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Abstract: As is known, batteries have started to be used increasingly in both 

power distribution and transmission networks. This study develops a near-optimal 

approach for ancillary services in power networks from the perspective of the 

battery owner. We first model the optimization algorithm for the battery owner, 

then utilize a grey wolf optimization approach, where near-optimal actions are 

selected daily from available services. We use real data of frequency, voltage 

magnitude, combined home and Photovoltaic system, and transformer load to 

perform the simulations. The simulation results show that battery owners may 

profit from these services and help the system operators solve the issues such as 

over-voltage, under-voltage, frequency, and similar. 
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1 Introduction 

Integrating distributed, intermittent, and variable renewable energy sources 

(RESs), especially in power distribution networks, has increased the risk of 

under/overvoltage, frequency problems, and other operational issues. This drives 

a change of the conventional fit-and-forget approach in the integrating new assets 

into the distribution networks. In parallel, control capabilities are increasing with 

innovative functions available in recently developed power electronics-based 

inverters, battery energy storage systems, EV chargers, etc. Battery energy 

storage systems have been used more frequently in the last decade since they have 

extensive power up and down-regulation capabilities, can store surplus 
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production from PV, or can be charged when energy prices are relatively lower 
than usual (or even when there are negative prices that foster demand increment) 
and can be discharged when PV production is low or at peak, high price periods 
[1, 2].  

The battery costs are still high, even with a significant decrease since 2010 
of over 85% due to technological advancements and economies of scale [3]. The 
trend is expected to continue since innovations in battery chemistry, such as solid-
state batteries, and manufacturing efficiencies will further reduce production 
expenses [4]. Despite the reduced initial capital costs, operational costs such as 
battery degradation and maintenance expenses need to be considered, and these 
costs were analyzed for using second-life EV batteries for stationary energy 
storage [5]. 

Battery owners may earn additional profits by providing flexibility services; 
however, challenges such as battery degradation, regulatory frameworks, and 
operational optimization may negatively influence their profitability. For 
instance, in [6], the authors state that the battery degradation costs should be 
managed efficiently to have sustained profitability. If appropriately applied, the 
strategies to mitigate wear and tear during high-demand periods may improve 
economic outcomes. 

Many scientific publications recognize the importance of batteries in 
ancillary services.  Recently, battery usage for daily market participation and 
energy dispatch optimization models have shown improved profit margins for 
battery owners [7]. In [8], the authors analyzed the impact of different regulatory 
and market designs on battery owners’ profitability by comparing different 
ancillary service market structures in Great Britain, Texas, and Sweden. Plug-in 
electric vehicles (PEVs) can provide spinning reserve and frequency regulation 
services, as analyzed in [9], showing their potential to enhance grid resilience 
while offering revenue opportunities for PEV owners. In [10], the authors found 
that by submitting optimized bids for charging and discharging, battery owners 
can provide reserve capacity efficiently if the policy frameworks to support 
market participation are available. Another study [11] looks at the economic 
viability of battery storage systems for ancillary services to optimize the power 
network performance, considering battery degradation and dynamic market 
conditions. The batteries’ life cycle is optimized while they deliver multi-
functional services, including ancillary services in [12]. 

In this study, we aim to investigate the provision of multiple flexibility 
services from the perspective of a battery owner to maximize their profitability. 
We assume that the market structure allows the battery owners to select an 
ancillary service to contribute at any time step. This will allow the battery owner 
to decide on an ancillary service (if the stored power is sufficient) and profit from 
the service. For this, a coordinated strategy should be designed considering 
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degradation. In our proposed model, during the simulation period, the State of 
Charge (SoC) level is not allowed to go beyond 80% and less than 20%, and by 
the end of the whole (selected a one-day) simulation period, our model aims to 
come to the same initial SOC level. 

The problem is modeled as an optimization problem. The optimization 
problems can be solved using derivative or non-derivative-based methods. From 
those, the derivative-based optimization methods are widely used in power 
system applications; however, they have some limitations. For example, these 
methods are inefficient in handling non-convex and multi-modal problems, those 
which can be encountered in power system related problems [13]. They are also 
sensitive to initial conditions, [14] making them less robust, and they may 
converge to local optimum points where the solution spaces are nonlinear [15]. 
In [16], the authors specified the limitations in coordinating control mechanisms 
within distribution networks. 

Thus, scientists have developed non-derivative heuristic methods to 
overcome the abovementioned limitations. Genetic Algorithm (GA), developed 
in the 1970s by Holland [17], was one of the first methods that mimicked the 
evolution process from nature, using probabilistic mechanisms like selection, 
crossover, and mutation. In the 1990s, methods like Particle Swarm Optimization 
(PSO) mimicked the coordinated food search behavior of bird flocks and fish 
schools [18]. The Harmony Search Algorithm (HSA) uses the improvisation 
process of jazz musicians to find a better musical harmony, which is analogous 
to finding a better solution to optimization problems [19]. Similarly, Differential 
Evolution (DE) uses evolutionary strategies to solve optimization problems by 
applying recombination, mutation, and selection processes [20]. Unlike 
derivative-based methods, heuristic methods are not constrained by the need for 
differentiable objective functions, which are hard to obtain in the case of complex 
objective functions and are easier to implement. 

Other studies [21 – 25] propose multi-service optimization of BESSs across 
European markets using the Mixed Integer Linear Programming (MILP) 
algorithm. In [21], combining the Day Ahead Market (DAM) and Frequency 
Containment Reserve (FCR) markets performs the highest profit, with the 
perfect-information scenario reaching $1635/MW-day, which is 527.6% more 
than the DAM-only case. Similarly, [22] demonstrates that full-service provision 
using active power control brings up to £897 per day more than reactive power 
control approaches. The Swedish market case [23] analyses FCR in regular 
operation (FCR-N), in disturbances (FCR-D) for up- (FCR-DU) and down- 
(FCR-DD) regulation, and in multi-FCR cases. The multi-FCR yields the most 
profit with an annual amount of 707.9 k€ while considering battery degradation. 
The study in [24] compares the constraint levels as well: Independent Chance 
Constraints (ICC), Boole's Rule, and Improved (Joint Chance Constraints - JCC) 
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with five different markets. The most profitable case is the revenue of the JCC 
case in the total market with 10,997.69€. Lastly, [25] compares the conventional 
operation and direct/opposite reserve between different markets and confirms that 
DAM + FCR stacking yields the best annual revenue with €1.45M for a BESS 
with 10MW power and 10MWh capacity in the proposed formulation. The 
revenue of the proposed formulation is 22.8% more than the conventional 
operation. 

The proposed model for the battery owners in this study was solved using an 
improved version of a recently developed heuristic method, the Grey Wolf 
Optimization Algorithm (GWO) [26], which simulates the hunting behaviors of 
the wolves. Up to now, GWO has been applied to several optimization problems 
in power distribution network problems. For instance, it was utilized without 
requiring derivative information to effectively coordinate the tap changers, bank 
capacitors, and PV inverters [16]. Other applications include microgrid design 
[27], demand side management [28], charging station allocation [29], and similar.   

In this paper, we model the battery owner participation in ancillary services 
as an optimization problem and solve it using a modified grey wolf optimization 
algorithm. Our contributions are briefly summarized below. 

– We propose a mathematical model for battery owners to participate in 
ancillary services, including voltage and frequency regulation, transformer 
demand/load regulation.  

– We utilize a grey wolf optimization algorithm, considering the integer 
variables by making proper adjustments to the grey wolf optimization 
algorithm.   

– We test the optimization model using real market and system data and 
report the results. Thus, the battery owners make a profit, and the system 
operator may be able to solve power network issues.  

The rest of the paper is organized as follows. Section 2 explains the 
optimization formulation and constraints. Section 3 details the adaptation of the 
Grey Wolf Optimization method. Section 4 provides the details of data 
preparation. Section 5 presents the simulation results, and the last section 
concludes the paper by evaluating the findings and providing pathways to 
potential future studies. 

2 Model 
We aim to maximize the revenue of the battery owners while ensuring their 

contribution to ancillary services. Moreover, we want the aging of the battery not 
to be impacted, so for this aim, the optimization model is designed to keep the 
SOC (state of the charge) of the battery at the same level at the start and the end 
of the simulation period (i.e., the beginning and end of the day). 
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Our approach defines the prices for various ancillary services over the 
simulation period, structured as a 24x6 matrix. Each row corresponds to the 
simulation hour, while each column represents a specific ancillary service: the 
first column denotes the price for frequency regulation services, the second 
column represents the price for voltage regulation, and the third column captures 
the load regulation price for the transformer. The fourth column reflects the idle 
state, which has no associated cost; the fifth column represents the charging price 
for the battery; the sixth column accounts for the transfer of excess energy 
generated by the PV system to the battery. 

The mathematical model for optimizing the revenue of the battery owners 
can be given below. 
 

. .  
maximizeF P( ) E( )

w r t
 

x
x x
  , (1) 

where P( )x and E( )x  are given as: 

 ( ) )P( ) (i i
i

  x g x h x , (2) 

 max maxE( ) (SoC )i i
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Capacity k   x h x  (3) 

 min maxSoC SoC ,
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.
: presentSoC 
  

  lb ubx x x
 

In (1) – (3), 𝑖 represents the simulation hour, and x  is the decision vector, 
composed of the decision actions of the battery owner on ancillary services (such 
as contribution to voltage regulation, frequency regulation, and so on). With P( )x  
we show the profit of the battery owner in US dollars. E( )x  shows the amount of 
energy (kWh) difference between the start and end of the simulation period (day), 

ik  represents the excess PV energy generated at hour i, ( )g x  represents the price 
($/kWh) obtained for provided service, and ( )h x represents the energy (kWh) 
that the battery gained or lost. Considering battery aging, a battery with a 
maximum capacity ( maxCapacity ) of 13.5 kWh is used. The initial state of charge 
(SoC) at the start of the day is set to 80%. Ensuring that the battery SoC stays at 
a minimum of 20% and a maximum of 80% also prevents possible deep 
discharging and overcharging that can significantly negatively impact battery life. 
The suitable operation range depends on battery chemistry and application. While 
an SoC range of 20% to 80% is recommended for LiFePO4 batteries [30] and 
NMC batteries [31], 10% to 90% [32] and even 0% to 90% SoC [33] operation 
is preferred for LTO batteries, preferably up to 50% Depth of Discharge (DoD) 
is suggested for Lead-Acid batteries [34], up to 100% discharge is allowed for 
NiCd, NiMH batteries [35], Ni-Zn batteries [36] and Ni-Fe batteries [37]. 
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2.1 Grey Wolf Optimization algorithm 
Grey Wolf Optimizer (GWO) [26] is a meta-heuristic optimization algorithm 

miming grey wolves’ steps while hunting. The process involves searching for 
prey, encircling it, chasing, hunting, and finally attacking. Grey wolves follow a 
hierarchical structure, where the α wolf acts as the leader responsible for decision-
making and management, supported by the β and δ wolves. Another type of wolf 
is ω which is tasked with the search phase of the process. Mathematically, these 
roles can be represented as the best solution, second best solution, third best 
solution and the remaining ones for alpha, beta, delta, and omega wolves, 
respectively. 

Briefly, the GWO follows the following processes, as given in the 
subsections below. 

2.1.1 Encircling Prey  
Wolves surround the prey by updating their positions relative to the prey. 

This is mathematically represented in (4  7) below. 

 ( ) ( )iteration iteration preyD CX X
  

, (4) 

 ( 1) ( )iteration teration   X X AD
  

, (5) 

 12 A ar a   , (6) 

 22C r
  . (7) 

In (4) and (5), preyX


 and X


 represent the best position of the prey (best 
solution found until that iteration) and the current position of the wolf, 
respectively. D


 shows the distance between the prey and the wolf, (6) and (7) 

show how the coefficient vectors A


 and C


 can be calculated by using two 
random vectors, 1r

  and 2r
 , ranged between 0 and 1 and using a linearly 

decreasing vector a  from 2 to 0 over the iterations.  

2.1.2 Hunting 
In hunting phase, the new position is calculated based on the combination of 

the distances of α, β and δ wolves to the prey as given below in (8) – (13) 

 1 α αD C X X
  

, (8) 

 2 β βD C X X
  

, (9) 

 3  D C X X
  

, (10) 

 1 1  X X A D
  

, (11) 
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 2 2  X X A D
  

, (12) 

 3 3  X DX A
 

. (13) 

Then the value of the new iteration X vector is calculated as the mean of 1,X


 

2X


 and 3X


. 

2.1.2 Attacking Prey 
In the attacking prey phase, a  is linearly reduced from 2 to 0, and A


 

decreases. If the value of A


 is between –1 and 1, the next position will be 
between the current position and the prey’s position; if not, the value of A


 is 

randomly selected in the allowed range. 

3 Solution of the Model Using Grey Wolf Optimization 
We solve the proposed model by utilizing GWO. Initially, GWO randomly 

creates the positions of the search agents. Note that, in a 24-hour simulated case, 
for each hour, the algorithm will decide one action from the possible action space:   
help in frequency regulation, voltage regulation, help on the transformer power 
demand side, stay idle, or charge itself. Each action is represented by an integer 
from 1 to 5. Every best solution candidate x  has a corresponding energy and 
price/energy value ( )ih x  and ( )ig x  for every hour. We use (1) to evaluate the 
fitness value of every position x . This approach is used for daily optimization as 
a first step for the providing multiple flexibility services that batteries can 
provide, and the long-term impact of multiple services provision can be further 
investigated in future studies. 

The SoC value is checked at every iteration to comply with the SoC 
constraint. If the result of the choice made by the GWO violates the SoC 
constraint, the choice for that specific hour is changed to ‘idle’ to ensure that the 
SoC of the battery stays within the limits throughout the day. 

We modified the GWO algorithm to align with the abovementioned integer-
constrained optimization model. The initialization process generates initial values 
within the permissible ranges, ensuring they are integers. Any position value 
calculated as a real number is rounded to the nearest integer within the allowed 
ranges during the exploration and exploitation phases. The fitness function is 
subsequently evaluated using these integer-adjusted positions. 

The algorithm of the implementation of GWO on battery optimization 
problem is given in Algorithm 1. In Fig. 1 we give the steps of the algorithm’s 
pseudo-code. 
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Fig. 1 – The flow chart of the proposed GWO Algorithm. 

 
 

Algorithm 1: Optimization of the SOC of the battery and maximize revenue 
Initialize number of search agents 
Initialize l, a, A, and C 
Initialize search agents’ positions  1,2, , _ _ kX k num search agents


 

while (l<Max number of iteration) do 
    for each search agent do 
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        if search agent out of bounds, then 
            Update search agent positions 
        end if  
    end for 
    for each search agent do 
        Initialize 

0
80%kSoC    

        for i=1 to 24 do 
            Calculate 

ikSoC using  i kh X


 

            if 
ikSoC  out of bounds then 

                
ikX


= Idle Mode 

            end if 
        end for 
        Calculate  kF X


 using eq.1 

    end for 
    Update a, A, and C 
    Update , ,α βX  X

 
 and δX


 positions 

    l=l+1 
end 
Best Position = αX


 

4 Data Preparation 
According to the relevant studies in the literature and prominent research 

conducted in this area of study, as summarized in [38], batteries can provide up 
to 13 services to 3 stakeholder groups (customers, utility operators, and market 
operators). Based on the pioneering works, market availabilities, and 
profitability, we focused on our study the multiple provisions of the ones that are 
more likely to be commonly preferred in real-world applications in many 
countries, which are frequency regulation, voltage support, congestion relief, 
energy arbitrage, and increased PV self-consumption. Multiple provision of a 
larger variety of services can be investigated in future studies. All the events that 
require flexibility services based on charging or discharging the battery are 
identified using real frequency, voltage, and power measurements from the field, 
considering operational constraints (upper and lower frequency deviation 
thresholds, upper and lower voltage deviation thresholds, and substation loading 
threshold) to activate flexibility services. Other considered actions are staying 
idle or charging itself for the battery. We used one-hour resolution data over a 
day for each service mentioned above. Preparation steps for the data are given in 
Fig. 2. 
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Fig. 2 – Data Preparation Flowchart. 
 

We used the National Grid system dataset for power demand data, 

specifically the Nechells 11kV BSP Transformer Flows dataset [39] in 30-minute 

resolution. This dataset provides information on the MW power demand from the 

transformer and the voltage level at the secondary winding. We applied the 

procedure in the flowchart in Fig. 2 and set the high demand threshold as 80% of 

the annual maximum of 23.26 MW. We use power demand data from Great 

Britain for the 7th of February 2023, the day with the most extended duration of 

high demand, with a total duration of 1 hour. In Fig. 3, we illustrated the hourly 

power demand for this specified day, using a red line to highlight the values that 

exceeded the threshold values. 
 

 

Fig. 3 – 11 kV Transformer Demand Data. 
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We obtained the system frequency data from the National Energy System 
Operator (NESO) data portal [41] for the year 2024 for the UK. When we picked 
the high and low-frequency boundaries as 50.2 Hz and 49.8 Hz, respectively, we 
focused on the following dates, figures of which are given in Fig. 4. 

– The day with the most extended duration of high-frequency: 9th of April 
2024, 484 s. 

– The day with the most extended duration of low-frequency: 19th of October 
2024, 524 s. 

– The day with the average duration of high-frequency: 30th of May 2024, 
42 s. 

– The day with the average duration of low-frequency: 14th of June 2024, 62  
In Fig. 4, the red lines indicate the high and low-frequency values out of the 

allowed ranges.  

 
Fig. 4 – Frequency Data for different days in 2024. 

 

We utilized Nechells 11 kV BSP Transformer Flows voltage values [39] in 
30-minute resolution for voltage regulation service. By setting the overvoltage 
limit by 3% [40] of 11 kV, we focused on the following dates and showed their 
voltages in Fig. 5. 

– The day with the high duration of overvoltage: 28th of April 2022, 12.5 h. 
– The day with the average duration of overvoltage: 3rd of June 2022, 3 h. 
 

This data was also converted to one-hour resolution. 
We generated the dwelling demand power data with PV generation from the 

CREST (Centre for Renewable Energy Systems Technology) Integrated 
Domestic Electricity Demand and PV Micro-generation Model [42], a macro 
coding in Excel to generate PV power output, and dwelling power demand. Using 
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the toolbox requires setting parameters such as the number of residents in the 

house, whether the simulated day is a weekday or a weekend, and so on. We 

simulated one home with two residents and several electrical devices at home; a 

PV with a maximum power of 1 kW is assumed to be connected as well. Fig. 6 

visualizes the combined load and PV generation data daily. 
 

 

Fig. 5 – Transformer Voltage Data for 28th of April 2022, and 3rd of June 2022. 

 

Fig. 6 – Dwelling Demand Power Data with PV Generation. 
 

After performing the steps in Fig. 2, Primary Frequency Control (PFC) [43] 

data are taken from the EPIAS Transparency Platform for 2024. We found the 

maximum price to be 9450 TL/MWh and scaled it down to 0.249 $/kWh, picking 

the currency rate as 1 USD = 38 Turkish Liras. Using 0.249 $/kWh, every event 

is scaled according to the exceedance percentage. 

Realistic operational costs are considered using real frequency regulation 

market prices, and their scaled adaptation for voltage regulation and transformer 

congestion management services to quantify daily profitability. When the battery 
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decides to charge itself for that hour, we assumed that it would reach up to 70%, 
leaving 10% room for further PV generation. This charge amount goes up to 80% 
for the last two hours of the day. This is because electricity prices are lowest 
during the last two hours of the day. For the battery charging prices, we use the 
three-time residential tariff schedule published by the Turkish Energy Market 
Regulatory Authority (EPDK) in July 2023 [44]. Daily pricing is as follows. 
1.96 TL/kWh for the morning period (06:00-12:00), 3.15 TL/kWh for the 
afternoon period (12:00–17:00), and 4.62 TL/kWh for the evening period (17:00–
22:00). Using the same conversion value, the prices were scaled to 0.0518, 0.0829 
and 0.1216 $/kWh as shown in Fig. 7, respectively. 

 
Fig. 7 – Three-Time Residential Tariff. 

 

Like Fig. 7, we show the prices for frequency regulation based on two 
different days by converting the amounts to USD by multiplying each frequency 
exceed time instant by 0.249 in Fig. 8. 

 
Fig. 8 – Frequency Regulation Prices for Given Dates. 

 

We assumed the battery power to be 11.5 kW and multiplied the event duration 
to calculate the required energy to provide frequency regulation, as shown in Fig.  9. 
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Fig. 9 – Energy Needed to Provide Frequency Regulation for Given Dates. 

 

Voltage regulation prices are shown in Fig 10, and the converted USD 
amounts are used as given above. In Fig. 11, we assumed that the battery power 
is 5.75 kW to prevent full discharge in one hour. We multiplied the event duration 
to obtain the required energy to provide voltage regulation for the specified days. 

 
Fig. 10 – Voltage Regulation Prices for Given Dates. 

 
Fig. 11 – Energy Needed to Provide Voltage Regulation for Given Dates. 
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A similar approach was used to construct price values for demand regulation, 
as given in Fig. 12. Moreover, we assumed the battery power to be 5.75 kW as 
before to construct the required energy for demand regulation as given in Fig. 13. 

 
Fig. 12 – Demand Regulation Prices for Given Dates. 

 

 
Fig. 13 – Energy Needed to Provide Demand Regulation for Given Dates. 

 

5 Simulation Results 
Simulations were performed on a MacBook Pro with the Apple M2 chip (10-

core CPU, up to 3.49 GHz), 16 GB of unified RAM, and macOS Sequoia (64-
bit). We conducted all tests using the proposed GWO algorithm in Matlab with 
the following parameters: number of search agents: 50, maximum number of 
iterations: 2,000,000. All other parameters were set to the default values 
mentioned above. 

We simulated extreme and average conditions using different price and 
energy matrices. The specifications of these simulation cases are explained 
below.   
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– Case 1: In this case, frequency service on the 9th of April 2024 (where we 
have over-frequency for the longest time), voltage service on the 3rd of June 
2022, and demand service on the 7th of February 2023 are selected. This 
case represents an extreme one with long event durations. 

– Case 2: We selected the 19th of October 2024, 3rd of June 2022 and 7th of 
February 2023 for frequency (low frequency for longest time), voltage and 
demand services, respectively. This case is also an extreme one with long 
event durations.  

– Case 3: We selected the 30th of May 2024 for frequency service, the 28th of 
April 2022 for voltage service, and the 7th of February 2023 for demand 
service for this case, which represents an average case for event durations. 

– Case 4: In this case, the 14th of June 2024 for frequency service, the 28th of 
April 2022 for voltage service, and the 7th of February 2023 for demand 
service are selected. This case represents an average day for event 
durations. 

Due to limited space, we provide only the price and energy matrices for Case 
1, as shown below in Tables 1 and 2. 

A comparison of the numerical results using different numbers of search 
agents and iterations can be seen in Table 3, where cost values are the averages 
of cost (objective function) values of ten simulations found by the GWO 
algorithm. We observed that, as expected, increasing the number of search agents 
decreased the number of different results. We also observed that the algorithm 
could always find the same numerical result by using a high number of maximum 
iterations such as 2,000,000. The convergence curve of the objective function for 
250000 iterations is given in Fig. 14. 

Although the results are consistent in repeated runs with 2,000,000 iterations, 
this may not ensure convergence to a global optimum. However, the stability 
across repeated runs indicates a robust near-optimal solution. 

The simulations were performed from the perspective of a battery owner. 
The battery has a total energy capacity of 10.8 kWh when partially charged (80% 
SoC). In the simulations, we assumed a 24-hour case from the perspective of the 
battery owner. Based on the condition of the power market explained above, the 
battery owner decides to contribute to available ancillary services based on the 
GWO-based optimization approach.  

The simulations were performed from the perspective of a battery owner. 
The battery has a total energy capacity of 10.8 kWh when partially charged (80% 
SoC). In the simulations, we assumed a 24-hour case from the perspective of the 
battery owner. Based on the condition of the power market explained above, the 
battery owner decides to contribute to available ancillary services based on the 
GWO-based optimization approach.  
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The GWO algorithm presents an approach independent from topology; as the 
number of batteries increases, the expected computational time will also increase. 
However, since the model assumes that these prices are either known or predicted 
the day before, even with many batteries, the simulation environment will work 
in time. 

To compare the results of taking part in single or multiple ancillary services, 
cases represented as A, B, and C are created. 

– Case A: Only frequency control service, 9th April 2024, is selected for 
frequency values. 

– Case B: Only voltage control service, 3rd June 2022, is selected for voltage 
magnitudes. 

– Case C: Only transformer congestion management (demand regulation) 
service, 7th February 2023, is selected for demand values. 

Table 1 
Price Matrix for Ancillary Services Provided by the Battery for Case 1. 

Frequency 
Regulation 

[$/kWh] 

Voltage 
Regulation 
[$/kWh] 

Transformer 
Power Demand 

Regulation 
[$/kWh] 

Idle 
[$/kWh] 

Recharge 
[$/kWh] 

0.2484 0.2480 0.0000 0.0000 0.0518 
0.0000 0.2480 0.0000 0.0000 0.0518 
0.0000 0.2476 0.0000 0.0000 0.0518 
0.2484 0.2477 0.0000 0.0000 0.0518 
0.2485 0.2477 0.0000 0.0000 0.0518 
0.2485 0.2476 0.0000 0.0000 0.0829 
0.2484 0.2466 0.0000 0.0000 0.0829 
0.0277 0.0000 0.0000 0.0000 0.0829 
0.0000 0.2466 0.0000 0.0000 0.0829 
0.0000 0.2466 0.0000 0.0000 0.0829 
0.0000 0.0000 0.0000 0.0000 0.0829 
0.0000 0.0000 0.0000 0.0000 0.0829 
0.0000 0.0000 0.0000 0.0000 0.0829 
0.0000 0.2468 0.0000 0.0000 0.0829 
0.0000 0.2468 0.0000 0.0000 0.0829 
0.0000 0.0000 0.0000 0.0000 0.0829 
0.0000 0.0000 0.2109 0.0000 0.1216 
0.0000 0.2468 0.0000 0.0000 0.1216 
0.0000 0.2472 0.0000 0.0000 0.1216 
0.0000 0.0000 0.1925 0.0000 0.1216 
0.0036 0.2473 0.0000 0.0000 0.1216 
0.0302 0.2475 0.0000 0.0000 0.0518 
0.0000 0.0000 0.0000 0.0000 0.0518 
0.0000 0.2466 0.0000 0.0000 0.0518 
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Table 2 
Energy Matrix for Ancillary Services Provided by the Battery for Case 1. 

Frequency 
Regulation 

[kWh] 

Voltage 
Regulation 

[kWh] 

Transformer 
Power 

Demand 
Regulation 

[kWh] 

Idle 
[kWh] 

Recharge 
[kWh] 

Recharge by 
Excess PV 

Power 
[kWh] 

0.0479 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.0000 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.0000 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.5303 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.4504 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.4408 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.0767 -2.8750 0.0000 0.0000 0-9.45 0.0000 
-0.1821 0.0000 0.0000 0.0000 0-9.45 0.0000 
0.0000 -2.8750 0.0000 0.0000 0-9.45 0.0000 
0.0000 -2.8750 0.0000 0.0000 0-9.45 0.0098 
0.0000 0.0000 0.0000 0.0000 0-9.45 0.3000 
0.0000 0.0000 0.0000 0.0000 0-9.45 0.6739 
0.0000 0.0000 0.0000 0.0000 0-9.45 0.7623 
0.0000 -2.8750 0.0000 0.0000 0-9.45 0.3730 
0.0000 -2.8750 0.0000 0.0000 0-9.45 0.0822 
0.0000 0.0000 0.0000 0.0000 0-9.45 0.0000 
0.0000 0.0000 -2.8750 0.0000 0-9.45 0.0000 
0.0000 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.0000 -5.7500 0.0000 0.0000 0-9.45 0.0000 
0.0000 0.0000 -2.8750 0.0000 0-9.45 0.0000 
-0.0128 -5.7500 0.0000 0.0000 0-9.45 0.0000 
-1.1372 -2.8750 0.0000 0.0000 0-9.45 0.0000 
0.0000 0.0000 0.0000 0.0000 0-10.8 0.0000 
0.0000 -2.8750 0.0000 0.0000 0-10.8 0.0000 

Table 3 
Simulation Runtime and Cost Values by Using Different Parameters for Case 1. 

# of 
Iterations 

# of Search 
Agents Cost Time (s) 

10,000 30 -6.0933 0.75 
10,000 50 -5.8501 1.20 
100,000 30 -6.5997 6.91 
100,000 50 -6.7455 11.35 

1,000,000 30 -7.1860 69.11 
1,000,000 50 -7.3280 115.01 
2,000,000 50 -7.4587 228.35 

 

Results of the simulations for given cases are given in Table 4. These 
simulations show that planning a day with different ancillary services generates 
better results. Our profits were around 7.4 USD for extreme days, and for an 
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average day, our profits were around 2.88 USD. Under the given market 
conditions, yearly profit would be approximately 1050 USD, for an average day. 
This profit, combined with the profit of the distribution network operator, may be 
better in the coming years with additional regulatory frameworks. 

 

 
Fig. 14 – Convergence Curve for Case 1 with 250000 iterations. 

 
According to Table 4, when Case 1 is compared with Cases A, B, and C, the 

revenue of the battery participation to all ancillary services is 1622% higher than 
the revenue of the battery participation to only frequency service, 16.76% higher 
than the revenue of only overvoltage service, and 711.88% higher than the 
revenue of only demand service. That means the multiple ancillary service action 
is more profitable than the one ancillary service action. 

Table 4 
Simulation Results for Different Cases. 

Case Profit ($) Cost 
1 7.4587 -7.4587 
2 7.3280 -7.3280 
3 2.9006 -2.9006 
4 2.8710 -2.8710 
A 0.4332 -0.4332 
B 6.3878 -6.3878 
C 0.9187 -0.9187 

 

The decision-making process of the battery for two different cases can be 
seen in Fig. 15. The change of the SoC of the battery for two near optimal cases 
is illustrated in Fig. 16. Figures show that the SoC is kept within the allowed 
limits between 20% and 80%. Moreover, as aimed, the initial 80% SoC for the 
start and end of the day is kept at the same level. 
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Fig. 15 – Decision Making for Near-Optimal Solutions: Case 1 and 4. 

   
Fig. 16 – State of Charge for Case 1 and Case 4. 

 

6 Conclusion and Future Works 
This study considers ancillary services from the perspective of a battery 

owner. We utilized a grey wolf optimization-based approach to maximize the 
profit of the battery owner based on the available market conditions. The battery-
to-grid simulations were performed by contributing ancillary services such as 
frequency regulation, voltage regulation, and transformer power demand 
regulation. Moreover, when not needed, the case of being idle, and when required, 
recharging options were considered. This approach aims to improve the profits of 
the battery owners by letting them participate in ancillary services; at the same 
time, this participation improves the operation strategies of the distribution 
network operators.  From the simulation results, we observed that the battery 
owner could obtain a yearly profit of around 1050 USD based on the market 
conditions. With improved regulatory frameworks, this amount may be improved 
more. Future studies can focus on the considering power network constraints with 
improved operation strategies, multiple provisions of a larger variety of services 
batteries can provide and investigating the long-term benefits and drawbacks of 
regular participation in multiple flexibility markets.  
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