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A PSO-Based Approach for Parameter  

Estimation in Synchronous Machines 
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Djamel Boukhetala 2, Kamel Boughrara1 

Abstract: This study employs the particle swarm optimization (PSO) approach 

using Stand Still Frequency Responses Testing (SSFR) to identify the time 

constants (poles and zeros) of the operational inductances along the d and q axes, 

as well as the parameters of the equivalent circuits for the SSFR1, SSFR2, and 

SSFR3 synchronous machine models. The difference between the frequency 

responses of the identified and simulated models at a standstill is minimized using 

a quadratic criterion in this method. The SSFR3 model accurately represents the 

synchronous machine, and simulation results show that the PSO approach is 

effective in terms of convergence rate and offers ideal solutions. 

Keywords: Synchronous machine, Equivalent circuit, Parameters identification, 

Times constants, SSFR tests. 

List of Symbols 

s  Laplace’s operator 

dV ,  qV  d-axis stator voltage, q-axis stator voltage 

di ,  qi  d-axis current, q-axis current 

 fV  d-axis field voltage 

( )dL s  d-axis operational inductance 

( )qL s  q-axis operational inductance 

( )G s  is the stator to field transfer function 
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dL , qL , fL  d-axis synchronous inductance, q-axis synchronous 
inductance, field inductance 

dL ,  qL  d-axis synchronous inductance, q-axis synchronous 
inductance 

aR , fR  armature and field resistances 

kR , jR  d-axis damper resistances 

1kqR , 2kqR , 3kqR  q-axis damper resistances 

kL , JL  d-axis damper inductances 

1kqL , 2kqL , 3kqL  q-axis damper inductances 

mdL  d-axis magnetizing inductance 

mqL  q-axis magnetizing inductance 

aL  leakage inductance 

amdL  the parallel combination of mdL  and aL  

0dT  , dT   d-axis transient open circuit and short-circuit time constant 

0qT  , qT   q-axis transient open circuit and short-circuit time constant 

0dT  , dT   
d-axis sub-transient open circuit and short-circuit time 
constant 

0qT  , qT   q-axis sub-transient open circuit and short-circuit time 
constant 

0dT  , dT   
d-axis sub-sub-transient open circuit and short-circuit time 
constant 

0qT  , qT   d-axis sub-sub-transient open circuit and short-circuit time 
constant 

1 Introduction 

Parameters identification of synchronous machines is crucial for analyzing 
both steady-state and transient performance of generating units [1]. Various 
computational methods have been utilized for this purpose in numerous studies 
[2, 3]. These studies primarily focus on characterizing two-axis models of 
synchronous machines through different testing approaches [4]. 

The accelerated evolutions of computer technology has enabled the 
development of various identification methods for synchronous generator 
models. These methods allow for the estimation of parameters during the 
machine's normal operation (on-line measurements) and are divided into two 
categories. Grey box modeling assumes a known model structure, such as 
orthogonal series [5, 6] or Kalman filters [7]. 

The second category, called “black box” modeling, does not presume any 
prior knowledge of the model structure. Instead, the goal is to establish the 
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relationship between the inputs and outputs of the system using techniques like 
neural networks [8, 9], Volterra series [10] or Hartley Series [11]. 

In [12], the most popular approach for determining the parameters of the d-
q model using Standstill Frequency Response (SSFR) experiments was presented. 
The device stays stationary throughout SSFR tests, and the rotor is aligned along 
either the d-axis or the q-axis. A sinusoidal voltage of variable frequency is 
applied to two stator phases that are connected in series. An optimization 
procedure of the transfer function that represents the d-q model [2, 3] is then used 
to establish the parameters of the device. 

The identification method recommended in IEEE Standard 115 [13] is the 
least squares method. This method focuses on reducing the weighted sum of 
errors between the transfer functions predicted by the chosen model and those 
determined via experimental measurements. The Levenberg-Marquardt and Gauss-
Newton methods make it simple to implement and straightforward. But depending 
on the starting values and model selection, the outcome could converge to a local 
minimum, which is a major disadvantage. Maximum likelihood estimation [14, 15] 
and genetic algorithms [16, 17] are examples of more potent techniques. 

Another approach for finding high-order equivalent circuits of synchronous 
machines using hybrid genetic algorithms is shown in [18]. Genetic algorithms 
(GAS) are successful at locating the global minimum within a search space and 
producing solutions that are independent of the initial values of the parameters. 
However, they require a lot of search time, which is not ideal for the online 
identification approaches mentioned in the literature [19]. 

The technique described in this paper is based on Particle Swarm 
Optimization (PSO). The initial algorithmic formulation [20] draws inspiration 
from the natural collective group behavior observed during the pursuit of food 
sources. This approach (PSO) is easier to implement and converges more quickly 
than Genetic Algorithms (GA), making it a popular choice for parameter 
identification [21, 22]. The results show that the PSO method converges quickly 
and accurately identifies optimal values. 

The paper is structured as follows: Section 2 addresses operational quantities, 
Section 3 focuses on synchronous machine models, Section 4 covers particle 
swarm optimization, Section 5 details the Standstill Frequency Response test 
(SSFR), and Section 6 presents the PSO-based parameter identification method. 
Section 7 presents and discusses the simulation results of the PSO approach, 
while Section 8 concludes the paper. 

2 Operational Quantities 

Operational parameters can be modeled as transfer functions that define the 
connection between the rotor and stator terminals, treating the machine as a two-
port network, as depicted in Fig. 1. 
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(a)                                               (b) 

Fig. 1  D-axis quadrupole and q-axis dipole. 
 

The measurable quantities at the stator and rotor are related through a set of 
equations derived from the operational parameters. These operational parameters 
are then used to calculate the resistances and reactances of the machine windings. 
The following equations describe the stator flux [23]: 
 ( ) ( ) ( ) ( ) ( )d fd d ds G s e s L s i s     , (1) 

 ( ) ( ) ( )q q qs L s i s    . (2) 

3 Synchronous Machine Models 
There are various models of synchronous machines, each characterized by 

the number of rotor circuits along the d and q axes. For example, the first-order 
model (SSFR1) includes an equivalent circuit with one excitation winding and 
one damper winding on the q axis.  

The second-order model (SSFR2) has an equivalent circuit with one 
excitation winding, one damper winding on the d axis, and two damper windings 
on the q axis. Higher-order models (SSFR3) follow this structure, incorporating 
additional damper windings on the d and q axes as necessary. 

Figs. 2 and 3 illustrate the 3rd order model along the d and q axes, respectively. 

 
Fig. 2  Equivalent Circuit of a third order model for d-axis (SSFR3). 
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Fig. 3  Equivalent Circuit of a third order model for q-axis (SSFR3). 

 

3.1 First order model (SSFR1) 
The first-order model's equivalent circuit is shown in Fig. 1a. The transfer 

function ( )dL s  for this circuit is computed using the formula below [24]: 
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The standard form of (1) is: 
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with: 
 md d aL L L  . (5) 

3.2 Second order model (SSFR2) 
The operational inductance for the second-order model, which is stated as 

[24], is derived in Fig. 1b: 
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, (6) 

where amdL  is the parallel combination of mdL  and aL ; amdfL  is the parallel 
combination of mdL , fL , aL ; mdfL  is the parallel combination of mdL  and fL . 
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Equation (4) for operational inductance simplifies to: 
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with: 
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The roots of the zero-pole from (5) are obtained by applying the quadratic 

formula to the numerator and denominator of ( )dL s . Regardless of the time 

constants, these roots have been proven to always be genuine. As a result, a 

second-order model may represent the operational inductance as follows: 
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3.3 Third Order Model (SSFR3) 

The third model's d-axis operational inductance may be expressed as follows: 
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The denominator is analogous to the numerator, with the substitution of amdL  

for mdL  in the coefficients of s , 2s  and 3s . 
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then, 

 ( )d

Num
L s

Den
= . (12) 

Consequently, the operational inductance for a third-order model is 

expressed by the formula: 
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The proof of (3), (6) and (12) are given in Appendix A. 

The equations for the operational inductance of the d-axis also apply to the 

q-axis. 

4 Particle swarm optimization 

Dr. Kennedy and Dr. Eberhart created the PSO algorithm, a powerful 

evolutionary approach influenced by the social behavior of animals like fish 

schools and bird flocks [26, 27]. In PSO, a collection of particles interacts with 

one another as they move arbitrarily across a search space [27, 28]. Every particle 

in the algorithm keeps in mind its own best answer as well as the best answer 

discovered by the entire swarm. Each particle updates its location in accordance 

with (14) using this information. The particle's velocity is changed during each 

iteration using the given formula. 

 1 1 1 2 2( ) . ( ) . ( )k k k k kv w k v c r lbp cp c r gp cp+ = + + − + − . (14) 

The novel velocity is included in the present particle location ( kcp ) to create 

the subsequent particle position ( 1kcp + ), as illustrated in (15). 

 1 1k k kcp cp v+ += + . (15) 

The value given to w, which stands for the inertia weight, was changed 

between the beginning and end values as follows: 

 
in
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( )
itial final

cur find

w w
w iter iter w

iter

− 
= − + 

 
. (16) 

In this context, initialw  and finalw  represent the starting and ending inertia 

weights for a given run, respectively. The current iteration number at a given time 

step is represented by the phrase curiter , whereas the maximum number of 

iterations permitted in a run is represented by the term maxiter  [28]. 

The acceleration coefficients 1c  and 2c  are positive constants that represent 

the weights for individual and social influences that model the attractive forces 

toward the local and global best solutions, respectively. In most cases, 1c  and 2c

are in the range of 0 to 4 [26 − 28].  
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5 Standstill Frequency Response Test 

The frequency response of stationary rotating machines is analyzed using the 

Stand-Still Frequency Response (SSFR) test. In recent years, the SSFR approach 

has emerged as one of the main standard methods for determining the dynamic 

characteristics of synchronous machines. The SSFR test determines the properties 

of operational quantities by examining their frequency dependence [25]. 

The rotor must be in two particular locations with relation to the stator 

because the SSFR technique necessitates that tests be carried out independently 

for the direct and quadrature axes. As recommended by IEEE Standard 115 [13], 

the experimental method for the SSFR test is shown in Fig. 4.  

 

Fig. 4 − Protocol of SSFR tests according to the IEEE standard 115 A. 

 

6 Implementation of the PSO Algorithm for  

Synchronous Machine Parameters Estimation 

The core concept of using PSO algorithms for parameter identification is to 

transform the parameter estimation task into an optimization problem. In this 

approach, the unknown parameters are treated as particles within the algorithm. 

A performance function is then created to measure how closely the model's 

response matches the actual system response, and this function is optimized. The 

equation below defines the error between the measured data and the simulated 

model results [29]: 
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 Re Imi ai agiError Error Error= +  (17) 

with: 

 Re cos( ) cos( )ai dmi mi di iError L L=  −  ,  (18) 

 Im sin( ) sin( )agi dmi mi di iError L L=  −  , (19) 

where: 

dmiL , mi : are respectively the magnitude of the operational inductance and 

its phase measured experimentally. 

diL , i : are, respectively, the magnitude of the simulated operational 

inductance and its phase. 

The fitness function is defined as follows: 

 
2

1

1 N

i

i

fitness Error
N =

=  , (20) 

The length of the measured output vector is represented by N. 

The simulated diL  expression for the SSFR1, SSFR2, and SSFR3 models is 

given by (2), (7), and (11) for time constants, and by (1), (4), and (10) respectively 

for the parameters of the equivalent circuits. 

This study aims to identify the time constants of the SSFR1, SSFR2, and 

SSFR3 models, as well as the parameters of their equivalent circuits. The 

parameters to be identified for the first task are dT  , dT  , dT  , 0dT  , 0dT  , and 0dT  , 

while for the second task, they include fL , fR , kL , kR , jL , and jR . The same 

procedure is used to identify parameters along the q axis. 

The following procedures can be used to illustrate the suggested approach: 

– Step 1: Under a variable frequency input, the system's response was 

measured.  

– Step 2: Use the same inputs to the simulation as the real system. 

– Step 3: Calculates the fitness of each particle (potential solutions). 

– Step 4: Using the updating principles described in (14) and (15), update the 

potential solutions. 

– Once the specified number of iterations has been reached or convergence 

has been achieved, the optimization process should be stopped. Otherwise, 

proceed to step 2. 
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7 Results and Discussions 

The SSFR tests for a 250.02 MVA power machine at 16.5 kV, as published 

in EPRI reference [30], are utilized for both implementation and validation of the 

approach. The measured value of the synchronous inductance 0.0045 HdL =  and 

the leakage inductance 8%a dL L=  given in the literature [25, 31]. 

The operational inductances along the axis and q-axis were selected as the 

optimization values due to their significant variability across a frequency range 

of 0.001 Hz to 1000 Hz. This enhances the optimization process by clearly 

highlighting the differences between measured data and model outputs. The 

SSFR test data and machine model results are then utilized to compute the output 

error. 

The PSO was configured to optimize 2 variables (SSFR1), 4 variables 

(SSFR2), and 6 variables (SSFR3). These parameters are treated as particles in 

the Particle Swarm Optimization (PSO) algorithm. We set the swarm size ( N ) 

to 60 and the number of iterations to 150. For cognitive and social acceleration 

factors, we selected 1 2.0c =  and 2 1.05c = . 

The random factors 1r  and 2r  are drawn at each iteration within the interval 

[0, 1] to ensure diversity in particle positions and velocities. The fitness function, 

essential for evaluating the quality of proposed solutions, measures the mean 

square error between the measured data and the values simulated by the SSFR1, 

SSFR2, and SSFR3 models. The optimization results are discussed later. 

7.1 Estimation of time constants and validation 

We performed a number of numerical tests to evaluate how well the 

suggested approach identifies synchronous machine parameters. The 

performance criterion are as follows: 

– The straightforward criterion of 
qd LJ J=  was employed to estimate the  

d-axis parameters. 

– The straightforward criterion of 
qq LJ J=  was employed to estimate the  

q-axis parameters. 

The time constants of the SFR 1, SSFR2, and SFR3 models along the d and 

q axes, obtained by the particle swarm optimization (PSO) approach, are 

presented in Tables 1 and 2, respectively. 
To validate the results, the time constants along the q axis for the SSFR1, 

SSFR2, and SSFR3 models are introduced in (4), (9) and (13), respectively. This 

is achieved by substituting dL  with qL  and replacing the d-axis time constants 

( dT  , dT  , dT  , 0dT  , 0dT  , 0dT  ) with the q-axis time constants ( qT  , qT  , qT  , 0qT  , 

0qT  , 0qT  ). 
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Table 1 

Estimation of d-axis time constants by the PSO approach. 

Times Constants SSFR1 model SSFR2 model SSFR3 model 

( )dT s  0.6675   0.8151   0.8943  

0( )dT s  3.6677  3.8489  3.9371  

( )dT s  – 0.0057  0.0831  

0( )dT s  – 0.0083  0.1068  

( )dT s  – – 0.0025  

0( )dT s  – – 0.0035  

 

Table 2 

Estimation of q-axis time constants by the PSO approach. 

Times Constants SSFR1 model SSFR2 model SSFR3 model 

( )qT s  0.1198  0.5965  3.0267  

0 ( )qT s  0.5936  1.4121  4.0898  

( )qT s  – 0.0190  0.1612  

0 ( )qT s  – 0.0561  0.0037  

( )qT s  – – 0.0037  

0 ( )qT s  – – 0.0083  

 

Using the qJ  criteria, the simulated and measured q-axis operational 

inductance magnitude and phase frequency responses are compared in Figs. 5 and 

6.  

Frequency zone comparison reveals three distinct zones: 

a) Low frequency zone (10–2 Hz to 100 Hz) 

For the magnitude: 

– All curves start at the same magnitude level (~ –45 dB). 

– The correspondence is good in this range, without significant deviations. 

For the phase: 

– Initially, all curves align with the experimental curve at 0 degrees phase. 

b) Transition zone (100 Hz to 102 Hz) 

For the magnitude: 

– The experimental curve exhibits a gradual downward slope. 

–  PSO-SSFR1 shows a delayed transition, maintaining a higher magnitude 

before dropping sharply.  
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– PSO-SSFR2 aligns more closely with the initial slope but deviates slightly 

before reaching the measured curve.  

– PSO-SSFR3 is the closest to the measured curve, though it also shows 

minor deviations. 

For the phase: 

– PSO-SSFR1 drops rapidly to –90°, which does not correspond to 

experimental reality. 

– PSO-SSFR2 shows overly amplified oscillations. 

– PSO-SSFR3 follows the general trend with good precision. 

c) High frequency zone (102 Hz to 103 Hz) 

For the magnitude: 

– PSO-SSFR1 diverges significantly, exhibiting a higher magnitude than the 

measured curve. 

– PSO-SSFR2 shares a similar slope but doesn't precisely align with the 

measured values.  

– PSO-SSFR3 closely matches the measured curve. 

For the phase: 

– PSO-SSFR1 remains far from the measured curve. 

– PSO-SSFR2 continues to oscillate excessively. 

– PSO-SSFR3 remains the most faithful to the measured curve. 

From the above, we conclude the following: 

– PSO-SSFR3 is the most accurate model, closely matching the experimental 

curve across all frequency ranges.  

– PSO-SSFR2 provides a reasonable approximation, though it is slightly less 

precise in the transition region.  

– PSO-SSFR1 performs the worst, showing a delay in the transition and 

overestimating high-frequency magnitudes.  

In conclusion, PSO-SSFR3 is the best model, minimizing deviations from 

the measured response throughout the spectrum. 

Fig. 7 presents the evolution of the fitness function, which indicates that the 

identified parameters align closely with the actual values for de SSFR3 model.  

For the SSFR1 model, the fitness function drops quickly and reaches the 

convergence requirement after 12 iterations; for the SSFR2 model, after 16 

iterations; and for the SSFR3 model, after 14 iterations.  

To avoid local minima and achieve the global minimum, we executed the 

PSO algorithm 50 successive times. As illustrated in Fig. 8, the error initially 

exhibits significant oscillations, indicating potential local minima traps. 
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However, over multiple iterations, PSO successfully navigates these challenges 

and converges to an optimal solution, thereby reducing global error despite the 

fluctuations. With this approach, the parameters of the synchronous generator 

may be determined with greater accuracy and stability. 

  

Fig. 5 – Operational inductance magnitude 

versus frequency (q-axis) 

Fig. 6 – Operational inductance phase 

versus frequency (q-axis). 

 

  

Fig. 7 − JLq Fitness function  

evolution (q-axis). 
Fig. 8 − Fitness function  

evolution for 50 iterations. 

 

7.2 Estimation of equivalent circuit parameters and validation 

Tables 3 and 4 list the parameters of the equivalent circuits for models 

SSFR1, SSFR2, and SSFR3 along the d and q axes, which were determined using 

the PSO technique. 
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Table. 3 

Estimation of d-axis equivalent circuit parameters by the PSO approach. 

Parameters SSFR1 model SSFR2 model SSFR3 model 

)H(mfL  0.552220  0.752950  0.792000  

( )fR   0.001256  0.001400  0.001400  

)H(mkL  – 0.621430  0.542000  

( )kR   – 0.152100  0.356200  

)H(mjL  – – 1.800000  

( )jR   – – 0.025800  
 

Table. 4 

Estimation of q-axis equivalent circuit parameters by the PSO approach. 

Parameters SSFR1 model SSFR2 model SSFR3 model 

1(mH)qL  0.584900  3.400  10.50  

1( )qR   0.007500  0.0052  0.0040  

2 )H(mqL  – 0.37629  0.1490  

2 ( )qR   – 0.0277  0.13240  

3 )H(mqL  – – 1.210  

3( )qR   – – 0.0100  

 

In order to validate the results, one must take into account the transfer 

functions for operational inductance along the d-axis, which are described in 

Section 3, and include the estimated parameters of the equivalent circuits from 

models SSFR1, SFFR2, and SR3, as well as (3), (6) and (10). 

Figs. 9 and 10 compare the frequency responses of the operational inductance 

magnitude and phase along the d-axis, identified using the 
 dLJ  criterion and 

measured data. 

For the magnitude (Fig. 9), we note: 

– The experimental curve follows a gradual decay.  

– PSO-SSFR1 shows an overestimation at high frequencies, moving away 
from the experimental reality. 

– PSO-SSFR2 and PSO-SSFR3 follow the experimental curve better, with 
PSO-SSFR3 being the most accurate in the transition range. 

– For the phase (Fig. 10) we note:  

– The experimental curve shows a marked phase variation, with a 
pronounced minimum. 

– PSO-SSFR1 diverges strongly after the minimum, overestimating the high-
frequency phase. 
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– PSO-SSFR2 follows the general trend but with amplified oscillations. 

– PSO-SSFR3 is the most faithful to the measured curve, especially after the 
transition frequency. 

So, PSO-SFR3 is therefore the best candidate to represent the frequency 
response of operational inductance. 

Fig. 11 depicts the progression of the fitness function, which shows that the 
parameters display a high degree of alignment with the measured values for the 
SSFR3 model. 

The fitness function declines rapidly and reaches the convergence criteria 
after 12 iterations for the SSFR1 model, 28 iterations for the SSFR2 model, and 
80 iterations for the SSFR3 model. 

Fig. 12 shows the error from the PSO approach executed 50 consecutive 
times. Despite fluctuations, the PSO method successfully navigated these 
challenges and converged on an optimal solution. 

  

Fig. 9 − Operational inductance 

magnitude versus frequency (d-axis). 

Fig. 10 − Operational inductance phase 

versus frequency (d-axis). 

  

Fig. 11 − JLd Fitness function  

evolution (d-axis). 

Fig. 12 − Fitness function evolution  

for 50 iterations (d-axis). 
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8 Conclusion 

This paper proposes a particle swarm optimization (PSO) algorithm for 

identifying d-axis and q-axis operational inductance parameters. This approach is 

based on Stand Still Frequency Responses Testing conducted on a 250.02 MVA 

power generator with a voltage of 16.5 kV. The PSO algorithm effectively 

minimizes the quadratic criterion and accurately identifies the time constants and 

parameters of the d-axis and q-axis equivalent circuits for the SSFR1, SSFR2, 

and SSFR3 models, as demonstrated by simulation results. The obtained results 

indicate that the SSFR3 model emerges as the most efficient. Additionally, it is 

established that while the convergence time is negatively influenced by the 

number of parameters to be identified, the algorithm maintains its efficiency. As 

perspectives we recommend further research on the models' impact on the 

dynamic behavior of synchronous machines. 

9 Appendix A 

First order model (SSFR1) 
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with: 
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Second order model (SSFR2) 
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Using, a md
amd
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Then: 
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Third order model (SSFR3) 
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After development, we obtain: 

 2 2 2
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To simplify the analysis, we examined the numerator and denominator 

separately. 
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Simplifying the previous expression yields: 
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Using, 

 a md
amd

a md

L L
L

L L
=

+
, (A12) 

we substitute this into the numerator, factor out ( )a mds L L+ , and divide the 

equation by RfRkRj to obtain the following expression:  
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The denominator “Den” mirrors the numerator’s structure, substituting amdL  

with mdL  
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Then: 
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