter

109

4 Discussion and Conclusion

1. Identification: Neural network is a good structure for system identification.
It has been proven that this architecture can approximate any continuous

function to any degree of accuracy of a compact set. When we can use gradient
information and in small structure, back propagation seems optimum solution.
But it is time consuming procedure.

Compared with genetic algorithms (GAs), PSO does not have genetic
operators like crossover and mutation. Particles update themselves with the
internal velocity. The information sharing mechanism in PSO is significantly
different. In GA, chromosomes share information with each other. So the whole
population moves like a one group towards an optimal area.

In our case we reached better result in training mode with back propagation.
But in test mode PSO and GA lead to lower error. May be the NN that is

trained with back-propagation is overfit for train data (over-fitting occurs when
the error on the training set is driven to a very small value but when new data is
presented to the network the error is large. The network has memorized the
training examples but has learned not to generalize to new situations).

Fig. 12 shows comparison between these algorithms in test mode.
We examined our NN identification for nonlinear model the result (Fig. 13)

is acceptable. So linear assumption around operating point didn't limit our
identification.

Fig. 12 – Test mode.

A. Rezaee

110

Fig. 13 – Test mode for nonlinear system.

2. Control: Control problem can be considered such as an optimization
problem. By defining proper cost function, we can reach the desired response.
Cost function can include many factors like desired transient qualities, steady
state response, etc. Although we defined cost function of max overshoot and
settling time and didn’t consider control effort in it, signal control behavior is
almost acceptable.

We tested different PSO modifications and you can result in Fig. 14. PSO
with 10 population has better result than other methods. In breeding the result
has steep slope. But all of them are successful in stabilizing and controlling
system over almost with every initial condition.

Fig. 14 – PSO cost function.

Using of Particle Swarm for Control of Helicopter

111

5 Appendix
5.1 Appendix 1

This appendix contains following parts:
(i) Nonlinear model;

(ii) Azimuth response;
(iii) Testing state feedback controller for nonlinear system;
(iv) System step response and root-locus and niquist plots.

Fig. 15 – Nonlinear system.

A. Rezaee

112

In1 Out1

Subsystem

Step

Scope 4

Scope 3

Scope 2

Scope

K*u

Matrix Gain

1
s

Integrator

K

Gain

1
Out1

1

0.25s+1
Transfer Fcn1

1

0.25s+1
Transfer Fcn

|u|2

Math
Function

1
s

Integrator1

1
s

Integrator

-K-

Gain5

-K-

Gain3-K-

Gain1

-K-

Gain

du/dt

Derivative

1
In1

Fig. 16 – Nonlinear azimuth system.

Fig. 17 – Azimuth response without any control.

Using of Particle Swarm for Control of Helicopter

113

Fig. 18 – Nonlinear system with state feedback controller.

Fig. 19 – System root-locus plot.

A. Rezaee

114

Fig. 20 – System Niquist plot.

Fig. 21 – System step response.

Using of Particle Swarm for Control of Helicopter

115

5.2 Appendix 2

%**************** Artificial Nueral Network ********************
clear
clear state
clc
%*************************loading Data***************************
load input
load output
TM=u(1:NP);
d=y(1:NP);
%************ Determining Neural Network Characteristics ********
% Number of Layers = 3 : input layer, one hidden layer, output layer
% NNH = Number of Neurons in the Hidden Layer
% NI = Number of Inputs
% NO = Number of Outputs,equals number of inputs.
% LC = Leanrning Coeffincient
% NP = Number of Patterns
NNH=4;
NI=1;
NO=1;
eta=0.8;
NP=100;
Emax=.01;
E=0.15;
k=1;
epoch=0;
SS=0;
tic;
%*************************Initializing Weights*******************
V=rand(NNH,NI);
W=rand(NO,NNH);
y=zeros(NNH,1);
deltao=zeros(NO,1);
deltay=zeros(NNH,1);
%************************* Training Phase ***********************
while epoch<1000
 epoch=epoch+1;
 E=0;
 for p=1:NP
 nety=V*TM(p);
 y=logsig(nety);
 o=W*y;
 deltao=(d(p)-o);
 for j=1:NNH
 deltay(j)=.5*(1-y(j).^2)*((deltao)*W(j));
 end

Fig. 22 – Neural Network Algorithm.

A. Rezaee

116

Fig. 23 – Effect of training constant.

Fig. 24 – Effect of population size.

Using of Particle Swarm for Control of Helicopter

117

 PSO Controller result

Fig. 25 – pop_size = 10.

Fig. 26 – pop_size=5.

A. Rezaee

118

Fig. 27 – Breeding method.

Fig. 28 – c1 changing.

Using of Particle Swarm for Control of Helicopter

119

6 References
[1] J. Wang, B.T. Brackett, R.G. Harley: Particle Swarm-assisted State Feedback Control: From

Pole Selection to State Estimation, American Control Conference, St. Louis, MO, USA,
June 2009, pp. 1493 – 1498.

[2] P. Nourian: Designing and Implementation SISO Controllers of CE150 Helicopter Model,
Khaje Nasir Univ, 2004.

[3] CE150 Helicopter Model User's Manual, Humusoft.
[4] J.M. Zurada: Introduction to Artificial Neural Systems, PWS Publishing Company, 1992.
[5] H.D. Taghirad: An Introduction to modern control, Khaje Nasir Toosi University of

Technology, Tehran, Iran, 2004.
[6] C.M. Bishop: Neural Networks for Pattern Recognition, Oxford University Press, New

York, 1995.
[7] F.V.D. Bergh: An Analysis of Particle Swarm Optimizers, PhD Thesis, University of

Pretoria, 2001.
[8] J.H. Holland: Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA,

USA, 1992.
[9] M. Gen, R. Cheng: Genetic Algorithms and Engineering Design, John Wiley & Sons, 1997.
[10] D. Whitley: Genetic Algorithms and Neural Networks, John Wiley & Sons, 1995.
[11] D. Whitley: A Genetic Algorithm Tutorial, Statistics and Computing, Vol. 4, No. 2, June

1994, pp. 65 – 85.
[12] J. Kennedy: The Behavior of Particles, V.W. Porto, N Saravanan , D. Waagen (eds), Proc.

Of the 7th Int.Conf. On Evolutionary Programming, 1998, pp 581 – 589.
[13] K.E. Parsopoulos, M.N. Vrahatis: Recent Approaches to Global Optimization Problems

through Particle Swarm Optimization, Natural Computing, Vol. 1, No. 2-3, June 2002,
pp. 235 – 306.

