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A Closed Form Solution for the Proximity 
Effect in a Thin Tubular Conductor 

Influenced by a Parallel Filament 

Dragan Filipović1, Tatijana Dlabač2 

Abstract: The present paper deals with the proximity effect in a system 
consisting of a thin tubular conductor and a filament. The integral equation for 
the current density in the tubular conductor is solved by assuming a solution in 
the form of an infinite Fourier series. By using this solution the a.c. to d.c. 
resistance ratio for the tubular conductor is also found in a closed form. 
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1 Introduction 

It is known that the current density of a time-varying current is not uniform 
over the cross section of a conductor – it increases toward the surface. This is 
known as the skin effect. If another conductor with a time-varying current is 
present, it will cause an additional change in the current density in the first 
conductor. This phenomenon is referred to as the proximity effect. If the 
currents have opposite directions, they will concentrate in the regions of the 
conductors facing each other. The proximity effect causes an additional increase 
of the conductor's resistance, i.e. additional power losses. 

Analysis of the proximity effect is much more involved compared to the 
analysis of the skin effect, and there are very few cases where a closed form 
solution can be obtained. One of these is the system consisting of a thin tubular 
conductor and a filament with sinusoidal currents. The first solution in a closed 
form for this problem was found by Dwight [1]. He solved integral equation [2] 
for the current density in the tubular conductor by using the method of 
successive approximations. A numerical solution for this problem is obtained 
in [3], by assuming it in the form of a finite trigonometric series (finite Fourier 
series). The unknown coefficients in this series are found by the point-matching 
procedure. In this paper the integral equation for the current density in the 
tubular conductor is solved in a closed form by assuming the current density in 
the form of an infinite Fourier series with unknown coefficients. These 
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coefficients are found by equating coefficients with trigonometric functions on 
both sides of the equation. The solution thus obtained coincides with Dwight's 
solution, but the procedure is much simpler. 

2 Integral Equation for Current Density in Thin 
Tubular Conductor Influenced by Filament 

The geometry of the problem is shown in Fig. 1. 

 

Fig. 1 – Cross-section of a thin tubular conductor and a parallel filament. 

 

The radius of the thin tubular conductor is a, its thickness – d (d << a), and 
the distance between the conductor axis and the filament – D. Currents of 
angular frequency ω and r.m.s. value I flow through the tubular conductor and 
the filament in opposite directions. Since the tubular conductor is very thin, the 
radial dependence of its current density can be neglected, i.e. it is only a 
function of the polar angle θ. 

The integral equation for the current density at an arbitrary point M(r,θ) of 
the tubular conductor is [3] 

 ( ) ( ) ( ) ( )
2 2 20

0

j
ln d ln

4
J J MM ad I MM K

π⎡ωμ σ ⎤′ ′ ′ ′′θ = θ θ − +⎢ ⎥⎦π ⎣
∫ , (1) 

where: 
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 ( ) ( )
2 2 2 2 2 2cos sin 2 cosMM a D a a D aD′′ = θ − + θ = + − θ , 

and K is an unknown constant. 
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By dividing the quantities under both logarithms by D2 and introducing 
 2

0f adλ = π μ σ , (2) 

(1) becomes 
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π⎡ ′⎛ ⎞λ θ − θ′ ′θ = θ θ −⎢ ⎜ ⎟π ⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞− + − θ +⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎥⎝ ⎠⎦

∫
 (3) 

3 Solution of Integral Equation for Current Density 

By applying the superposition principle we seek for the solution of (3) in 
the form 
 ( ) ( ) ( )1 2J J Jθ = θ + θ , (4) 

where J1(θ) is the current density in the tubular conductor in the absence of the 
filament (skin effect), and J2(θ) is the current density in the tubular conductor 
under the influence of the filament (proximity effect). In the first case we omit 
the middle term on the right-hand side of (3), and in the second case – constant K. 

Since the thickness of the tubular conductor is very small, the skin effect is 
not present and therefore 

 ( )1 const .
2

I IJ
S ad

θ = = =
π

 (5) 

It remains to find J2(θ) – a solution of (3) where constant K is omitted 
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D
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π⎡ ′⎛ ⎞λ θ − θ′ ′θ = θ θ −⎢ ⎜ ⎟π ⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞− + − θ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎥⎝ ⎠⎦

∫
  (3') 

We seek a solution of (3') in the form of an infinite Fourier series 

 ( )2
1

cosn
n

J C n
∝

=

θ = θ∑ . (6) 

(Only cosine functions are taken, since the current density must be symmetrical 
with the respect to the x-axis). 



D. Filipović, T. Dlabač 

16 

By substituting (6) into (3'), and using the expansion (see Appendix 1) 
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we arrive at 
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The integral on the right-hand side can be evaluated in a closed form (see 
Appendix 2) 
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∫ . (8) 

By substituting this result into the preceding formula and equating the 
coefficients with cos nθ we obtain 
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, 

whence 
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. (9) 

Finally, by making use of (5), (6) and (9), from (4) we obtain current 
density in the tubular conductor 
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ad ad D n j
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=
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∑ , (10) 

where λ2 is given by (2). This is the same solution obtained by Dwight by a 
different way. 

By using (10), we readily find the a.c. resistance of the tubular conductor 
per unit length. 
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Note: If the currents have the same direction, the second term on the right-hand 
side of (1) changes sign, and thus the second term in solution (10). Expression 
(11) for the a.c. to d.c. resistance ratio remains unchanged. 

4 Numerical Results 

Fig. 2 shows the normalized current distribution ( ) ( )2J I dθ π  versus the 

polar angle θ obtained from (10), for f = 50Hz, a = 5cm, d = 5mm, σ = 57⋅106 S/m, 
for different values of the distance D between the conductors. 

 

Fig. 2 – Normalized current distribution in the tubular conductor for  
different values of distance D (a = 5cm, d = 5mm, f = 50Hz). 

If frequency f is taken as parameter, the corresponding plots of the 
normalized current density are shown in Fig. 3, for a = 5cm, d = 5mm and 
D = 10cm. 
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From (11) we have calculated the a.c. to d.c. resistance ratio versus 
frequency for different values of distance D. The corresponding plots are shown 
in Fig. 4, for a = 5cm and d = 5mm. 

 

Fig. 3 – Normalized current distribution in the tubular conductor for  
different values of frequency f (a = 5cm, d = 5mm, D = 10cm). 

 

Fig. 4 – a.c. to d.c. resistance ratio versus frequency f.  
Distance D is taken as a parameter (a = 5cm, d = 5mm). 
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5 Conclusion 

In this paper a closed-form solution for the proximity effect is found for the 
system consisting of a thin tubular conductor and a filament with equal 
sinusoidal currents of opposite directions. A solution for current density in the 
tubular conductor is assumed in the form of an infinite Fourier series with 
unknown coefficients. These coefficients are found by equating coefficients 
with trigonometric functions on both sides of the equation. By using the 
obtained solution, the a.c. to d.c. resistance ratio of the tubular conductor is also 
found in a closed form. 

6 Appendix 

6.1 Appendix 1 
Here we prove expansion (7). The starting point is the well known complex 

Taylor's series 

 ( )
1

ln 1 , 1
n

n

zz z
n

∝

=

− = − <∑ . (A1.1) 

If we put e jaz
D

θ= , and equate real parts of the right- and left-hand sides of 

(A1.1), we arrive at (7). 

6.2 Appendix 2 
Here we prove (8). Let us denote: 

 ( )
2 2

2
2

0

4cos ln sin d
2

aI n
D
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∫ . (A2.1) 

A partial integration gives: 
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1 sin cot d
2
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The integral in (A2.2) is evaluated in [4]: 

 
2

0

sin cot d 2 cos
2

n n
π ′θ − θ′ ′θ θ = − π θ∫ . (A2.3) 

Obviously, (A2.3), (A2.2) and (A2.1) imply (8). 
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