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Interface Identification in  
Magnetic Fluid Dynamics 

Marek Ziolkowski1, Hartmut Brauer2, Milko Kuilekov3 

Abstract: In magnetic fluid dynamics appears the problem of reconstruction of free 
boundary between conducting fluids, e.g. in aluminum electrolysis cells. We have investi-
gated how the interface between two fluids of different conductivity of a highly simplified 
model of an aluminum electrolysis cell could be reconstructed by means of external mag-
netic field measurements using simple genetic algorithm.  

Keywords: Genetic algorithms, Optimisation simulations, Inverse solution, Interface re-
construction. 

1 Introduction 
There are a variety of problems in material processing where it would be useful to 

know the time-dependent distribution of the electrical conductivity of a single fluid or a 
multiphase flow. For instance, the knowledge of the position of the interface between 
highly conducting molten aluminum and poorly conducting liquid cryolite is important 
to prevent unwelcome instabilities in aluminum reduction cells [1]. Other examples in-
clude electrical conductivity distributions in glass melting furnaces, metal-slag interfaces 
in steel and iron making as well as online detection of inclusions. The liquids involved 
in material processing such as molten metals, semiconductors, and glass melts are 
mostly hot and highly aggressive. Therefore, conventional measurement techniques em-
ploying local probes face serious difficulties. 

The purpose of the present work is to demonstrate that concepts of Magnetic Field 
Tomography (MFT) which have been successfully applied to a variety of problems in 
biomagnetism [2] can be used in order to detect interfaces between current carrying flu-
ids of different electrical conductivity [3, 4]. We demonstrate that the external magnetic 
field generated by the electrical current flowing through a highly simplified model of an 
aluminum reduction cell provides sufficient information to reconstruct the unknown 
interface shape.  
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2     Highly Simplified Cell Model 
Electrolysis produces chemical changes in a material by generating an otherwise 

unachievable chemical reaction by means of electrical energy. In the production of pri-
mary aluminum, alumina (Al2O3) is dissolved in an electrolyte that consists of molten 
fluoride salts kept at about 960 °C. When direct current is passed through this mixture, 
the alumina is decomposed into molten aluminum, deposited at the cathode, and oxygen, 
which reacts with the carbon anode to form CO2. 

Although the principles of this process have remained unchanged for more than 100 
years, the performance of the electrolytic cells has been vastly improved. Today the best 
cells operate with energy efficiencies about 50 %, which is above average for electro-
lytic processes in molten salts. One of the keys to further improvements in energy effi-
ciency and productivity is a better understanding of the chemical and physical conditions 
prevailing in the cells [5-7]. 

 

 
Fig. 1 - Scheme of an aluminum reduction cell. 

If we consider typical figures of aluminum electrolysis cells (Fig.1) it must be no-
ticed that the cross section has a length of about L= 8 m, whereas the interface displace-
ment η is very small compared to the lateral extent of the system. Industrial practice 
shows that already such small interface displacement can perturb significantly the op-
eration of the cell [8]. Consequently, our physical model is characterized by a very small 
ratio η/L. 

The considered highly simplified problem is shown in Fig.2. Two fluids with dif-
ferent electrical conductivity σ2 (up) and σ1 (down) are situated in a long cylinder of the 
radius R. The cylinder walls are no conducting. Along the axis of the cylinder a homo-
geneous electrical current density J0 is applied. 
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The complete interface perturbation can be found solving the Euler equation and 
the mass conservation law, 
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Fig. 2 - Highly simplified aluminum reduction cell model –  
cylinder with two conducting fluids. 

The value n is called the radial mode number and the value m the azimuthal mode 
number. Using this notation we call ηmn as an mn-mode e.g. η12  denotes mode 12 
(Fig.3).   

       

Fig. 3 - Sample interface modes: η12 (left) and η14 (right). 
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Although the quantity of modes is usually unlimited, the highest modes have small 
amplitudes and therefore can be neglected.  

The validity of the above interface representation is limited by the amplitude of the 
interface oscillations. We consider only small interface oscillations because the larger 
interface oscillations lead to instabilities due to drop formation [8].  

3    Magnetic Field Modelling 
If the interface between fluids is flat, the current density J is homogeneous every-

where. As soon as the interface deviates from its flat shape, due to interfacial waves or 
an external forcing, the current density J will become inhomogeneous near the interface 
(Fig.4). 

The inhomogeneity of J is represented by the perturbation current density j. If the 
perturbation of the fluid interface is non-axisymmetric, it leads to a perturbation of the 
radial and axial component of the magnetic field outside the cylinder. This fact is used 
for the interface reconstructions. 

 
Fig. 4 - Current density distribution near the interface. 

To model the magnetic field, first, we have formulated the problem using the scalar 
electric potential Φ, 

 0 0 0, /J zφ σΦ = Φ + Φ = , 

which fulfils the Laplace equations, 

 , 

with the following boundary and interface conditions, 

 1 20, 0, / 2r R z H
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and 

 1 2 1 2,⋅ = ⋅ Φ = ΦJ n J n along the interface. 
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In the case of analytical approach (applicable only to small perturbations) the fol-
lowing linearized interface condition has been formulated [9, 10], 
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Fig. 5 - Flowchart of forward calculations using analytical method. 

 
 
 

 
 

 
 
 
 

 
 
Fig. 6 - Flowchart of forward calculations using finite element method. 

Having electric potential φ we can calculate the perturbation current density distri-
bution j in the cylinder and then, applying the Biot-Savart law, the magnetic flux density 
in the sensors area (Fig.5). To avoid the limits with the perturbation amplitude the nu-
merical method has to be applied. We have chosen the finite element method in which 
first order tetrahedral elements have been used. Fig.6 shows the flowchart of calcula-
tions of the magnetic flux density distributions in the sensor area in the case when the 
finite element method is used. 
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Fig.7 shows the distribution of magnetic flux density components (Br, Bz) on the 
evolved cylindrical surface of the radius 35 mm calculated with analytical and numerical 
methods. 

  
 

  
Fig. 7 - Distribution of magnetic flux density, Br (up) and Bz (down) components 

calculated by analytical (left) and FEM (right) methods. 

The differences observed in Fig.7 (shift of extreme positions) between analytical 
and numerical distributions of magnetic flux density come from the fact that applied 
linearized interface condition in the analytical method cause the elimination of the an-
gular non-symmetry of the current density distribution in the vicinity of the interface. It 
means that for higher radial modes (n>2) only the numerical methods could give correct 
results in modelling of magnetic field distributions in the sensor area. 

4     Interface Reconstruction 
The reconstructions of the interface shape have been performed on the simulated 

data.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8 - Flowchart of the interface shape reconstruction. 
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According to Fig.8, first, we have to define the mode, which describes the interface 
shape, then, the magnetic flux density in the sensors positions (72 sensors in 21 rows) is 
calculated (as it is shown in the previous section). In the next step, the white noise has 
been added to the magnetic field. Sample distribution of the noisy Br component of the 
magnetic flux density is shown in Fig.9. 

 
Fig. 9 - Distribution of Br component with 20% white noise. 

Due to limited number of sensors, which could be used in the experiment (maxi-
mum 8 sensors in one row, Fig.10), the calculated data has to be reduced and located to 
the prescribed sensor positions. 

35mm25mmCylinder

 
Fig. 10 - Ring with 8 2D sensors (Br & Bz components). 

After reduction process, the sample distribution of the magnetic flux density for 8 
sensors in one row and 5 rows with 20 mm distance between rows is shown in Fig.11. 

The reconstruction process is realized in two steps. First, the fast Fourier transfor-
mation (FFT) of the simulated data is calculated and the significant azimuthal modes are 
identified. Next, the radial modes have been found using simple genetic algorithm (GA) 
[11].  

As an example, we have reconstructed the shape of the interface described by mode 
η12. That mode has been chosen due to the analysis of the first experiment results shown 
in Fig.12. 

The cost function has been defined as a sum of squared differences between simu-
lated and actual magnetic field calculated for Br and Bz component in the sensors posi-
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tions. The result of reconstruction is shown in Fig.13. In that case, the population size 
was equal 30, the mutation probability 0.01, and the crossover probability 0.6. 

 
Fig. 11- Br & Bz distribution with 20% noise for 8 sensors in 5 rows. 

   

Fig. 12 - Photo snapshot of the interface surface (experiment) compared with 
the curvature distribution of η12 mode. 

  
 

Fig. 13 - Original η12 mode (left) and the interface shape (right) 
reconstructed from the noisy Br & Bz distribution. 

5    Conclusion 
We have shown that it is possible to reconstruct the shape of the interface between 

two fluids applying simple genetic algorithm on the basis of simulated magnetic flux 
density measurements. In the future, the presented algorithm will be applied with the 
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real experimental data. In that case, the simple FFT block has to be completed with the 
DSP block which could improve the signal to noise ratio. 
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