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Symmetrical Linear Antennas  
Driven by Two-Wire Lines 

Jovan V. Surutka1, Dragutin M. Veli~kovi }2 

Abstract: A new theoretical approach to the problem of the symmetrical linear 
antenna driven by a two-wire line is presented. Then symmetrical linear antenna 
and the feeder line are treated as a unique boundary-value problem leading to a 
system of two simultaneous integral equations containing antenna and line cur-
rents as unknown sub-integral functions. The integral equations are approxi-
mately solved by the so-called point-matching method. Due to the mutual cou-
pling between the antenna and the line, a new conveniently defined apparent 
driving-point admittance is to be introduced. The method is applied on several 
types of linear antennas: Centre driven symmetrical dipole antenna, Centre-
driven V-antenna, Cage antenna, H-antenna and System of two parallel non-stag-
gered dipoles antennas, positioned in the air over semi-conducting ground. Then 
theoretical results for admittances were compared with the experiments and re-
markably good overall agreement has been found. On the contrary, a comparison 
with the corresponding theoretical results obtained with the idealized delta-func-
tion generator revealed remarkable discrepancies. 

Keywords: Linear antenna, Integral equation, Antenna input impedance, Two-
wire line. 

1 Introduction 
Many authors have exhaustively treated the problem of the thin symmetrical linear 

antennas fed by a delta-function generator. Then moment method is commonly used for 
approximate numerical solving of existing integral equation, having antenna current 
distribution as unknown [1]. Especially, very good results in the numerical solving of 
these integral equations are obtained using point matching method with polynomial cur-
rent distribution. First of all, polynomial current approximation was used in [2], for ap-
proximate numerical solving of Hallen's integral equation [27]. Afterward, integral equa-
tions and polynomial current approximation were successfully used for solving several 
types of linear antennas, as: Isolated [3] or Symmetrical dipole antenna in non-linear 
semi conducting media [4], V-dipole antenna [5] and Loop antenna [6, 7]. This tech-
nique was later expanded on the curvilinear antennas [8] and on the linear antennas in 
the surroundings of conducting bodies [9]. Recently, very good results are obtained in 
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modelling cage structures in pulse external electromagnetic field (which imitate light-
ning or nuclear explosion electromagnetic discharges) [10]. Except point matching 
method, polynomial antenna current approximation is successfully included in varia-
tional solution of linear antenna problems, for solving V and Loop antennas [11-13]. 

If linear antennas are driven by delta-function generator, the comparison between 
theoretical and experimental results show very good agreement in determining of the 
antenna radiation pattern, near and far field distribution and antenna input conductance, 
but theoretical values of antenna input susceptance are always incorrect, because of the 
physical insufficiency of the delta-function generator. In order to exceed these difficul-
ties, the authors suggest one new approach to solving linear symmetric antennas driven 
by two-wire lines. The first very good results are obtained in the analysis of symmetrical 
dipole [14] and V-antenna [15], including two non-staggered dipoles [16, 17, 18]. Af-
terward, several more complex forms of linear antennas were treated in this way, as cage 
antenna [21], H-antenna [22], two arbitrary oriented symmetrical dipole antennas in free 
space [20] or near ground [19]. These investigations of the symmetrical linear antenna 
driven by a two-wire line have revealed a strong dependence of the input admittance on 
geometry of the feeding zone. Particularly remarkable discrepancies were noticed be-
tween the theoretical admittances obtained with the delta function generator and those 
achieved with real feeding system comprising a two-wire line having the conventional 
distance between the line conductors.  

In order to prove the theory, the theoretical results were compared with the experi-
mental results obtained by Angelakos [23] and in the Antenna Laboratory of the Faculty 
of Electrical Engineering of Belgrade [24]. A very satisfactory overall agreement be-
tween the results was found. On the other side, the comparison between of the theoreti-
cal results of the present theory with those obtained by using an idealized delta-function 
generator shows remarkable discrepancies. Finally, it is not superfluous to notice the 
obtained results in very precise numerical solving of several types on non-elementary 
integrals having singular or quasi-singular sub-integral functions [25, 26], which 
eliminates eventual ill-condition problems in numerical solving of systems of simulta-
neous integral equations. 

2 Short Theoretical Approach  
The antenna and the line are treated as a unique boundary value problem, so that 

the coupling between the antenna and the line, as well as the transmission line end effect 
are taken into account. Such a treatment leads to a system of two simultaneous integral 
equations, containing the current distributions on the antenna and on the line as terminal 
zone, in the vicinity of the antenna input terminals, as unknown subintegral functions. 
Due to the coupling between the antenna and the line, the line current can be represented 
as a simple sum of an incident and reflected travelling waves, as in the conventional 
transmission line theory. At that part of the line, an additional, perturbing term must be 
added to the travelling waves. As performed investigations shown, the length of this per-
turbed part of the line is not critical and it may be satisfactorily taken to be between 

λ0.1  and λ0.25 , where λ  denotes the wavelength. These integral equations are solved 
numerically by using point-matching method. The current on the antenna is approxi-
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mated by a polynomial with unknown complex coefficients and that on the line by the 
sum of an incident and reflected waves and by a polynomial decreasing rapidly with the 
distance from the end of the line. The concept of the input admittance of the antenna 
needs some clarifications and a new, adequate definition. Namely, due to the mutual 
coupling (by means of the field) between the antenna and the line, the usual definition of 
the admittance, as the ratio between the current and potential difference at the input ter-
minals, is no longer a meaningful and useful concept. Much better and more suitable 
definition can be established when the antenna effects on the current and voltage distri-
butions along the line beyond the terminal zone are taken into consideration. Since the 
conventional transmission line theory holds at that part of the line, the input admittance 
in any cross section of the line can be defined as the ratio of the current and the voltage 
in that section and can be expressed by means of the current reflection coefficient and 
characteristic admittance of the line. In order to define an "apparent driving-point admit-
tance" of the antenna, the above-defined admittance is to be transformed to the end of 
the line according to the transmission line theory.  

3 Description of the Method in the case of  
 Symmetric centre-driven dipole antenna 

3.1 The Apparent Admittance and Currents in the System 
Consider the circuit consisting of a balanced two-wire line terminated in a symmet-

ric centre-driven dipole antenna. The geometrical arrangement is shown in Fig.1. The 
dipole antenna consists of two straight, collinear cylindrical conductors, each of length 
h′  and small radius a , separated in the middle by a gap of half-length d . The distance 
from the centre of the dipole to each of its extremities is denoted by h , so dhh +′= . 

The transmission line consists of two parallel conductors of radius b , the axes of 
which are separated by a distance d2 . The antenna and line conductors are assumed to 
be perfect. 

As shown in Fig.1 the axis of the dipole coincides with the −z axis of the coordi-
nate system, the −y axis of which is parallel to the axes of the two-wire line and bisects 
the distance between them. 

In order to simplify the analysis it is assumed that the currents on the antenna and 
on the transmission line are localized on conductor axes. The positive directions of the 
currents are denoted on the Figure. Due to symmetry the current on the dipole arms, 

( )zIa , must satisfy the condition 

 ( ) ( )zIzI aa =− , dzh −≤≤− , hzd ≤≤ . (1)  

In addition, the current ( )zIa  must fulfil the condition  

 ( ) 0=hIa . (2)  
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In writing the expression for the current on the transmission line, it is convenient to 
distinguish two parts of the line: 

(1) The part Ly ≥ , where the direct influence of the dipole and of the end-
discontinuity of the line can be neglected; and 

(2) The part Ly <≤0 , where the coupling between the dipole and the line, as 
well as the line ends effect, must be taken into account. 

 
Fig. 1 - Symmetric dipole antenna driven by a two-wire line. 

As will be seen later, the choice of the length L  is not critical. It is quite satisfac-
tory to take it equal to a small multiple of the separation d2  between the line conduc-
tors. 

The current distribution function along the first part of the line, Ly ≥ , can be 
represented in a conventional manner as the sum of the incident and reflected waves, 

 ( ) kyky IIyI j
r

j
if ee −−= , Ly ≥ , (3) 

where iI  and rI  are unknown complex amplitudes of the two waves and 

λπ2=µεω= 00k  is the free space propagation constant. 

To account for the influence of the dipole and of the line-end on the current distri-
bution on the second part of the line, Ly ≤≤0 , an additional term ( )yIp  should be 

added to (3), so that 

 ( ) ( )yIIIyI kyky
p

j
r

j
if ee +−= − , Ly ≤≤0 . (4) 
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In order to preserve the continuity of the current at Ly = , the following condi-
tions must be satisfied, 

 ( ) 0=LIp  and 0=
=Ly

yI dd p . (5) 

In addition, the current at the end of the line must be equal to the current entering 
the dipole, 

 ( ) ( )dII af 0 = . (6) 

The form of equation (3) implies that on the part of the line Ly ≥  a TEM field 
exists, so that the conventional transmission-line theory is fully applicable. Conse-
quently, the input admittance, ( )yY , in each cross-section of the part of the line Ly ≥  
can be defined as 

 ( ) ( ) ( ) ( ) R
RY

IIZ
IIyVyIy ky

ky

kyky

kyky

+

−
=

+

−
==

−

−

2j

2j

cj
r

j
ic

j
r

j
i

ff
e
e

ee
eeY , (7) 

where cc 1 ZY =  is the characteristic admittance of the line and 

 ir IIR =  (8)  

is the reflection coefficient. 
The admittance given by (7) is just the quantity that can be determined by measur-

ing the v.s.w.r. and the position of the voltage minimum in respect of the cross-section at 
Ly ≥ . 

The above-mentioned apparent driving-point admittance Y  can be obtained from 
(7) by putting 0=y , 

 ( )
R
RYy

+
−

=
1
1

cY . (9) 

In order to evaluate Y , the ratio ir II , and hence all the currents in the circuit, 
must be determined first. 

3.2 The Components of the Magnetic Vector-potential 

The magnetic vector-potential due to the dipole current, ( )zIa  has only -z com-

ponent, which in the field point ( )zyx ,,M  has the following form, 
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, (10) 

where 

 ( )222
3 zzyxR ′−++=  and ( )222

4 zzyxR ′+++= . (11) 

The vector-potential due to the current in the two-wire line has a −y component, 
whose incomplete expression, corresponding to the part of current given by (3), is de-
rived in the Appendix. Taking into account the additional term of the current, ( )yIp , 

the complete expression for the vector-potential can be written as follows, 
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where 

 ( )22
1 dzxr −+= , ( )22

2 dzxr ++= ,  (13) 

 ( )22
11 yyrR ′−+=  and ( )22

22 yyrR ′−+= . (14) 

The values 0401,...,YY  are defined in the Appendix. 

3.3 Integral Equation Derived from the Boundary Condition on  
 the Surface of the Dipole Conductor 

Since the conductor is assumed to be perfect, the tangential component of the elec-
tric field strength must vanish on the surface of the dipole. Applying this boundary con-
dition to the −z component of the field strength along the line ax = , x=a, 0=y , 

hzd ≤≤  on the surface of the dipole, we can write 
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The solution of the non-homogeneous differential equation (16) consists of the in-
tegral of the homogeneous equation (without the term on the right side of (16)), 

 ( ) ( )[ ] ( )[ ]d-zkCd-zkCAz sincos 21hom ′+=  (17)  

and a particular integral of the non-homogeneous differential equation 

 ( ) ( )[ ] ss-zk
zy

A
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z
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After a partial integration of the particular integral (18) has been performed, the fol-
lowing expression is obtained, 

 ( ) ( ) ( )[ ] ( )[ ]−+=+= d-zkCd-zkCAAA zzz sincos 21parthom
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The partial derivative 
y

Ay

∂

∂
 (19) can be obtained from (12), so 
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Introducing (10) in the left-hand side of (19), the first of the two integral equations 
from which the unknown currents should be determined, is obtained, 
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3.4 Integral Equation Derived from the Boundary Condition  
 on the Surface of the Line Conductor  

Boundary condition 0=yE , along the line bx = , dz = , 0≥y  on the sur-

face of the line conductor, gives 
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Analogously to the previous case, the integral of (22) is found as a sum of the inte-
gral of the homogeneous equation 

 ( ) ( ) ( )kyCkyCAy sincos 23hom ′+=  (23) 

and a particular integral of the non-homogeneous differential equation 
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By use of partial integration of (24), 

 ( ) ( ) ( ) ( )−+=+= kyCkyCAAA yyy sincos 43parthom  
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The term zAz ∂∂  can be obtained from (10) by partial differentiation. Since 

zRzR ′∂∂−=∂∂ 33  and zRzR ′∂∂−=∂∂ 44 , after some manipulations involv-

ing partial integration and transformation of zAz ∂∂ , we obtain a form, which is suit-
able for numerical calculations on a digital computer, 
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where aI ′  means the derivative of aI . 

If (12) is substituted into the left-hand side of (25) and if the account is taken of 
(26), equation (25) becomes the second integral equation. In order to save the space this 
integral equation will not be written explicitly and in what follows it will be referred to 
as equation (25). 

One of the constants 2C  and 4C  in equations (19) and (25) can be determined 

from the condition that the scalar-potentials on the dipole, aϕ , and the line conductor, 

fϕ , should be equal at the joint of the two conductors. The above condition reads 

 ( ) ( )dzybxdzyax =0,==ϕ==0,==ϕ ,, fa . (27) 

The scalar-potential can be determined from the vector-potential by means of Lor-
entz's continuity condition for potentials 

 







∂
∂

+
∂

∂

µωε
=ϕ

z
A

y
A zy

00

j
. (28) 

From (27) we get 

 42 CC = . (29) 

3.5 Approximate Solution to the Integral Equations 

The exact solution to the system of the simultaneous integral equations (19) and 
(25) is not known, but an approximate solution can be obtained by the so-called point-
matching method. We assume the currents in the form of finite functional series with 
unknown complex coefficients. With this series substituted for ( )zI ′a  and ( )yI f  in 
(19) and (25), we calculate the unknown coefficients by prescribing the integral equa-
tions to be satisfied at a sufficient number of points along the dipole and the part of the 
line Ly ≤≤0 . 

The limited simple power series in z  and y , respectively, appear to be very 

convenient and most flexible trial functions for the current ( )zIa  and the part ( )yIp  

of the current. Let us, therefore, approximate the currents along the dipole and the line 
by the following expressions, respectively, 

  ( ) ∑
0=

=
M

m

m
m zAzIa , hzd ≤≤  (30) 

and 
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ee j

r
j

if  (31) 

The current distributions (30) and (31) comprise 4++ NM  unknown coeffi-
cients. Together with four constants, 1C , 2C , 3C  and 4C , the total number of un-

knowns amounts to 8++ NM . 
On the other side, there are four conditions for currents - (2), (5a, b) and (6) - and 

the relation (22) expressing the scalar potential condition, so that the total number of un-
knowns is reduced by five. Besides, since only the ratio ir II  is needed for determina-

tion of Y , iI  can be chosen to be equal to unity, and, hence, it remains to evaluate 
2++ NM  unknowns. 

According to the point-matching method these unknowns can be determined by 
satisfying the integral equations (19) and (25) (with the approximations (30) and (31) 
included) at 2++ NM  points along the dipole and the part of the line Ly ≤≤0 . 
In principle these points can be selected arbitrarily, but it seems to be quite natural to 
select 1+M  points along the dipole arm ( hzd ≤≤ ) and 1+N  points along the 
part of the line Ly ≤≤0 . In addition, the selected points on the dipole, as well as 
those on the part of the line, are taken to be equidistant, 

 ( ) Mdhkdzk −+= , Mk 1,...,0,=  (32)  

and 

 NLpy p = , Np 1,...,0,= . (33) 

Substituting successively different values kz  for z  in (19), and py  for y  in 

(25), and evaluating the corresponding integrals, we obtain a system of 2++ NM  
linear equations containing the unknown complex coefficients and constants which de-
termine the current distribution functions. By solving the system these unknowns can be 
evaluated. 

3.6 Numerical Results and Comparison with the Experiment 
The influence of the length, L , of the perturbed part of the line is presented in Ta-

ble 1. In this Table ( )ah2ln2=Ω  is Hallen's parameter, cZ  is characteristic line 
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impedance, M  and N  are the largest degrees of the polynomial approximating current 
distributions on the antenna and on the line perturbed part. 

Table 1 - Admittance, [ ]mS Y , of half-wave dipole fed by a two-wire line  
 as a function of λL , where λ0.25=h , 10=Ω , Ω300=cZ , 3== NM . 

λL  0.001 0.05 0.10 

[ ]mS Y  9.551-j4.375 9.365-j4.255 9.123-j4.245 

λL  0.15 0.20 0.25 

[ ]mS Y  9.146-j4.176 9.268-j5.153 9.076-j4.185 

It can be seen from Table 1 that the length of the line perturbed part is not critical 
at all and that, starting from approximately λ0.1=L  the results converge in a satisfac-
tory manner. In order to verify this conclusion another example has been elaborated and 
the results are presented in Table 2. 

Table 2 - Admittance, [ ]mS Y , of full-wave dipole fed by a two-wire line 
 as a function of λL , where λ0.5=h , 10=Ω , Ω300=cZ , 3== NM . 

λL  hd 10.0= 0  hd 00.01=  
0.1 0.951+j1.505 0.962+j1.214 

0.25 0.952+j1.505 0.935+j1.172 
 

λL  hd 0150.=  hd 000.1=  
0.1 0.996+j0.448 1.039-j0.137 

0.25 0.965+j0.413 1.039-j0.119 

After the influence of the parameter L  has been estimated, a theoretical but impor-
tant check of the theory was performed: the admittances corresponding to a very small 
spacing between the line conductors ( hd 0.001=  and Ω300=cZ ), as obtained by the 
present theory, were compared with those resulting from the theory which is based on 
the idealized delta-function generator [2]. In both cases the same order of the polynomi-
als, approximating the current distribution along the dipole, was used (for 2≤kh , 

2=M  and for 2≥kh , 3=M ). The numerical results are presented in Table 3, where 

δY  denotes admittances corresponding to the delta-function generator and Y  those ob-
tained by the present theory. 

Although the general agreement between the above-cited theoretical results is very 
satisfactory, it should be noted that these results refer to a particular case only. As far as 
the validity of the theory is concerned, the above agreement is a necessary but not a suf-
ficient condition. 
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Table 3 - Comparison of admittances of the half-wave dipoles fed by a delta-function 
generator and by a two-wire line with very small conductor spacing, 

λ0.25=h , 10=Ω , hd 0.001=  and Ω300=cZ . 

kh  [ ]mSY  [ ]mSδY  
1.0 0.400+j4-063 0.400+j4.171 
1.2 1.991+j6.948 2.021+j7.075 
1.4 11.879+j6.748 12.232+j7.415 
1.6 7.893-j4.399 7.885-j4.512 
1.8 3.422-jl.943 3.380-j3.181 
2.0 2.104-jl.943 2.098-j1.930 
2.2 1.573-jl.024 1.571-j0.994 
2.4 1.296-j0.376 1.290-j0.334 
2.6 1.130+j0.165 1.127+j0.213 
2.8 1.031+j0.655 1.026+j0.707 
3.0 0.971+jl.126 0.966+jl.188 
3.2 0.946+jl.620 0.941+jl.689 

Of course, the most competent support to a theory is provided by experiment. Un-
fortunately the published experimental data concerning the admittances/impedances of 
dipoles driven by a two-wire line are rather rare and often refer to somewhat specific 
feeding conditions (the antenna as end load with high-impedance stub support, or an-
tenna as a centre load with equal and opposite generators at the ends of the line, [23, p. 
208]. Probably the most reliable experimental data, which are very suitable for direct 
comparison with the theoretical results, are those presented by Angelakos [23, Figs.34. 
7a and 34.7b]. 

In order to eliminate the difficulties concerning the conventional open-wire lines, 
Angelakos used the image-plane line and monopole antenna in the measurements. The 
end of the line and monopole antenna was supported either by styrofoam supports or by 
a high-impedance stub. The measured impedances in the two cases differ significantly 
and both are given in the cited reference. For the purpose of comparison with the theory 
the experimental impedances obtained in the measurements with the styrofoam supports 
have been used. These impedances, converted into equivalent admittances, are in Fig.2. 
In Angelakos' experiment the frequency was kept constant at MHz750  ( m0.4=λ ) 
and the line had the following dimensions:  

mm17.3=b , mm2 19.626=d  and Ω215.4=cZ . 

The radius of the antenna conductor was the same as that of the line conductor, i.e. 
mm17.3== ba , and the length of the dipole was varied within the limits 

44.1 ≤≤ kh , where λπ2=k  is phase constant. The same data were used in calculat-
ing the theoretical admittances. These were evaluated using polynomials of the order 

4=M  and 3=N  and assuming λ0.25=L . Theoretical admittances are shown on 
the Fig.2 together with the corresponding experimental results. The agreement between 
the theoretical and experimental data is really excellent and unexpected. A small, con-
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stant difference in the susceptance, of about mS0  - mS25.0 , can be explained by the 
shunting effect of the styrofoam support. At the frequency of MHz750  this difference 
corresponds to a shunting capacitance of about pF0 - pF05.0  only. 

 

 
Fig. 2 - Theoretical and experimental conductance, G, and susceptance, B, 

 of dipole antenna fed by a two-wire line as functions of kh , when 
mm17.3== ba , mm2 19.626=d , Ω215.4=cZ  and cm40=λ . 

For comparison, in Fig.2 the admittances corresponding to the idealized delta-func-
tion generator and to the same dipole dimensions are also shown. Note the very remark-
able discrepancies between the theoretical admittances obtained with idealized and real 
feeding conditions respectively 

In addition, some other examples of the dipole antenna were analysed and the ap-
parent driving-point admittances calculated. This time all dimensions of the dipole and 
line were kept constant and the frequency was varied. The geometry of the dipole and 
line was defined by the following parameters:  

10=Ω , Ω300=cZ , ,0.001=hd 0.05  and 0.1. 
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Fig. 3 - Theoretical conductance, G , and susceptance, B , 
as a function of kh  with hd  as parameter. 

The ratio db  is implicitly contained in cZ . The calculated conductance and sus-
ceptance, as functions of kh , are shown in Fig.3. It is seen that the influence of the line 
conductors on the admittance is very significant. With the increase of the ratio hd  the 
maximum of both the conductance and susceptance curves become smaller and both 
curves are shifted towards larger values of kh . 

4 Application of the proposed method to the other kind of antennas 
4.1 V - dipole antenna 

The readers, which are interested in detailed analysis, can find exhaustive theoreti-
cal presentation in already published paper [15]. The remained exposition will be ori-
ented to present realized numerical results of input antenna admittance/impedance and 
current distribution, including the comparison of the theoretical and experimental results 
and investigation of the influence of the form of driving antenna zone. 
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Thin symmetrical V-dipole antenna driven by a two-wire line, lying in the same 
plane, is considered. The geometrical arrangement is shown in Fig.4. The arms of the 
dipole have equal lengths h′  and the same radius a  ( )ha ′<< , and are inclined at an 
arbitrary angle θ2  with respect to each other. The transmission line consists of two 
parallel conductors of radius b , the axes of which are separated by a distance d2 . The 
antenna and the line are assumed to be perfectly conductive. 

 

Fig. 4 - Symmetric V-dipole antenna driven by a two-wire line. 

The present theory has been used in calculating the admittance and current distri-
bution for a number of V-dipole antennas.  

In order to check the integral equations and the method as a whole, the particular 
case of the dipole having opening angle 0180=θ2  was primarily analysed and the results 
were compared with those obtained in Ref.14 for straight dipole of the same dimensions. 
Although the integral equations in [14] and these in this case (for 00=θ 9 ) are formally 
different, the results are exactly the same using both procedures. 

Further, the influence of the order of polynomials as well as that of the length of the 
perturbed part of the line, L , on the convergence of the results were examined. The 
results and the conclusions are very similar to those for straight dipole. Fairly low order 
of polynomials, ,M  43,2,=N , depending on the ratio λ′h , approximating the cur-
rents, yields satisfactorily fast convergence of the results. Similarly, the lengths of L  
between λ0.1  and λ0.25  secure a good convergence. 
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Fig. 5 - Theoretical and experimental conductances, G , and susceptances, B , as 

functions of arm-length, h , of V-dipole ( mm3== ba , mm122 =d , MHz3.883=f ). 
Present theory: —— conductances and susceptances. 

Measured values: o o o o conductances, + + + + susceptances. 

Since the most valuable support of the theory could be provided experimentally, 
some measurements of the V-dipole admittances were performed in the Antenna Labo-
ratory of the Faculty of Electrical Engineering, Belgrade [24]. The direct measurements 
of a symmetrically driven V-antenna were replaced by the measurements on an asym-
metrical equivalent, using image plane technique and a slotted coaxial measuring line. 
During the experiment the frequency was maintained at MHz3.883  and the length of 
the dipole arm was varied within the limits cm17cm5 <′< h  ( π<′< hk925.0 ). 

The radii of the antenna and line conductors were mm3== ba  and the half dis-
tance between the axes of the line conductors was mm6=d , so that mS1581=Y . 
The measured conductances and the susceptances of the V-dipole were presented versus 
length of the dipole arm, h′ , and for the following angles between the arms: 0180=θ2 , 

0120 , 090  and 060 . The results are shown in Fig.5, by crosslets and dots. The corre-
sponding theoretical values of the conductance and the susceptance are shown on the 
same figure by the full lines. The theoretical admittances were evaluated using polyno-
mials of the order 4=M  and 3=N , and assuming λ0.25=L . As it is seen from 
Fig.5 both conductance and susceptance curves show very good overall agreement with 
the experiment. 

In order to investigate the influence of geometry of the feeding zone, the input im-
pedances/admittances of the V-dipoles fed by two-wire lines, having the same charac-
teristic impedances ( Ω300=cZ ) but different conductor spacing, are evaluated and 
compared. The case of zero spacing ( 0=′hd ) corresponds to the V-dipole fed by an 
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idealized delta-function generator. In evaluating the impedances/admittances, geometry 
of the dipole and line was kept unchanged and the frequency was varied, so that the 
electrical length of the dipole-arm was changed, approximately, between 0.9  and 3.2  
radians. As a measure of the thickness of the antenna the parameter 

( ) 10=′2=Ω ah2ln  was adopted, h′ , being the net length of the dipole arm and a  its 
radius. The calculations were performed for three different line conductor half-spacing 

0=′hd ; 0.025; 0.05, and for a number of angles θ2  between the dipole arms, but 

only the results referring to the angle 00=θ2 9 are presented here. 

Table 4 - Input impedances (in Ω ) of the rectangular V-dipoles ( 090=θ2 ) 
 calculated and compared for different values of ( )θ+′= sindhkkh  and for 

 different values of d ( 0=′hd ; 0.025 ; 0.05; Ω300=cZ , ( ) 10=′2=Ω ah2ln ). 

kh  0=′hd  025.0=′hd  05.0=′hd  
0.9 8.1-j290.6 8.9 -j315.5 9.4-j337.2 
1.0 10.6-j236.2 11.6 -j256.2 12.2-j273.9 
1.1 13.9-j187.8 14.9 -j203.4 15.5-j217.9 
1.2 17.9-j143.2 19.0 -j155.2 19.6-j167.0 
1.3 23.2-j100.8 24.1 -j109.8 24.6-j119.5 
1.4 30.0 -j 59.2 30.5 –j 66.1 30.7-j74.1 
1.5 39.0 -j 17.3 38.7 -j 22.8 38.7-j29.7 
2π  47.3+ j13.3 45.8 +j 8.2 44.9+j1.6 

1.6 51.2+ j26.3 49.1 +j 21.1 48.0+j14.6 
1.7 68.0+ j72.9 62.8 +j 66.5 60.1+j60.0 
1.8 92.0+j123.8 81.0+j114.5 75.9+j106.5 
1.9 127.1+j180.4 105.8+j166.2 96.5+j156.0 
2.0 180.6+j243.5 140.4+j222.5 124.0+j209.0 
2.1 264.6+j310.5 189.8+j283.9 161.6+j266.2 
2.2 399.0+j368.4 262.4+j349.2 213.9+j327.8 
2.3 604.6+j375.2 370.8+j411.9 288.4+j392.1 
2.4 855.5+j240.9 531.4+j452.6 396.0+j453.2 
2.5 987.8- j78.6 752.0+j425.0 550.1+j494.8 
2.6 872.3-j395.4 986.7+j275.5 758.5+j480.3 
2.7 648.8-j536.8 1098.7-j58.2 993.0+j350.6 
2.8 461.2-j551.7 3999.1-j69.5 1152.8+j75.2 
2.9 333.3-j516.5 5787.9-j38.4 1128.3-j253.9 
3.0 249.5-j469.0 5588.3-j81.0 950.3-j487.2 
3.1 193.6-j422.3 439.0-j560.5 737.5-j585.0 
π  176.0-j404.1 390.9-j543.8 657.7-j596.2 

3.2 155.4-j334.7 334.7-j517.0 559.3-j593.8 
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Table 5 - Input impedances (in Ω ) of the rectangular V-dipoles ( 090=θ2 ) 
 calculated and compared for different values of the electrical length hk ′  

 and for different values of d   
( 0=′hd ; 0.025; 0.05; Ω300=cZ , ( ) 10=′2=Ω ah2ln ). 

kh  0=′hd  025.0=′hd  05.0=′hd  
0.9 8.1-j290.6 9.2-j307.0 10.2-j318.9 
1.0 10.6-j236.2 12.1-j247.7 13,2-j255.7 
1.1 13.9-j187.8 15.6-j194.8 16.9-j199.5 
1.2 17.9-j143.2 20.0-j146.2 21.5-j148.1 
1.3 23.2-j100.8 25.4-j100.3 27.1-j99.7 
1.4 30.0-j59.2 32.3-j55.8 34.1-j53.0 
1.5 39.0-j17.3 41.1-j11.5 43.0-j6.9 
2π  47.3+j13.3 48.9+j20.3 50.6+j25.9 

1.6 51.2+j26.3 52.5+j33.6 54.2+j39.6 
1.7 68.0+j72.9 67.6+j80.7 68.8+j87.6 
1.8 92.0+j123.8 87.9+j130.8 87.9+j138.1 
1.9 127.1+j180.4 115.9+j185.1 112.7+j191.6 
2.0 180.6+j243.5 155.5+j244.5 148.7+j250.5 
2.1 264.6+j310.5 213.0+j309.2 198.0+j313.8 
2.2 399.0+j368.4 298.7+j376.6 268.9+j381.1 
2.3 604.6+j375.2 428.4+j436.2 372.5+j447.8 
2.4 855.5+j240.9 618.7+j458.1 524.0+j497.9 
2.5 987.8-j78.6 862.4+j378.8 735.1+j496.6 
2.6 872.3-j395.4 1169.7_j131.2 983.8+j377.5 
2.7 648.8-j536.8 1085.3-j216.8 1165.6+j97.1 
2.8 461.2-j551.7 908.7-j475.4 1147.7-j252.7 
2.9 333.3-j516.5 686.8-j576.6 958.7-j498.6 
3.0 249.5-j469.0 507.3-j579.6 733.0-j597.2 
3.1 193.6-j422.3 379.8-j542.5 549.7-j600.8 
π  176.0-j404.1 339.3-j522.6 488.6-j588.0 

3.2 155.4-j380.0 292.3-j493.3 416.2-j563.3 

The comparison of the results for impedances/admittances, referring to the various 
spacing d , can be accomplished in two different, but equally acceptable ways, depend-
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ing upon the adopted independent variable defining the dipole arm-length. One of the 
ways, which is compatible with that used in Ref.5, is to adopt the electrical length 

( )θ+′= sindhkkh  as the independent variable. It means that in the special case of the 

straight dipole ( 0180=θ2 ) the dipoles having the same total lengths h2  (comprising 
the distance d2  between the input terminals) are mutually compared. The other way 
consists in comparing the dipoles having the same net dipole arm-lengths, h′ , i.e. the 
same hk ′ . 

Both above mentioned methods were used in this paper and the corresponding re-
sults for impedances (only) are presented in Tables 4 and 5. The table-presentation (in-
stead of diagrams) has been adopted due to very large variations of the impedance val-
ues. 

It is to be noted from the tables that geometry of the feeding zone has a consider-
able effect on the impedance, especially near the anti-resonance. With the increase of the 
ratio hd ′  the maximum of the resistances in both presentations is shifted towards lar-
ger values of hk ′  and kh . The same statement can be expressed with respect to the sec-
ond nulls of the reactances. 

In order to illustrate the effect of geometry of the feeding zone on the current dis-
tribution, the present method was used to calculate the current distribution along the 
dipole arms of two rectangular V-dipoles ( 00=θ2 9 ), having the arm-lengths 

λ0.25=′h  and λ0.5=′h . The thickness of the dipole conductor is denned by the pa-
rameter 10=Ω  and geometry of the two-wire line by Ω300=cZ  and 05.0=′hd . 
The real and imaginary parts (as well as the magnitude in the case λ0.5=′h ) of the 
current distribution are presented in Figs.6 and 7. For comparison, the current distribu-
tions along the V-dipoles driven by the idealized delta-function generators ( 0=d ) and 
having the same arm-lengths ( λ0.25=′h  and λ0.5=′h ) and parameter Ω , are shown 
on the same figures. In all cases the currents are calculated for an input power of W1 . 
The phase of the incident current wave at the end of the feeder line is taken as reference. 
Like impedances, the current distributions corresponding to the two feeding conditions 
differ significantly when the dipole arm-lengths are λ0.5 . 

4.2 Two parallel non-staggered dipoles [16, 17, 18] 

The system of two equal parallel non-staggered dipoles driven by a two-wire line is 
presented in Fig.8. 

The real and imaginary parts of the self and mutual admittances ( sG , sB , mG  and 

mB ), as well as those of the impedances ( sR , sX , mR  and mX ), against the ratio 

λD  are shown in Figs.9 and 10. For the sake of comparison, on the same figures the 
corresponding curves for the idealised delta-function generators are shown. As expected, 
the effect of the feeding lines on the admittances and impedances is always noticeable, 
but in some cases it is very pronounced. 
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Fig.  6 - Theoretical current distribution along rectangular V-dipoles driven by 

a two-wire line ( Ω300=cZ , 05.0=′hd ) and by a 
delta-function generator 0=d , λ0.5=′h , 10=Ω . 

 
Fig. 7 - Theoretical current distribution along rectangular V-dipoles driven by 

a two-wire line ( Ω300=cZ , hd ′0.05= ) and by 
a delta-function generator, 0=d , λ0.5=′h , 10=Ω . 

 
Fig. 8 - Two parallel non-staggered dipoles driven by a two-wire line. 
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Fig. 9 - Self and mutual admittances ( sG , sB , mG  and mB ) of 

two parallel non-staggered half-wave dipoles, 10=Ω , Ω300=cZ , ba = . 
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Fig. 10 - Self and mutual impedances ( sR , sX , mR  and mX ) of 

two parallel non-staggered half-wave dipoles, 10=Ω , Ω300=cZ  and ba = . 

4.3 Cage antenna [21] 

 
Fig. 11 - Cage antenna driven by a two-wire line. 

 
Fig. 12 - Conductance, G , and susceptance, B , of cage antenna with 8=N  

conductors, driven by a two-wire line and by delta-function generator, versus λh . 
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Fig. 13 - Resistance, R , and reactance, X ,  
of cage antenna driven by a two-wire line,  

with 4=N  and 8=N  conductors, versus λh . 

Conductance, G , and susceptance, B , of cage antenna having ah 12.5= , 8=N , 
ahh == 21 , hd 01.0= , aaaa 002.0321 ===  and Ω350=cZ  are presented in 

Fig.12, when two and third degrees of the polynomial current approximations on the 
antenna conductors and on the perturbed line part are used. Comparison of the results of 
the cage antenna resistance, R , and reactance, X , of the same dimensions as in Fig. 12, 
when 4=N  and 8=N , is presented in Fig.13.  

4.4 H-antenna [22] 

H-antenna driven by a two-wire line is presented in Fig.14. 
Conductance, G , and susceptance, B , of H-antenna driven by a two-wire line and 

by delta-function generator, when  

12 hh 0.01= , 12 aa = , λ0.25== LD , Ω300=cZ , ( )[ ] 10=−2=Ω 121ln ahh   
and different ratio λ1h  is presented in Fig.15. 

Conductance, G , and susceptance, B , of H-antenna driven by a two-wire line, 
when  

λ0.25== LD , Ω300=cZ , ( )[ ] 10=−2=Ω 121ln ahh , 12 aa =   

and different ratio 12 hh  versus λ1h  is presented in Fig.16. 
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Fig. 14 - H-antenna driven by a two-wire line. 

 

 
Fig. 15 - Conductance, G , and susceptance, B , of H-antenna driven by a two-wire line 

and by delta-function generator, versus λ1h . 
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Fig. 16 - Conductance, G , and susceptance, B , of H-antenna driven by  
a two-wire line versus λ1h , when different ratio 12 hh . 

4.5 Horizontal dipole antenna above an semi-conducting 
ground fed by a two-wire line [19] 

Starting from Sommerfeld's classical expressions for the electric field components 
of a horizontal Hertzian dipole above the earth and treating the antenna and its feeder 
line as unique boundary value problem, a system of simultaneous integral equations is 
derived, having antenna and line current distributions as unknowns. Using point match-
ing method and polynomial approximation of currents, this problem is solved numeri-
cally. Input conductance, G , and susceptance, B , of horizontal half-wave dipole of 
radius λ0.0001=a , driven by a two-wire line ( Ω00= 6cZ , the distance between line 
conductors is λ0.01=d2 ) and positioned at a height λ1.0  above semi-conducting 
earth (of relative permittivity rε  and conductivity σ ) are presented in Fig.17. 
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Fig. 17 - Conductance, G , and susceptance, B , of horizontal half-wave dipole antenna 
positioned above semi-conducting ground and feed by a two-wire line. 

5. Conclusion  
The investigators of the department of theoretical electromagnetics of Faculty of 

Electronic Engineering of Ni{ suggested one original and very exact theoretical ap-
proach to the problem of the symmetrical linear antennas driven by a two-wire line. This 
method treats the antenna and the transmission line as a unique boundary-value problem 
leading to a system of two simultaneous integral equations, containing current distribu-
tion on the antenna and line conductors as unknowns. These integral equations have 
been approximately solved using the so-called point matching method and the polyno-
mial approximation of the unknown currents on the antenna and on the line. In order to 
overcome the difficulties, caused by the mutual coupling between the antenna and the 
transmission line, a new, suitable defined apparent driving-point admittance has been 
introduced and calculated. 
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The described method has been used to calculate the apparent admittance for sev-
eral types of antennas: Centre driven symmetrical dipole antenna, Centre-driven V-an-
tenna, Cage antenna, H-antenna and System of two parallel non-staggered dipoles an-
tennas in free space or near ground. A remarkable dependence of the admittance on the 
respect to distance between the transmission line conductors, as well as the inadequacy 
of the commonly used, idealized delta-function generator have been found. Excellent 
agreement of theoretical and experimental results for admittance available in the litera-
ture has been established. 

Using this procedure, several magisterial and doctoral thesis and several tenth of 
papers were realized on the Faculty of Electronics of Nish.  

These results were noticed in scientific area. So the authors in prestige book [27] 
declare: 

"Surutka and Veli~kovi} (1976) looked at the problem of solving a practically fed 
dipole antenna. A two-wire line was used and integral equations derived both on the 
surface of the dipole conductors and of the surface of the line conductors. This gave 
simultaneous integral equations containing the current distributions on both the lines and 
the dipoles and these were solved". 

6 Appendix 
 Magnetic vector-potential of a semi-infinite   
 two-wire line carrying progressive current waves 

Consider a semi-infinite two-wire line, beginning at 0=y  (Fig.18) and ending at 
infinity ( ∞→y ). Let the line carry the progressive current wave 

 ( ) kyIyI j
i e= , (34)  

travelling in the negative direction of −y axis. 

 

Fig. 18 - Notation for semi-infinite two-wire line. 

With the proximity effect disregarded, the currents can be located on the axes 
of the wires and the vector-potential at a point ( )yrr ,,M 21 , out of the conductors, can 
be written in the form 
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where 
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1r  and 2r  being the bipolar coordinates of the point M in the transverse plane y . 

Introducing the new variable yyu −′=  ( y  is assumed to be finite) and by denot-
ing the new limits of the integral by yp −=  and ∞→q , the integral (35) can be put 
in the form 
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By a new change of the variable 
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the integral in the square bracket in (37) can be written as follows 
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Taking into account that yp −= , and putting, for abbreviation, 
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the integral 1J  can be expressed in terms of sine- and cosine-integral functions: 
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where 
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The second part of the integral (38) can be evaluated by the help of the mean value 
theorem: 
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where 

 
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When ∞→q , 0→P  and 
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2
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2
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r
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J

q
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+−
=

∞→
. (42) 

If on the same semi-infinite two-wire line ( ∞<≤ y0 ), a progressive current 
wave of the form 
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 ( ) kyIyI j
r e−−=  (43) 

is present (the wave propagates in the positive direction of the −y axis), the vector-
potential can be derived in a similar way and it has the following form 

 ( ) ( ) ( ) ( )[ ]{ }03040304
j

r SiSijCiCie YYYY −−−
π4

µ
= −0 ky

y IA , 

where 

 




 ++−= 22

103 yrykY , 




 ++−= 22

204 yrykY . (44) 
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