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Abstract: The home energy management system (HEMS) can effectively 

participate in price-based demand response programs, significantly reducing 

electricity costs by optimizing the usage times of shift-able household appliances 

such as washing machines, dishwashers, and others. However, this optimization 

may compromise the comfort of the residents. In this paper, a discomfort index is 

proposed based on the time intervals between the start and end of the operation 

periods of these shift-able appliances relative to their residents' preferred usage 

times. The problem of optimal scheduling for these appliances is then modeled as 

an optimization problem aimed at minimizing the weighted sum of the daily 

household electricity bill and the discomfort index. A constraint is imposed to 

restrict the discomfort index to a maximum allowable level. This optimization 

problem is solved using a simulated annealing algorithm across various scenarios 

with different maximum allowable values for the discomfort index. The simulation 

results indicate that, among the optimal schedules across the scenarios, the most 

cost-effective demand response schedule can be identified based on the marginal 

reductions in the daily household electricity bill. This approach ensures substantial 

decreases in electricity expenses while avoiding unnecessary increases in the 

discomfort index. 

Keywords: Home Energy Management System, Demand Response, Discomfort 

Index, Simulated Annealing Algorithm. 

1 Introduction 

The increasing demand for electricity and the emergence of smart grids have 

provided new opportunities for home energy management systems. A Home 

Energy Management System (HEMS) is an intelligent system that assists users in 

managing their energy consumption at home and enhancing energy efficiency. 
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Additionally, with the deployment of smart meters in homes, the ability to 

establish communication, enable control, and automate electricity transmission 

between the grid and households has been enabled, thus facilitating greater 

participation of households in demand response (DR) initiatives. 

The increasing demand for electricity and the emergence of smart grids have 

provided new opportunities for Home Energy Management Systems (HEMS). A 

home energy management system is an intelligent system that assists users in 

managing their energy consumption at home and enhancing energy efficiency. 

Additionally, with the deployment of smart meters in residential homes, the 

ability to establish communication, control, and automate electricity transmission 

between the grid and the home has been enabled, thus facilitating greater 

participation of residential households in demand response (DR) initiatives. 

DR within HEMS entails adjusting energy consumption within a household 

in response to grid conditions and user needs. The primary function of DR in 

HEMS is to manage fluctuations in electricity demand. Many electricity 

providers offer dynamic time-based tariffs, with higher prices during peak 

periods and lower prices during off-peak hours. DR encourages users to shift their 

energy consumption during off-peak hours to reducing electricity costs. 

The key components of a HEMS generally comprise: 

− Measurement Devices: These include smart meters, sensors, and other 

instruments designed to monitor real-time energy consumption. 

− Energy Sources: These sources comprise the electricity grid, energy 

storage systems (e.g., batteries), and renewable technologies such as 

photovoltaic solar panels. 

− Smart Controllers: These controllers regulate home energy usage by 

automatically activating or deactivating connected devices based on 

predefined optimization criteria and operational schedules. 

− Energy Management Software: This software enables users to monitor 

and strategize their energy consumption patterns, as well as adjust changes. 

Moreover, data-driven optimization algorithms can generate actionable 

recommendations to enhance energy efficiency. 

− Network Connectivity: These systems are typically integrated with the 

electricity grid and can interact with utility providers to utilize different 

dynamic electricity tariffs and time-of-use (TOU) pricing schemes. 

− Smart Technologies: This refers to smart home devices, IoT-enabled 

appliances, and internet-connected electrical equipment that can be 

remotely monitored, controlled, or automated via a centralized system 

interface. 
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HEMS are pivotal in optimizing energy consumption and managing DR in 

smart homes. Research in this area has focused on advanced algorithms and 

adaptive control strategies to enhance energy efficiency, reduce costs, and 

improve user satisfaction while addressing real-world constraints such as grid 

stability and dynamic pricing models. One study [1] proposes a HEMS 

framework incorporating three key DR strategies: peak clipping, load allocation, 

and load demand flattening. This system enhances flexibility in energy 

consumption while mitigating peak demand. Another approach [2] proposes a 

supervised learning-based strategy for optimally scheduling energy, integrating 

energy storage systems and electric vehicles, demonstrating the efficacy of 

machine learning in HEMS. Research in investigates flexibility during peak 

demand periods through a HEMS to reduce electricity bills under Time-of-Use 

(TOU) tariffs, achieving significant user cost savings. In a similar vein, [3] 

introduces a short-term (one-hour) DR algorithm to minimize user energy bills 

and dissatisfaction costs, achieving significant reductions in electricity expenses. 

A self-scheduling model [4] for HEMS incorporates user preferences into daily 

operations, employing a linear discomfort index to optimize the trade-off between 

comfort and efficiency. Another study [5] optimizes the coordination of 

residential load demand and distributed energy resources, accounting for utility 

price signals and customer satisfaction. Fuzzy decision-making algorithms are 

employed in [6] to adjust energy-consuming devices based on user preferences 

and real-time pricing signals, optimizing energy use and reducing peak demand. 

A unified home energy management controller proposed in [7] manages diverse 

household loads in response to dynamic price signals, effectively reducing 

consumer electricity bills. The application of the Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) for multi-objective optimal scheduling in residential 

HEMS is demonstrated in [8], targeting minimizing energy costs and maintaining 

consumer comfort. Research in [9] explores smart grid technologies and demand-

side management, proposing an innovative architecture for automated DR and a 

metaheuristic genetic algorithm-based approach for user-centric appliance 

scheduling. A standardized architecture for HEMS within a smart grid 

environments is proposed in [10], targeting advanced scheduling methods and 

reducing peak-to-average power ratios (PAPR) to enhance grid stability. A 

reinforcement learning (RL) and fuzzy logic integration is explored in [11], where 

a HEMS incorporates user-defined preferences for energy management. In [12], 

an enhanced leader particle swarm optimization (ELPSO) algorithm is developed 

for optimal appliance scheduling, balancing user comfort and electricity cost 

minimization. Research in [14] investigates the integration of energy-efficient 

devices in smart homes, focusing on energy conservation without compromising 

user comfort. A three-objective optimization framework for residential energy 

consumption scheduling is introduced in [13], targeting energy cost reduction and 

PAPR minimization. The role of domestic DR programs in improving energy 
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efficiency is examined in [14], underscoring the critical importance of consumer 

engagement. A smart home energy management is proposed in [15], which 

prioritizes and schedules household loads to maintain electricity consumption 

within predefined thresholds. The study [16] proposes an integrated framework 

for electricity demand forecasting and re-engineering, targeting peak load 

reduction and demand shifting. A hybrid approach integrating machine learning, 

optimization techniques, and data structure design is employed in [17] to develop 

a DR and HEMS. The influence of convenience factors on DR programs is 

investigated in [18], demonstrating how user behavior can affects load shifting 

strategies. A fuzzy logic-based smart thermostat integrated with HEMS is 

discussed in [19], targeting energy efficiency improvements and cost reduction. 

A DR program employing a gradient-enhanced particle swarm optimization 

(PSO) algorithm is developed in [20], tackling hybrid discrete-continuous 

optimization challenges in energy scheduling. An optimal sizing model for 

photovoltaic (PV) and battery energy storage systems (BESS) in HEMS is 

investigated in [21], highlighting the economic benefits of integrated renewable 

energy systems. Finally, [22] presents a hybrid lightning search algorithm and 

artificial neural network-based controller for optimized appliance scheduling, 

achieving significant reduction in peak-hour energy consumption. Additionally, 

[23] investigates a convex programming framework for DR optimization in smart 

homes. This approach tackles the challenges of binary decision variables in 

appliance scheduling, utilizing L1 regularization techniques to efficiently solve 

the mixed integer problem, thereby facilitating automatic load management. 

This comprehensive review underscores the diverse methodologies and 

technologies into HEMS to optimize energy management, reduce costs, and 

enhance user satisfaction in smart homes. 

The HEMS can participate in DR based on pricing by adjusting the timing 

of the use of home appliances such as washing machines, dishwashers, and other 

equipment, thereby reducing the household electricity costs. However, this may 

affect resident comfort. Given the critical role of comfort in DR adoption, this 

study aims to implement price-based DR by scheduling the use of shift-able 

household appliances to reduce daily electricity costs while minimizing resident 

discomfort. Thus, the optimal scheduling of shift-able electric appliances is 

formulated as a weighted optimization problem minimizing the daily electricity 

bill and discomfort index, subject to operational constraints. This problem is then 

solved using the Simulated Annealing algorithm to identify the most cost-

effective solution. 

The main contributions of this paper are as follows: 

− A user-centric flexibility window for shift-able appliances is introduced, 

allowing users to define preferred operating intervals that may equal or 

exceed the appliance’s operational duration. 
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− A novel discomfort index is formulated, quantifying user inconvenience 

based on deviations between an appliance’s operational duration and its 

user-defined flexibility window. The index satisfies two key properties: (1) 

Unique valuation: Distinct discomfort values are assigned to different 

scheduling scenarios to reflect varying comfort levels. (2) Comfort 

preservation: The index remains zero if the appliance operates within the 

flexibility window, even when the flexibility window exceeds the 

appliance’s required runtime. 

− The optimal scheduling of shift-able appliances is formulated as a multi-

objective optimization problem, minimizing a weighted combination of 

daily energy costs and the user discomfort index. 

− A constraint is imposed to bound the user discomfort index below a user-

defined threshold, ensuring comfort remains within acceptable limits while 

pursuing cost. 

− This optimization problem is solved using the Simulated Annealing 

algorithm for varying maximum allowable discomfort indices. 

− The study introduces the concept of marginal cost reduction, quantifying 

the incremental savings in daily energy costs relative to increases in the 

discomfort index. This analysis is conducted across multiple scenarios to 

evaluate the trade-off between energy savings and user comfort. 

− Among the optimal solutions for the various scenarios, the most effective 

and cost-effective DR scheduling is selected by leveraging marginal 

reductions in the daily electricity bill, ensuring that the household 

electricity bill is substantially reduced while the discomfort index remains 

within acceptable limits. 

The remainder of this paper is organized as follows: Section 2 formulates 

and analyzes the optimization problem. Section 3 elaborates on the key features 

of the proposed discomfort index. Section 4 details the solution method, 

specifically focusing on the use of the simulated annealing algorithm employed 

in this study. Section 5 presents the results of implementing price-based DR 

scheduling in a typical residential home across multiple operational scenarios, 

along with methodology employed for identifying the optimal solution. Finally, 

the principal conclusions of the paper are summarized in the final section. 

2 Problem Formulation 

Suppose we want to schedule the energy management system of a residential 

house equipped with 
AN  non-interruptible shift-able devices operating over a day 

divided into 
tN  time slots (48 slots in this study). In this work, we define the 

following two key intervals for each shift-able appliance: 
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(a) Allowable Interval (  ,i iLA UA :): From the point of view of the residents, 

appliance i is permitted to operate exclusively within this interval. Here, 

iLA  and 
iUA  denote the earliest and latest allowable time slots, 

respectively. 

(b) Preferred Interval (  ,i iLP UP ): From the residents' perspective, it is 

preferred that electrical appliance i ideally operates within this interval. 

Here, 
iLP   and 

iUP  denote the earliest and latest preferred time slots, 

respectively. In this work, we assume that the duration of the preferred 

interval can be equal to or longer than the daily operational period of the 

appliance. The discomfort index is defined to quantify resident 

dissatisfaction based on deviations from the preferred interval: the further 

the appliance’s operation deviates from the preferred interval, the higher 

the discomfort index. 

If the preferred interval for one or more shift-able appliances exceeds their 

operational duration, each of these appliances may operate in multiple distinct 

states within their preferred time interval. Consequently, various combinations of 

operational states for the shift-able appliances may exist, all satisfying operation 

within their respective preferred time intervals. We define the baseline 

operational state as the combination of states that satisfies two criteria: 1) all 

appliances operate within their preferred intervals, and 2) it minimizes total 

electricity cost compared to other combinations. The baseline starting and ending 

slots for appliance i are denoted as 
iSB  and 

iEB  respectively. The duration of the 

baseline interval  ,i iSB EB  precisely matches the daily operational duration. 

In this work, the scheduling problem for the residential energy management 

system is formulated as a mathematical optimization problem under (1) to (8): 
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In the formulation above, 
is  represents the starting time slot of the operational 

period for shift-able appliance i. These 
is  values are the primary decision variables 

and must be determined via the optimization process. 
in  denotes the number of 

consecutive time slots required to fulfil appliance i’s task. 
ie  indicates the ending 

time slot of the operational period for appliance i, calculated using (4). ( )f S  is 

the objective function to be minimized. The terms ( )billf S  and ( )discf S  represent 

the household’s total daily electricity cost and the discomfort index, respectively, 

for the decision set  1 2, ,…, NAs s s=S . 
billK  and 

discK  are weighting coefficients 

for balancing the total bill and discomfort index in the overall objective function. 

discUf  defines the maximum allowable discomfort index. ρt
 denotes the electricity 

price ($/kWh) in time slot t, 
iP  is the rated power of shift-able appliance i, and t  

is the duration of each time slot (0.5 hours in this study). 
tP  represents the total 

power demand of shift-able appliances during time slot t, while 
maxP  is the 

maximum allowable demand for shift-able appliances in any time slot. 
tA  is the 

set of active shift-able appliances during time slot t. The positivity function Pos(.)  

returns 1 if its argument is positive and 0 otherwise. 

In (1), the overall objective function minimizes a weighted sum of two 

objectives. The first term is the total daily electricity cost of the household, 

denoted by ( )billf S , defined in (2), and the second term is the discomfort index, 

given by ( )discf S . 

The discomfort index is defined in (3). In this definition, the sigma symbol 
indicates the aggregation of the discomfort index for all appliances in the 
household. The discomfort index of each appliance is defined as the sum of two 

expressions. The first expression, (LP )i is− , represents the difference between 

the lower limit slot of the preferred interval and the starting slot of that appliance. 

The second expression, ( UP )i ie − , refers to the difference between the ending 

slot of appliance i and the upper limit slot of its preferred interval. It is noteworthy 
that, according to the positivity function Pos(.) , which is used as a multiplier in 

both expressions, the first expression yields a non-zero value only when the 
starting slot of appliance i is less than the lower limit of its preferred interval 

( LP )i is  . Similarly, the second expression yields a non-zero value only when 

the ending slot of appliance i is greater than the upper limit of its preferred interval 

( UP )i ie  . Clearly, when both the starting and ending slots of appliance i fall 

within the preferred interval (i.e., LPi is   and UPi ie  ), the discomfort index for 

that appliance will be zero since the positivity function results in zero for both 
expressions. 
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Considering the constraint stated in (8), this research optimizes the usage 

timing of household appliances such that the discomfort index ( )discf S  remains 

less than or equal to a specified maximum allowable value ( )discUf . 

Inequality (4) expresses the constraints on the allowable operational interval 

of all shift-able appliances. The constraints delineated in Inequality (5) ensure 

that the total demand of shift-able appliances in each time slot t does not exceed 

the maximum allowable demand for shift-able appliances within a single time 

slot 
max( )P . 

3 Features of the Suggested Discomfort Index 

In this study, the discomfort index defined in (3) is based on the distance 

between the start and end times of each appliance's operation and its preferred 

interval bounds. This definition offers the following two advantages: 

− The proposed discomfort index for each appliance assigns distinct values 

for the various operating schedules of that appliance, reflecting varying 

comfort levels. In contrast, prior work [4] identifies a critical flaw in the 

discomfort index defined in [12]: the index fails to reflect variations in the 

distance between the appliance's operational interval and the baseline 

interval. This limitation also extends to the discomfort index defined in [8]. 

− The proposed discomfort index for each appliance remains valid even 

when the preferred interval’s duration exceeds the operational duration of 

that appliance. In contrast, the discomfort indices defined in [4, 8], and [12] 

rely on a baseline interval, assuming the baseline interval’s duration 

matches the appliance’s operational duration. If the baseline interval is 

extended beyond the required operational duration, their indices fail to 

reach zero when the appliance operates within this interval, even though 

discomfort is expected to vanish. Conversely, the proposed index vanishes, 

regardless of its duration relative to the appliance’s needs. 

4 The Proposed Optimization Problem-Solving Approach 

The optimization problem for the scheduling of the HEMS, introduced in the 

previous section, is a combinatorial nonlinear optimization problem with integer 

decision variables. In this research, the Simulated Annealing (SA) algorithm is 

employed to identify the optimal solution to this problem. The SA algorithm 

begins with an initial solution and iteratively generates other solutions that 

progressively improve the optimization objective. The number of solutions 

evaluated by SA to converge is relatively low compared to other heuristics, as 

only one candidate solution is assessed in each iteration, instead of a population. 

From a theoretical perspective, the SA algorithm is guaranteed to converge to the 
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global optimal solution of any problem under sufficient iterations. Numerical 

studies validate that SA achieves the desired optimal solution within 10,000. 

 

Fig. 1 – Flowchart of simulated annealing algorithm. 
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Since the decision variables in this problem represent the starting slots of 

shift-able household appliances, the SA solution vector is structured as 
T

1 2[ ]
ANs s s , where 

is  is an integer within the allowable interval defined 

by Inequality (5). 

5 Numerical Studies 

In this section, the results of implementing price-based DR scheduling for a 

sample residential household [4] using the proposed method are presented. The 

specifications of the shift-able appliances in this household are summarized in 

Table 1. Here, all time slots are 30 minutes long, resulting in 48 daily time slots. 

Table 1 lists the starting and ending time slots of the preferred and allowable 

operational intervals for each appliance. Notably the preferred interval duration 

for the dishwasher and washing machine exceeds the required operational slots. 

As shown in the table, the household consists of 10 shift-able appliances with a 

total energy consumption of 58.1 kWh. The DR program follows a Time-of-Use 

(TOU) tariff structure. Under this scheme the base rate is $0.02/kWh, while peak 

rates apply during peak day hours (from 9 to 11) and peak night hours (from 18 

to 20), charged at $0.08/kWh, as depicted in Fig. 7. 

Table 1 

Specifications of Household Appliances for  

the Studied Home Energy Management System. 

Appliance 

Rated 

Power (Pi) 

[kilowatts] 

Number of 

Required 

Operational 

Slots (Ti) 

The Start 

Slot of the 

Preferred 

Interval 

(LPi) 

The End 

Slot of the 

Preferred 

Interval 

(UPi) 

Permissible 

Start Slot 

for 

Scheduling 

Interval  
(LAi) 

Permissible 

End Slot 

for 

Scheduling 

Interval 

(UAi) 

Dishwasher 2.5 4 18 23 15 33 

Washing 

Machine 
3.0 3 18 22 16 23 

Spine Dryer 2.5 2 27 28 25 35 

Cooker Hub 3.0 1 17 17 16 17 

Cooker 

Oven 
5.0 1 37 37 36 37 

Microwave 1.7 1 17 17 16 17 

Laptop 0.1 4 37 40 33 47 

Desktop 

Computer 
0.3 6 37 42 31 47 

Vacuum 

Cleaner 
1.2 1 19 19 18 33 

Electric 

Vehicle 
3.5 6 37 42 31 47 
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Given that the primary objective in this study is to minimize the daily 

electricity bill, with the secondary objective being the minimization of the 

discomfort index, the weighting factor for the cost minimization goal is set at a 

significantly higher value (
billK 1000= ), while the weighting factor for the 

discomfort minimization goal is set at a relatively lower value (
billK 1= ). 

The scheduling of the appliances in this household is performed using the 

proposed method ((1) – (8)) by implementing the SA algorithm, evaluated for 

different maximum allowable discomfort index values (
discUf ), as summarized in 

Table 2. The first column of Table 2 lists the maximum allowable discomfort 

index values (
discUf ). The second and third columns report the discomfort index 

values and the corresponding daily electricity bills obtained through the proposed 

optimization, as defined in equations (1) – (8).The fourth column shows the 

percentage reduction in the electricity bill relative to the baseline bill (i.e., the 

result for 0discUf = , indicated in the second row of the table). For example, for 

the third row in the table ( 1discUf = ), the percentage reduction in the daily bill is 

calculated as 

 
( ) ( )

( )
1640 1490

0.0915
1640

bill bill

bill

f f

f

− −
= =

SB S

SB
. 

The fifth column provides the marginal bill reduction ( )bill discf f  . The marginal 

bill reduction for each scenario (i.e., each row in the table) is defined as the 

difference in the bill between that scenario and the previous one (the row above 

in the table), divided by the difference in the discomfort index between the two 

scenarios. For instance, for the third row ( 1discUf = ), the marginal bill reduction 

is given by 

 
1490 1640

150
1 0

bill

disc

f

f

 −
= = −

 −
. 

The last column of Table 2 specifies the starting time slots for the ten shift-able 

appliances, which are the decision variables (S). 

Based on the results presented in Table 2, the following points are 

noteworthy: 

− The solution obtained in the scenario where 0discUf =  (second row of 

Table 2) defines the starting slots for the baseline case. By definition, the baseline 

case is an operational state that lies within the preferred interval and achieves the 

lowest daily electricity bill. The solution for 0discUf =  satisfies both criteria. First, 

only the operational states within the preferred interval have a discomfort index 

of zero, thus satisfying 0discUf = . Second, the solution for all scenarios, including 

0discUf = , minimizes daily electricity bill. Therefore, the solution for 0discUf =  
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represents the baseline case, and its starting slots are the baseline time slots (i.e., 

S = SB). Thus, ( ) 1640billf =SB . 

− The scenario with 
discUf =  (the last row of Table 2) corresponds to 

minimizing the household’s electricity bill without discomfort index constraints. 

For this scenario, the electricity cost reaches its minimum value (581); but the 

discomfort index is significantly high (19). Thus, to determine the optimal trade-

off, we analyse scenarios with 1discUf =  to 18discUf = . 

Table 2 

Simulation results for multiple scenarios with varying  

maximum allowable discomfort indices ( )discUf . 

discUf  discf  billf  

Percentage 

reduction of the bill 

compared to the 

base response bill 

Marginal reduction 

of the daily bill  

( )bill discf f   

Start slots of shift-able appliances 

(values of decision variables S) 

0 0 1640 0 - [18 18 27 17 37 17 37 37 19 37]  

1 1 1490 0.0915 -150 [18 18 27 17 36 17 37 37 19 37] 

2 2 1385 0.1555 -105 [18 18 27 17 36 17 37 37 19 38] 

3 3 1295 0.2104 -90 [18 17 27 17 36 17 37 37 19 38]  

4 4 1205 0.2652 -90 [20 16 27 17 36 17 37 37 19 38]  

5 5 1070 0.3476 -135 [20 18 27 17 36 17 37 37 19 41] 

6 6 980 0.4024 -90 [18 17 27 17 36 17 37 37 19 41] 

7 7 890 0.4573 -90 [18 16 27 17 36 17 37 37 19 41] 

8 8 830 0.4939 -60 [22 17 27 17 36 17 37 37 19 41] 

9 9 806 0.5085 -24 [21 16 27 17 36 17 37 38 19 41] 

10 10 665 0.5945 -141 [23 16 27 17 36 17 37 37 19 41] 

11 11 629 0.6165 -36 [23 16 27 17 36 17 37 37 18 41] 

12 12 626 0.6183 -3 [15 16 27 17 36 17 38 37 18 41] 

13 13 611 0.6274 -15 [23 16 27 17 36 17 37 39 18 41] 

14 14 608 0.6293 -3 [23 16 27 17 36 17 38 39 18 41] 

15 15 599 0.6348 -9 [15 16 27 17 36 17 36 40 18 41] 

16 16 596 0.6366 -3 [23 16 27 17 36 17 39 40 18 41] 

17 17 587 0.6421 -9 [15 16 27 17 36 17 35 41 18 41] 

18 18 584 0.6439 -3 [23 16 27 17 36 17 34 41 18 41] 

Infinite 19 581 0.6457 -3 [23 16 27 17 36 17 41 41 18 41]  

 

− In Fig. 2, the daily electricity costs for the scenarios listed in Table 2 are 

plotted. The results show that as the discomfort index increases, the electricity 

cost decreases nonlinearly. 
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Fig. 2 – Daily household electricity bill for all scenarios. 
 

− Fig. 3 shows the marginal reduction in the daily electricity cost for 

different discomfort index levels from Table 2. It is observed that with an 

increase in the discomfort index, the marginal reduction tends to decrease. 

However, when the discomfort index exceeds 11, the marginal reduction drops 

sharply. Thus, the most cost-efficient solution where increasing the discomfort 

index significantly reduces the bill occurs at 11discUf = . This solution is therefore 

recommended as the optimal solution for energy management in this household. 

For the row corresponding to 11discUf =  in Table 2, the proposed optimal solution 

yields a discomfort index of 11, a daily electricity cost of 629, and a bill reduction 

of 61.65% relative to the baseline. In practical terms, this solution achieves a 62% 

reduction in the daily bill with only 11 units of discomfort. 
 

 

Fig. 3 – Marginal reduction values of the daily household  

electricity bill across the discomfort index levels. 
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− In Fig. 4, the contribution of each shift-able appliance in generating the 

daily household electricity bill is compared for the baseline scenario and the 

proposed optimal solution ( 11discUf = ). The results show that optimal scheduling 

reduces the electricity costs of the dishwasher, washing machine, cooker oven, 

vacuum cleaner, and electric vehicle relative to the baseline scenario. 

 

Fig. 4 – Contribution of each appliance to the daily electricity bill for both the baseline 

case and the optimal scheduling achieved in the scenario 11discUf = . 
 

− Fig. 5 shows the contribution of each shift-able appliance to the 

discomfort index under the proposed optimal solution ( 11discUf = ). The results 

indicate the electric vehicle contributes most significantly to discomfort, as it 

shifts its operation by four slots from its preferred interval. 

 

Fig. 5 – Contribution of each appliance to the discomfort index  

for the optimized scheduling in Scenario 11discUf = . 
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− Fig. 6 presents the total daily load demand under the optimal scheduling 

for 11discUf = . The results indicate during the nighttime peak period (time slots 

37–40), only low-power devices (e.g., laptops and computers) operate. 

Conversely, during the daytime peak period (time slots 19–22), no appliances are 

activated. 

− In Fig. 7, the TOU tariff rates, the total daily load in the baseline scenario, 

and the load under the optimal scheduling solution ( 11discUf = ) are compared. 

 

Fig. 6 – Total daily load demand according to the optimal  

scheduling obtained in Scenario 11discUf = . 

 

Fig. 7 – TOU Tariffs and Total Daily Load Demand  

for the baseline and optimal scheduling scenarios. 
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− The results show that loads previously concentrated during peak periods 
in the baseline scenario shift to off-peak periods in the optimal scenario. 
Specifically, during the nighttime peak (time slots 37–40), a minimal load of 0.4 
kW (laptops and computers) is scheduled, while no load is scheduled during the 
daytime peak (time slots 19–22). 

− To demonstrate the convergence of the Simulated Annealing (SA) 
algorithm, Fig. 8 plots the evaluation function values across SA iterations for the 

scheduling scenario 11discUf = . This figure demonstrates that in the early 

iterations, controlled uphill moves) were accepted to escape local optima; as 
iterations progressed, such acceptance decreased. By the 3,605th iteration of 
5,000, the algorithm converged to the final optimal solution. 

 

Fig. 8 – Plot of the evaluation function values in the implementation of  

the SA algorithm for the optimal scheduling of Scenario 11discUf = . 
 

− The findings demonstrate that the proposed method enables selecting a 

cost-effective DR schedule, substantially reducing the electricity bill while 

maintaining the discomfort index within acceptable limits. 

6 Conclusion 

The present study demonstrated that a home energy management system, 

through optimal scheduling of shift-able household appliances, can effectively 

implement price-based DR. This approach reduces electricity costs without 

unduly compromising resident comfort. The proposed discomfort index, defined 

by deviations between the operational start/end times and the preferred interval 
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bounds, offers two key advantages: (1) It uniquely quantifies discomfort for each 

appliance across operational states, reflecting varying comfort levels, and (2) It 

vanishes when appliances operate within their preferred interval, even if the 

interval exceeds their operational duration. The scheduling problem was 

formulated as a weighted multi-objective optimization: minimizing the electricity 

cost and discomfort index, subject to a discomfort index constraint. This problem 

was solved using the Simulated Annealing algorithm for varying maximum 

discomfort indices. Results show that leveraging the marginal bill reduction, 

enables identifying an optimal trade-off achieving substantial cost savings with 

minimal discomfort. These findings provide a foundation for developing smart 

HEMS technologies, enhancing both cost efficiency and user satisfaction. 
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